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Introduction

Modern programming language design lives in tension between two apparently conflicting
demands. On the one hand, high-level languages such as Scheme, Prolog, and ML incorporate
significant advances in elegance and expressive power. On the other hand, many industrial
programmers find these languages too ”theoretical” or impractical for everyday use, and too
inefficient. As a result, these languages are often used only in academic and research contexts,
while the majority of the world’s mainline programming is conducted in such languages as
C and C++, distinguished instead for their efficiency and adaptability.

This book is about a new approach to programming language design, in which these two
demands of elegance and efficiency are viewed as compatible, not conflicting. Our goal is the
development of languages that are as clean as the purest theoretical designs, but that make
no compromises on performance or control over implementation.

The way in which we have achieved elegance and efficiency jointly is to base language
design on metaobject protocols. Metaobject protocols are interfaces to the language that give
users the ability to incrementally modify the language’s behavior and implementation, as
well as the ability to write programs within the language.

Languages that incorporate metaobject protocols blur the distinction between language
designer and language user. Traditionally, designers are expected to produce languages with
well-defined, fixed behaviors (or “semantics”). Users are expected to treat these languages
as immutable black-box abstractions, and to derive any needed flexibility or power from
constructs built on top of them. This sharp division is thought to constitute an appropriate
division of labor. Programming language design is viewed as a difficult, highly-specialized
art, inappropriate for average users to engage in. It is also often assumed that a language
design must be rigid in order to support portable implementations, efficient compilers, and
the like.

The metaobject protocol approach, in contrast, is based on the idea that one can and
should “open languages up,” allowing users to adjust the design and implementation to suit
their particular needs. In other words, users are encouraged to participate in the language
design process. If handled properly, opening up the language design need not compromise
program portability or implementation efficiency.

In a language based upon our metaobject protocols, the language implementation it-
self is structured as an object-oriented program. This allows us to exploit the power of
object-oriented programming techniques to make the language implementation adjustable
and flexible. In effect, the resulting implementation does not represent a single point in the
overall space of language designs, but rather an entire region within that space.

The protocols followed by this object-oriented program serve two important functions.
First, they are used by the designers to specify a distinguished point in that region, corre-
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Introduction 2

sponding to the language’s default behavior and implementation. Second, they allow uters
to create variant languages, using standard techniques of sub classing and specialization. In
this way, users can select whatever point in the region of language designs best serves their
needs.

Our development of the metaobject protocol approach has emerged hand-in-hand with
our involvement, over the past several years, in the design of the Common Lisp Object System
(CLOS) [CLtL, [CLELIT, X3JI3][] CLOS is a high-level object-oriented language designed as
part of the forthcoming ANSI Common Lisp standard. That project brought us face to face
with many of the classic problems of high-level languages, including the need for compatibility
with existing languages, special extensions for particular projects, and efficiency. Our effort
to deal with these problems led us to develop the approach to language design based on
metaobject protocols and to implement a first practical instance, a metaobject protocol for
CLOS.

The purpose of this book is twofold. First, in Part I, we present metaobject protocol
design by gradually deriving a simplified metaobject protocol for CLOS. Because we ex-
pect the notion of a metaobject protocol itself to evolve, we not only present the approach
as we understand it today, but also point towards open issues and directions for further
development.

In Part II we provide a detailed and complete description of a particular metaobject
protocol we have designed for CLOS. This second CLOS metaobject protocol can be in-
corporated into production CLOS implementations and used for writing production-quality
code.

The work reported in this book synthesizes a number of concerns and approaches from
different parts of the computer science field. As a result we hope it will be of interest to a
wide spectrum of the community:

e Programming language designers should benefit from our analysis of some of the prob-

lems users have with high-level languages. Some designers may be interested in adding a
metaobject protocol to existing languages or designing a new language with a metaobject
protocol.
Augmenting a language with a metaobject protocol does not need to be a radical change.
In many cases, problems with an existing language or implementation can be improved
by gradually introducing metaobject protocol features. Also, compiler, debugger. and
programming environment features can often be recast as metaobject protocols, with
concomitant simplifications in their design, implementation, and documentation.

e Programmers and software engineers should be interested in our analysis of why high-level
languages are often inadequate, and in our suggestions for how to improve them. Even if
they are not working with a metaobject protocol, they may find that the analysis helps
them conceptualize and address problems they are having with existing languages.

1 Two of the authors (Bobrow and Kiczales) were members of the X3J13 subcommittee responsible for

CLOS.
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e People working with object-oriented languages will have two reasons to be interested
in this work. First, since our approach relies extensively on object-oriented techniques,
the book can simply be viewed as presenting a well-documented case-study within the
object-oriented paradigm. Particular attention is given to issues of designing and doc-
umenting object-oriented protocols. Second, the book includes a discussion not only of
the behavior of CLOS, but also of features that are characteristic of object-oriented
programming languages in general. As well as examining how these features work, we
focus on some of the issues involved in designing such languages.

e People interested in reflection will recognize that our approach also relies on the tech-
niques of procedural reflection. We hope they will see what we have done as helping to
bring reflection into wider practical use, by engineering reflective techniques to be robust,
efficient, and easy to use.

e The CLOS community, being a cross-section of these other groups, will presumably share
many of their interests. Furthermore, the book provides them with specific information on
how to use, implement, and continue the development of the CLOS metaobject protocol.

The Problems We Faced

During the development of the CLOS standard, we realized that we were up against a
number of fundamental problems. The prospective CLOS user community was already using
a variety of object-oriented extensions to Lisp. They were committed to large bodies of
existing code, which they needed to continue using and maintaining. Experience with these
earlier extended languages had shown that various improvements would be desirable, but
some of these involved incompatible changes. In fact the very notion of a single, standardized
object-oriented extension to Common Lisp was an inherently incompatible change, since
the set of earlier extensions were not compatible among themselves. We therefore faced a
traditional dilemma: genuine needs of backward compatibility were fundamentally at odds
with important goals of an improved design.

As is often the case, the situation was particularly aggravating because of an essential
compatibility between the language being designed and each of the older ones—the fact
that although they differed in surface details, they were all based, at a deeper level, on the
same fundamental approach. Each, after all, was an object-oriented programming language
with classes, instances, inheritance, methods, and generic functionsﬂ which, when called,
automatically determine the appropriate method to run. From the broader perspective of the
family of object-oriented programming languages, they differed only in how they interpreted

2 In traditional object-oriented languages, the terminology used for a polymorphic operation is message.
The terminology for invoking a such an operation is sending a message. In CLOS, the form taken by this
functionality warrants the use ’of somewhat different terminology, which will be used throughout this book:
the CLOS term for message is generic function, and the term for sending a message is calling or invoking a
generic function. (Appendix A presents an introduction to CLOS.)
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various aspects of object-oriented behavior: the syntax for calling generic functions; the rules
for handling multiple inheritance; the rules of method lookup; etc.

Along with this first challenge, of compatibility, we faced a second one, of extensibility. As
well as using a small number of major existing languages, many of the prospective CLOS users
had also developed custom languages of their own. In many ways these, too, were essentially
compatible with the major languages, and with the new language we wanted to design. But
each had its own distinguishing characteristics, supporting a number of additional features,
or implementing variant interpretations of basic object-oriented behavior. For example, some
of these languages provided special mechanisms for representing the structure of instances.
Others employed various special inheritance and method lookup mechanisms.

Furthermore, it turned out on examination that these added functionalities and varia-
tions in the base object-oriented model were neither arbitrary nor superfluous. Because they
satisfied various application-specific requirements, these incremental differences allowed pro-
grams to be clear, easy to write, and straightforward to maintain. Without them, the users
would have lost the advantage of programming in a high-level language: expressive power
well-matched to the problem at hand.

It was clear, furthermore, that some prospective CLOS users would always be in a similar
situation. No matter what design was agreed upon, there would be times when a given user,
for entirely appropriate reasons, would need this or that variant of it. For example, while
CLOS was being designed, it emerged that some users were interested in the support of
persistent objects, of the sort that would be provided by an object-oriented database. Our
challenge was to find a way to enable such users, who wanted something close to CLOS, to
adapt it to fit their needs.

The third problem we faced was that of ensuring that programs written in CLOS would
run efﬁcientlyﬂ Unfortunately, the very expressiveness of high-level languages makes this
difficult. No single implementation strategy is likely to perform well on the full range of
behaviors that user programs can be expected to exhibit.

Consider, for example, two different uses of CLOS classes. In the first, which might
arise in a graphics application, instances represent screen positions, with two slotsﬂ for x
and y coordinates. In such applications, it is safe to assume that slot access performance

3 3We call this familiar problem the paradox of high-level programming languages. On the one hand,
the primary rationale for high-level programming languages is that they are more expressive-i.e., that they
allow better formulations of what our programs are doing. On the other hand, it is widely agreed that
programs written in high-level languages are usually less efficient than programs written in lower-level ones.
The paradox arises from the fact that there must be things about the high-level programs that aren’t being
expressed more clearly, since otherwise compilers would be able to notice and exploit them, making those
programs more, rather than less, efficient than their low-level counterparts. In on-going work on metaobject
protocols, not discussed in this book, we are focusing directly on this issue. Our goal is to make it easier to
make a piece of code simultaneously clear and fast in a high-level language than to make it fast in a low-level
language.

4 In CLOS the fields of an instance, which in many languages are called instance variables, are called
slots.



Introduction 5

is critical—the faster the better. In the second, which might arise in a blackboard system,
instances can potentially have a large number of slots, but in practice any given instance
only uses a small number of them. If there can be a very large number of these instances,
the space taken up by the instances would be of critical concern, making it important not
to waste space on all the unused slots.

Even though the behavior of both of these classes is well captured by the CLOS lan-
guage, they would clearly benefit from different implementation strategies. As a result, an
implementation that used a single strategy would at best perform well on only one. The
situation is further exacerbated by the fact that the information needed to choose the best
implementation strategy might be difficult or impossible for a compiler to extract from
the program text, since it depends on dynamic behavior, such as how many instances will
be created, or how often their slots will be accessed. This is why efficiency is a challenge:
somehow, within the context of a single language design, different users should be given the
specific implementation and performance profiles they need.

While these goals of compatibility, extensibility and efficiency at first seemed different, we
eventually came to see them as instances of the same underlying problem, and were therefore
able to address them within a common structural framework.

The underlying problem is a lack of fit: in each case, the basic language design fails to
meet some particular need. Compatibility is an obvious example: as soon as the language
is changed to incorporate a new feature, it fails to match up with existing bodies of code.
But the other cases have the same structure. The graphics program is well served by one
implementation of instance representation, but the sparsely populated slots case requires
another.

The unavoidable conclusion is that no single language will ever be universally appropriate,
no matter how clever its design. So we adopted a different solution. Rather than supplying
the user with a fixed, single point in the space of all language designs and implementations,
we would instead support a region of possible designs within that overall space. This is the
essence of the metaobject protocol approach. In the case of CLOS, for example, instead
of providing a single fixed language, with a single implementation strategy, the metaobject
protocol extends a basic or “default” CLOS by providing a surrounding region of alterna-
tives. Users are free to move to whatever point in that region best matches their particular
requirements.

This strategy has two tangible benefits. First, relying on the metaobject protocol to
deal with a wide range of users’ concerns allows the base case—CLOS itself—to be simpler
and more elegant. The very existence of the metaobject protocol, in other words, takes some
pressure off the design of the base language, to its benefit. Second, the strategy of supporting
a CLOS region, rather than a single CLOS point, enables us to solve all three of our original
problems.

The compatibility problem is solved by ensuring that the behavior of each of the earlier
languages lay within the scope of the newly supplied region. As we have already said, those



Introduction 6

earlier languages were already incompatible with one other, and none was located at exactly
the same point as basic CLOS. But, because of their essential similarity, we were able to
delineate a coherent region of object-oriented languages that included them all. Users can
select whichever language they prefer by adjusting default CLOS to the appropriate new
point. Furthermore, they derive some additional benefits. Since the language behavior can
be incrementally adjusted to any point in the region, not just to one or two pre-designated
positions, users can gradually convert their programs from the old language to the new. And
because different parts of a program can be assigned to different positions in the region, users
can combine code written in different versions of the language within the same program.

The extensibility problem is solved in the same way. As long as the region includes the
extended behavior the user wants, the default language can be simply adjusted to meet it.
The efficiency problem can similarly be solved, so long as the user can readily alter the
implementation strategy to suit each particular program or part thereof. In sum, if a region
can be identified that is comprehensible enough for the user to understand and large enough
to include the user’s needs, and if it is easy for the user to incrementally adjust the default
language behavior and implementation within that region, then our three goals can be met,
and the investment in the basic language implementation preserved. The question remains,
though, of how this can be done.

Metaobject Protocol Based Language Design

While designing a language—or language region—in this way departs significantly from tra-
ditional practice, it can be done while preserving the important qualities of existing design
approaches. There are two critical enabling technologies: reflective techniques make it possi-
ble to open up a language’s implementation without revealing unnecessary implementation
details or compromising portability; and object-oriented techniques allow the resulting model
of the language’s implementation and behavior to be locally and incrementally adjusted.

Reflective techniques [Smith 84, Maes&Nardi 88| allow the implementation to be exposed
in a way that satisfies two important criteria. First, the access must be at an appropriately
high level of abstraction, so that implementors retain enough freedom to exploit idiosyn-
crasies of their target platforms, and so that users aren’t saddled with gratuitous (and
non-portable) details. Second, that access must be effective, in the sense that adjustments
must actually change the language behavior. These two properties are exactly what is pro-
vided by a reflective implementation model.E]

® Reflection also solves any problems of circularity that arise when the language used to implement
the protocol is the same as the language implemented by the prot,ocol. This merging of languages, which
is often convenient, is adopted in CLOS, and the metaobject protocols presented in both Part I and Part
IIcontain a number of such circularities. As in any reflective system, however, they can easily be discharged,
as explained in Appendix C. It is important to note, however, that self-referentiality is not essential to the
basic notion of a metaobject protocol. In on-going work that extends the ideas presented in this book, we
are adding a metaobject protocol to Scheme, but we are using CLOS (not Scheme) as the language for
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What reflection on its own doesn’t provide, however, is flexibility, incrementality, or ease
of use. This is where object-oriented techniques come into their own. These techniques work
by (i) defining a set of object types and operations on them, which can support not just a
single behavior, but a space or region of behaviors-this is commonly called a protocol; (ii)
defining a default behavior, a single point in the region, in terms of the protocol-this is the
role of the default classes and methods; and (iii) making it possible to effect incremental
adjustments from the default behavior to other points in the region—this is the role of
inheritance and specialization.

These techniques, applied to the design and implementation of a programming language
itself, are exactly what our strategy requires. First, the basic elements of the programming
language—classes, methods and generic functions-are made accessible as objects. Because
these objects represent fragments of a program, they are given the special name of metaob-
jects. Second, individual decisions about the behavior of the language are encoded in a proto-
col operating on these metaobjects-a metaobject protocol. Third, for each kind of metaobject,
a default class is created, which lays down the behavior of the default language in the form
of methods in the protocol. In this way, metaobject protocols, by supplementing the base
language, provide control over the language’s behavior, and therefore provide the user with
the ability to select any point within the region of languages around the one specified by the
default classes. In the CLOS metaobject protocol, for example, the rules used to determine
the implementation of instances are controlled by a small number of generic functions. This
makes it possible to change those rules by defining a new kind of class, as a subclass of the
default, and by giving it specialized methods on those generic functions. By doing this, the
user is making an incremental adjustment in the language. Most aspects of both its behavior
and implementation remain unchanged, with just the instance representation strategy being
adjusted.

In this way, by combining these two techniques into an integrated protocol, we are able
to meet a number of important design criteria:

e Robustness: moving the language around in the region to suit one program shouldn’t
have an adverse effect on other programs or on the system as a whole;

e Abstraction: in order to adjust the language, the user should not have to know the
complete details of the language implementation;

e Fase of use: adjusting the language must be natural and straightforward, and the result-
ing languages must themselves be easy to use; and

e Ffficiency: providing the flexibility of a surrounding region should not undermine the
performance of the default language, nor curtail the implementor’s ability to exploit
idiosyncrasies of target architectures to improve performance of the entire region (in fact
we retain our goal of having programs written in a language augmented with a metaobject
protocol be more, not less efficient than programs written in a traditional language).

expressing adjustments, so issues of self-reference don’t arise. The two criteria discussed in the main text
remain of central importance, and reflective techniques can still be used to support them.
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Our conclusion is that a synthetic combination of object-oriented and reflective tech-
niques, applied under existing software engineering considerations, make possible a new
approach to programming language design, one that meets a wider set of design criteria
than have been met before. Doing so is the art of metaobject protocol design, the subject of
this book.

Structure of the Book

The remainder of the book is divided in two parts. The first part presents metaobject protocol
design. The second part gives a detailed specification of a metaobject protocol for CLOS.

In Part I, metaobject protocol design is presented as a narrated derivation of a metaob-
ject protocol for CLOS. We begin with a (simplified) CLOS sans metaobject protocol, and
gradually derive one for it. The derivation is driven by examples of the kinds of problems
metaobject protocols can solve. This approach allows us to give attention not just to how
metaobject protocols work and are implemented, but also to the process of analyzing user
needs, and of incorporating those needs into the design of a protocol. In effect, metaobject
protocol design requires determining the size, shape, and dimensions of the region to be
provided. In the early stages of the derivation, the focus is on the basic motivation ani
approach of metaobject protocol design. In later stages, attention shifts to problems of ease
of use and efficiency.

Throughout, we will work with actual code for a simplified implementation of CLOS,
and as we develop it, its metaobject protocol. This will give the reader an opportunity to
gain some practical experience with the evolving design. In the same vein, we have included
a number of exercises, addressing important concerns and open issues—we encourage all
readers at least to read them, if not actually to work them through. Solutions to those
that can be answered with code are included in Appendix B; others require more discursive
replies, from short essays to moderate sized term projects.

The presentation throughout this first part presumes a familiarity with Common Lisp and
CLOS. Readers who are unfamiliar with CLOS, but familiar with other object-oriented lan-
guages, will find an introduction in Appendix A. Those who are not familiar with object-oriented
programming can find an excellent introduction to both it and CLOS in [Keene 89].

Chapter 1 lays the groundwork by presenting a simplified subset of CLOS and a simple
implementation of it. This CLOS subset and implementation will be the basis of all of Part
I, so we encourage even those familiar with CLOS to read this chapter.

Chapter 2 begins the derivation of the metaobject protocol by looking at the needs of users
writing browsers and other program analysis tools. We will develop a variety of introspective
protocols, which make it possible to analyze the structure and definition of a program.

Chapter 3 continues the derivation of the metaobject protocol with examples of com-
patibility, extensibility and performance needs that require adjusting the default language
behavior. This ability to “step in” or intercede in the behavior of the system will be provided
by a set of intercessory protocols.
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In Chapter 4, we continue to develop intercessory protocols. But, in this chapter, our
focus is the problem of designing protocols that are efficient and easy to use. We discuss
various protocol design considerations and techniques.

Part II presents a detailed specification of a metaobject protocol for CLOS. The spec-
ification is divided into two chapters, in a manner similar to the specification of CLOS
itself [X3J13|]. Chapter 5 presents basic terminology and concepts; Chapter 6 describes each
function, generic function, and method in the protocol.

Readers interested in designing metaobject protocols for other languages will find that
this part not only fills in specific technical details, but also conveys additional information
about the overall nature of our design approach. For CLOS users and implementors, however,
the primary interest of Part II will be as a specification of a complete metaobject protocol
for CLOS. This protocol is not offered as a proposed standard, but as a basis for experimen-
tation, which may subsequently lead to the development of a revised and standardized CLOS
metaobject protocol. There is evidence that this is already underway; many Common Lisp
vendors are already implementing metaobject protocols based on the one presented here.



THE DESIGN AND IMPLEMENTATION OF METAOBJECT
PROTOCOLS
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]. How CLOS is Implemented

We will present metaobject protocol design in stages, by following the development of a
simplified metaobject protocol for a subset of CLOS. Our technique will be to progressively
design and implement a metaobject protocol for this language, motivating each step with
an example of the kind of problem users have with CLOS. Each example will be resolved by
showing how it is handled by the newly developed portion of the protocol.

Metaobject protocol design requires an understanding both of the language behavior (in
this case CLOS), and of the common architecture of that language’s implementations. The
first task therefore, addressed in this chapter, is to present the architecture of CLOS imple-
mentations in the form of Closette, a simple CLOS interpreter [[] Closette is the “everyman”
of CLOS implementations—despite the simplifications, it is representative of the architecture
of all CLOS implementations

Although understanding implementation architecture is important, it is vital to distin-
guish the implementation from the documented language. A useful metaphor for making
this separation comes from the theatre. We can think of the documented language as being
on-stage. Users, which we think of as the audience, only get to see this on-stage behavior.
The internal parts of the implementation are backstage: they support what happens on-stage,
but the audience doesn’t get to see them. Finally, implementors are the producers: they get
to see what happens both on and offstage, and they are the ones responsible for putting on
the show.

In presenting Closette, we will be showing the essential structure of what can be found
backstage in any CLOS implementation. We will see how this backstage structure sup-
ports the on-stage language behavior. This will be useful in later chapters as we design the
metaobject protocol, because it will let us think about what information waiting in the wings
might be useful to the user, and what possibilities there are for implementors to expose that
information.

Throughout this part of the book, presentations are based on working code. This will
allow readers to try the examples, work through the exercises, and try alternative approaches.
In fact, we recommend this (see Appendix D for the complete code).

! To support the later addition of a metaobject protocol, we have structured Closette as an
object-oriented program. In this case, the object-oriented language is CLOS itself. (We assume that the
reader is comfortable enough with the idea of metacircular interpreters to trust that the manifest circularities
can eventually be resolved; we defer discussion of these circularities until Appendix C.)

2 The simplifications in Closette are for pedagogical purposes only. The most significant is that it is an
interpreter rather than compiler-based implementation-that is, we have reduced complexity by neglecting
performance. In addition, most error-checking code has been omitted.

11
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It will be assumed that the reader is familiar with Lisp and has some familiarity with
CLOS programming. Those with a background in other object-oriented programming lan-
guages, such as Smalltalk or C++, can acquaint themselves with CLOS by reading Appendix
A. Those who are not familiar with object-oriented programming can find an excellent in-
troduction to both it and CLOS in [Keene 89].

1.1 A Subset of CLOS

In the interests of pedagogy and (relative) brevity, we have chosen to work with a simplified
subset of CLOS. All the essential features of full CLOS are included: classes, which inherit
structure and behavior from one or more other classes; instances of classes, which are created,
initialized, and manipulated; generic functions, whose behavior depends on the classes of
the arguments supplied to them; and methods which define the class-specific behavior and
operations of generic functions. The major restrictions of the simplified dialect include:

No class redefinition. Full CLOS allows the definition of a class to be changed; the
changes are propagated to its subclasses and to extant instances. The subset does not
allow classes to be redefined.

No method redefinition. Full CLOS allows methods to be redefined, with the new defini-
tion completely replacing the old one. The subset does not allow methods to be redefined.
(For convenience, the working code in Appendix D does support method redefinition.)

No forward-referenced superclasses. Full CLOS allows classes to be referenced before
they are defined. One class can be defined in terms of another before the second has
been defined. These forward references are not permitted in the subset. Explicit generic
function definitions. Full CLOS allows the definition of a generic function to be inferred
from the method definitions. The subset requires that a generic function be explicitly
introduced with a defgeneric form before any methods are defined on it.

Standard method combination only. Full CLOS provides a powerful mechanism for
user control of method combination. The subset defines only simple ”demon” combination
(primary, before-, and after-methods).

No eql specializers. Full CLOS allows methods to be specialized not only to classes, but
also to individual objects. The subset restricts method specialization to classes.

No slots with :class allocation. Full CLOS supports slots allocated in each instance of
a class and slots which are shared across all of them. The subset defines only per-instance
slots.

Types and classes not fully integrated. Full CLOS closely integrates Common Lisp types
and CLOS classes. It is possible to define methods specialized to primitive classes (e.g.,
symbol) and structure classes (defined with defstruct). The subset provides classes for
the primitive Common Lisp types but not for structure classes.
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Minimal syntactic sugar. A number of convenience macros and special forms are not
included in the subset. These include: with-slots, generic-function, generic-flet and
generic-labels.

1.2 The Basic Backstage Structures

In its simplest terms, a CLOS program consists of defclass, defgeneric, and defmethod
forms mixed in with other more traditional Common Lisp forms. Executing these forms
defines the program’s classes, generic functions and methods.

Backstage, execution of these forms creates internal representations of the classes, generic
functions, and methods, recording the information provided in their definitions. The imple-
mentation uses the information stored in the internal representation of a class to create
instances of that class and to access their slots. Information stored in the internal represen-
tation of a generic function and its methods is used to invoke the generic function.

To make things concrete, consider the following example CLOS program:

(defclass rectangle ()
((height :initform 0.0 :initarg :height)
(width :initform 0.0 :initarg :width)))

(defclass color-mixin ()
((cyan :initform a :initarg :cyan)
(magenta :initform a :initarg :magenta)
(vellow :initform a :initarg :yellow)))

(defclass color-rectangle (color-mixin rectangle)
((clearp :initform (y-or-n-p "But is it transparent?")
:initarg :clearp :accessor clearp)))

(defgeneric paint (x))

(defmethod paint ((x rectangle)) ;Method #1
(vertical-stroke (slot-value x 'height)
(slot-value x 'width)))

(defmethod paint :before ((x color-mixin)) ;Method #2
(set-brush-color (slot-value x 'cyan)
(slot-value x 'magenta)
(slot-value x 'yellow)))
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(defmethod paint ((x color-rectangle)) sMethod #3
(unless (clearp x) (call-next-method)))

(setq door
(make-instance 'color-rectangle
:width 38 :height 84 :cyan 60 :yellow 55 :clearp nil))

_ Direct superclasses/subclass
t L Generic function/Methods
Specializer /Direct method
-—.—_. Class-of

standard-object

/N

color-mixin rectangle
color-rectangle L Tl TN
- .. e | ~

T Method #3 Method #2 Method #1

Figure 1.1. A First Gilmpse Backstage.

These definitions cause several new internal objects to be created and connected as shown
in Figure[I.1] They can be divided into two groups: classes and instances, and functions and
methods. In the former group, each class object is connected to its direct (i.e., immediate)
superclasses and subclasses. The instance door (which is the only on-stage object in the
figure) is connected to its class, but not vice versa. In the latter group, the generic function
paint is connected to its methods, and conversely the methods are connected to their generic
function. Connecting the two groups are bidirectional links between methods and the classes
they are specialized to.

Unlike instances of color-rectangle, such as the one door is bound to, which represent
rectangles, the backstage objects, such as the one corresponding to the class rectangle,
represent elements of the program. These backstage objects are called metaobjects because
they represent the program rather than the program’s domain. In fact, everything that goes
on inside the implementation is considered to be at the “meta” level with respect to the
program; i.e., about the program itself, rather than about whatever the program happens to
be about. Of course, if you weren’t peering into the insides of an implementation you might
not even notice that there were such metaobjects being backstage they are normally hidden
from the user.
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Name: color-rectangle

Direct superclasses: (color-mixinrectangle)

Direct slots: {clearp}

(Class precedence list: (color-rectangle color-mixin rectangle standard-object t)
Effective slots: {clearp, cyan, height, magenta, width, yellow}

Direct subclasses: none

Direct methods: {paint method #3}

Figure 1.2. The metaobject for the class color-rectangle.

CLOS implementations divide the execution of defining forms (defclass, defgeneric,
and defmethod) and the processing of metaobjects into a three layer structure—somewhat
reminiscent of furniture construction:

e The macro-expansion layer that provides a thin veneer of syntactic sugar that the user
gets to seej e.g., the defclass macro.

e The glue layer that maps names to the metaobjects; e.g., the function find-class, which
looks up a class metaobject given its name.

e The lowest layer that provides all the support, and traffics directly in first-class metaob-
jects. This is where the behavior of classes, instances, generic-functions, and methods is
implemented. (Our metaobject protocols will end up being concentrated in this layer.)

Given this overall picture, the remainder of the chapter will fill in the details by working
through Closette, dealing in turn with the following issues:

How classes are represented. (Section |1.3))

How objects are printed. (Section 77?)

How instances are represented, initialized, and accessed. (Section ?7?)
How generic functions are represented. (Section ?77?)

How methods are represented. (Section ?7)

What happens when a generic function is called. (Section ?77?)

1.3 Representing Classes

The CLOS user defines classes with the defclass macro. It is natural, therefore, to start
by examining how defclass is implemented. Although a lot of machinery will be intro-
duced, remember that the definitions other than the defclass macro are internal to the
implementation—they are hidden backstage.

The term class metaobject is used for the backstage structure that represents the classes
the user defines with defclass. For example, the class metaobject corresponding to the
class named color-rectangle contains the information shown in Figure[I.2] In general, this
information will include:
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e Fields from the defclass form; e.g., the class’s name (color-rectangle), direct super
classes (color-mixin and rectangle), and slot specifications ({clearp...}).

e Information that is derived or inherited; e.g., a list of all of the class’s superclasses in
order of precedence and the full set of slots including those inherited from superclasses.

e Backlinks to the class’s direct subclasses and links to methods that include the class
among the method’s specializers.

As our first step in the construction of Closette, the class standard-class is defined to
centralize the description of what class metaobjects look like. Instances of standard-class
represent individual classes; or, to say it another way, class metaobjects are instances of
standard-class. Here is the definition:

(defclass standard-class ()

((name :initarg :name

:accessor class-name)
(direct-superclasses :initarg :direct-superclasses

:accessor class-direct-superclasses)
(direct-slots :accessor class-direct-slots)
(class-precedence-list :accessor class-precedence-list)
(effective-slots :accessor class-slots)
(direct-subclasses :initform ()
:accessor class-direct-subclasses)
(direct-methods :initform ()
:accessor class-direct-methods)))

Note that throughout this part of the book, all code that is part of the Closette imple-
mentation will be marked with a backstage door this way.

Each of the slots has been given accessor functions; these will be used consistently to
access the slots of metaobjects (rather than employing slot-value).

1.3.1 The defclass Macro

In Closette’s three layered implementation structure, the job of the defclass macro (macro-expansion
layer) is to parse the class definition and convert it into a call to ensure-class (glue layer).

The implementation of defclass is organized so that the bulk of the macro-expansion
work is carried out by canonicalize-... procedures:

(defmacro defclass (name direct-superclasses direct-slots &rest options)
‘(ensure-class’ ,name
:direct-superclasses ,(canonicalize-direct-superclasses
direct-superclasses)
:direct-slots ,(canonicalize-direct-slots
direct-slots)
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\@(canonicalize-defclass-options options)))

1.3.2 Direct Superclasses

17
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