
Common Lisp

The Language

Second Edition

Guy L. Steele Jr.
Thinking Machines Corporation

with contributions by

Scott E. Fahlman

CarnegieMellon University

Richard P. Gabriel

Lucid, Inc.

Stanford University

David A. Moon

Symbolics, Incorporated

Daniel L. Weinreb

Symbolics, Incorporated

and with contributions to the second edition by

Kent M. Pitman

Symbolics, Incorporated

Richard C. Waters

Massachusetts Institute of Technology

Jon L White

Lucid, Inc.

c© 1984, 1989 Guy L. Steele Jr. All rights reserved.

To be published by Digital Press.

Contents

Preface (Second Edition) xi

Acknowledgments (Second Edition) xiii

Acknowledgments (First Edition) xvii

1. Introduction 1

1.1. Purpose 1

1.2. Notational Conventions 4

1.2.1. Decimal Numbers 4

1.2.2. Nil, False, and the Empty List 4

1.2.3. Evaluation, Expansion, and

Equivalence 5

1.2.4. Errors 5

1.2.5. Descriptions of Functions and

Other Entities 6

1.2.6. The Lisp Reader 9

1.2.7. Overview of Syntax 10

2. Data Types 12

2.1. Numbers 15

2.1.1. Integers 16

2.1.2. Ratios 18

2.1.3. FloatingPoint Numbers 18

2.1.4. Complex Numbers 22

2.2. Characters 23

2.2.1. Standard Characters 23

2.2.2. Line Divisions 24

2.2.3. Nonstandard Characters 25

2.2.4. Character Attributes 26

2.2.5. String Characters 26

2.3. Symbols 27

2.4. Lists and Conses 29

2.5. Arrays 31

2.5.1. Vectors 32

2.5.2. Strings 33

2.5.3. BitVectors 34

2.6. Hash Tables 35

2.7. Readtables 35

2.8. Packages 35

2.9. Pathnames 35

2.10. Streams 35

2.11. RandomStates 36

2.12. Structures 36

2.13. Functions 36

2.14. Unreadable Data Objects 37

2.15. Overlap, Inclusion, and

Disjointness of Types 37

3. Scope and Extent 42

4. Type Specifiers 49

4.1. Type Specifier Symbols 49

4.2. Type Specifier Lists 49

4.3. Predicating Type Specifiers 51

4.4. Type Specifiers That Combine 51

4.5. Type Specifiers That

Specialize 53

4.6. Type Specifiers That

Abbreviate 60

4.7. Defining New Type Specifiers 62

4.8. Type Conversion Function 63

4.9. Determining the Type of an

Object 65

4.10. Type Upgrading 67

v

vi CONTENTS

5. Program Structure 69

5.1. Forms 69

5.1.1. SelfEvaluating Forms 70

5.1.2. Variables 70

5.1.3. Special Forms 72

5.1.4. Macros 73

5.1.5. Function Calls 74

5.2. Functions 75

5.2.1. Named Functions 75

5.2.2. LambdaExpressions 75

5.3. TopLevel Forms 83

5.3.1. Defining Named Functions 84

5.3.2. Declaring Global Variables and

Named Constants 86

5.3.3. Control of Time of Evaluation 88

6. Predicates 94

6.1. Logical Values 95

6.2. Data Type Predicates 95

6.2.1. General Type Predicates 95

6.2.2. Specific Data Type Predicates 98

6.3. Equality Predicates 102

6.4. Logical Operators 109

7. Control Structure 112

7.1. Constants and Variables 113

7.1.1. Reference 113

7.1.2. Assignment 120

7.2. Generalized Variables 122

7.3. Function Invocation 144

7.4. Simple Sequencing 146

7.5. Establishing New Variable

Bindings 147

7.6. Conditionals 155

7.7. Blocks and Exits 160

7.8. Iteration 161

7.8.1. Indefinite Iteration 162

7.8.2. General Iteration 162

7.8.3. Simple Iteration Constructs 167

7.8.4. Mapping 170

7.8.5. The “Program Feature” 172

7.9. Structure Traversal and Side

Effects 176

7.10. Multiple Values 178

7.10.1. Constructs for Handling Multiple

Values 178

7.10.2. Rules Governing the Passing of

Multiple Values 183

7.11. Dynamic NonLocal Exits 186

8. Macros 192

8.1. Macro Definition 193

8.2. Macro Expansion 202

8.3. Destructuring 203

8.4. Compiler Macros 204

8.5. Environments 206

9. Declarations 214

9.1. Declaration Syntax 214

9.2. Declaration Specifiers 222

9.3. Type Declaration for Forms 235

10. Symbols 237

10.1. The Property List 237

10.2. The Print Name 242

10.3. Creating Symbols 242

11. Packages 246

11.1. Consistency Rules 248

11.2. Package Names 248

11.3. Translating Strings to

Symbols 250

11.4. Exporting and Importing

Symbols 252

11.5. Name Conflicts 253

11.6. Builtin Packages 256

11.7. Package System Functions and

Variables 260

11.8. Modules 275

11.9. An Example 276

12. Numbers 287

12.1. Precision, Contagion, and

Coercion 287

12.2. Predicates on Numbers 290

12.3. Comparisons on Numbers 291

12.4. Arithmetic Operations 294

CONTENTS vii

12.5. Irrational and Transcendental

Functions 298

12.5.1. Exponential and Logarithmic

Functions 299

12.5.2. Trigonometric and Related

Functions 302

12.5.3. Branch Cuts, Principal Values, and

Boundary Conditions in the

Complex Plane 308

12.6. Type Conversions and Component

Extractions on Numbers 349

12.7. Logical Operations on

Numbers 356

12.8. Byte Manipulation Functions 361

12.9. Random Numbers 364

12.10. Implementation Parameters 367

13. Characters 370

13.1. Character Attributes 373

13.2. Predicates on Characters 375

13.3. Character Construction and

Selection 380

13.4. Character Conversions 382

13.5. Character ControlBit

Functions 384

14. Sequences 386

14.1. Simple Sequence Functions 390

14.2. Concatenating, Mapping, and

Reducing Sequences 392

14.3. Modifying Sequences 396

14.4. Searching Sequences for

Items 401

14.5. Sorting and Merging 405

15. Lists 409

15.1. Conses 409

15.2. Lists 411

15.3. Alteration of List Structure 421

15.4. Substitution of Expressions 422

15.5. Using Lists as Sets 424

15.6. Association Lists 429

16. Hash Tables 433

16.1. Hash Table Functions 434

16.2. Primitive Hash Function 439

17. Arrays 440

17.1. Array Creation 440

17.2. Array Access 445

17.3. Array Information 446

17.4. Functions on Arrays of Bits 450

17.5. Fill Pointers 452

17.6. Changing the Dimensions of an

Array 454

18. Strings 457

18.1. String Access 458

18.2. String Comparison 458

18.3. String Construction and

Manipulation 460

19. Structures 465

19.1. Introduction to Structures 465

19.2. How to Use Defstruct 467

19.3. Using the Automatically Defined

Constructor Function 470

19.4. Defstruct SlotOptions 472

19.5. Defstruct Options 473

19.6. ByPosition Constructor

Functions 479

19.7. Structures of Explicitly Specified

Representational Type 482

19.7.1. Unnamed Structures 482

19.7.2. Named Structures 483

19.7.3. Other Aspects of Explicitly

Specified Structures 484

20. The Evaluator 487

20.1. RunTime Evaluation of

Forms 487

20.2. The TopLevel Loop 491

21. Streams 494

21.1. Standard Streams 494

viii CONTENTS

21.2. Creating New Streams 497

21.3. Operations on Streams 501

22. Input/Output 506

22.1. Printed Representation of Lisp

Objects 506

22.1.1. What the Read Function

Accepts 507

22.1.2. Parsing of Numbers and

Symbols 513

22.1.3. Macro Characters 521

22.1.4. Standard Dispatching Macro

Character Syntax 527

22.1.5. The Readtable 537

22.1.6. What the Print Function

Produces 547

22.2. Input Functions 564

22.2.1. Input from Character Streams 564

22.2.2. Input from Binary Streams 573

22.3. Output Functions 573

22.3.1. Output to Character Streams 573

22.3.2. Output to Binary Streams 578

22.3.3. Formatted Output to Character

Streams 578

22.4. Querying the User 606

23. File System Interface 608

23.1. File Names 608

23.1.1. Pathnames 609

23.1.2. Case Conventions 614

23.1.3. Structured Directories 617

23.1.4. Extended Wildcards 619

23.1.5. Logical Pathnames 625

23.1.5.1. Syntax of Logical Pathname

Namestrings 625

23.1.5.2. Parsing of Logical Pathname

Namestrings 626

23.1.5.3. Using Logical Pathnames 627

23.1.5.4. Examples of the Use of Logical

Pathnames 630

23.1.5.5. Discussion of Logical

Pathnames 632

23.1.6. Pathname Functions 634

23.2. Opening and Closing Files 643

23.3. Renaming, Deleting, and Other File

Operations 649

23.4. Loading Files 653

23.5. Accessing Directories 659

24. Errors 661

24.1. General ErrorSignaling

Functions 662

24.2. Specialized ErrorSignaling Forms

and Macros 667

24.3. Special Forms for Exhaustive Case

Analysis 669

25. Miscellaneous Features 672

25.1. The Compiler 672

25.1.1. Compiler Diagnostics 679

25.1.2. Compiled Functions 680

25.1.3. Compilation Environment 681

25.1.4. Similarity of Constants 686

25.2. Documentation 690

25.3. Debugging Tools 691

25.4. Environment Inquiries 697

25.4.1. Time Functions 697

25.4.2. Other Environment Inquiries 701

25.5. Identity Function 703

26. Loop 704

26.1. Introduction 704

26.2. How the Loop Facility Works 704

26.3. Parsing Loop Clauses 705

26.3.1. Order of Execution 706

26.3.2. Kinds of Loop Clauses 706

26.3.3. Loop Syntax 709

26.4. User Extensibility 710

26.5. Loop Constructs 710

26.6. Iteration Control 711

26.7. EndTest Control 721

26.8. Value Accumulation 725

26.9. Variable Initializations 730

26.10. Conditional Execution 733

26.11. Unconditional Execution 735

26.12. Miscellaneous Features 737

26.12.1. Data Types 737

26.12.2. Destructuring 738

CONTENTS ix

27. Pretty Printing 743

27.1. Introduction 743

27.2. Pretty Printing Control

Variables 744

27.3. Dynamic Control of the

Arrangement of Output 745

27.4. Format Directive Interface 756

27.5. Compiling Format Control

Strings 759

27.6. Pretty Printing Dispatch

Tables 760

28. Common Lisp Object
System 765

28.1. Programmer Interface

Concepts 765

28.1.1. Error Terminology 766

28.1.2. Classes 768

28.1.2.1. Defining Classes 770

28.1.2.2. Creating Instances of

Classes 771

28.1.2.3. Slots 771

28.1.2.4. Accessing Slots 772

28.1.3. Inheritance 773

28.1.3.1. Inheritance of Methods 773

28.1.3.2. Inheritance of Slots and Slot

Options 773

28.1.3.3. Inheritance of Class

Options 775

28.1.3.4. Examples 775

28.1.4. Integrating Types and Classes 775

28.1.5. Determining the Class Precedence

List 777

28.1.5.1. Topological Sorting 779

28.1.5.2. Examples 779

28.1.6. Generic Functions and

Methods 781

28.1.6.1. Introduction to Generic

Functions 781

28.1.6.2. Introduction to Methods 783

28.1.6.3. Agreement on Parameter

Specializers and Qualifiers 786

28.1.6.4. Congruent LambdaLists for All

Methods of a

Generic Function 786

28.1.6.5. Keyword Arguments in Generic

Functions and Methods 787

28.1.7. Method Selection and

Combination 788

28.1.7.1. Determining the Effective

Method 788

28.1.7.2. Standard Method

Combination 791

28.1.7.3. Declarative Method

Combination 792

28.1.7.4. Builtin Method Combination

Types 793

28.1.8. Metaobjects 794

28.1.8.1. Metaclasses 795

28.1.8.2. Standard Metaclasses 795

28.1.8.3. Standard Metaobjects 795

28.1.9. Object Creation and

Initialization 796

28.1.9.1. Initialization Arguments 797

28.1.9.2. Declaring the Validity of

Initialization Arguments 798

28.1.9.3. Defaulting of Initialization

Arguments 799

28.1.9.4. Rules for Initialization

Arguments 800

28.1.9.5. SharedInitialize 801

28.1.9.6. InitializeInstance 802

28.1.9.7. Definitions of MakeInstance and

InitializeInstance 803

28.1.10. Redefining Classes 805

28.1.10.1. Modifying the Structure of

Instances 806

28.1.10.2. Initializing Newly Added Local

Slots 806

28.1.10.3. Customizing Class

Redefinition 807

28.1.10.4. Extensions 807

28.1.11. Changing the Class of an

Instance 807

28.1.11.1. Modifying the Structure of an

Instance 808

x CONTENTS

28.1.11.2. Initializing Newly Added Local

Slots 808

28.1.11.3. Customizing the Change of

Class of an Instance 808

28.1.12. Reinitializing an Instance 809

28.1.12.1. Customizing

Reinitialization 810

28.2. Functions in the Programmer

Interface 810

29. Conditions 861

29.1. Introduction 861

29.2. Changes in Terminology 863

29.3. Survey of Concepts 864

29.3.1. Signaling Errors 864

29.3.2. Trapping Errors 866

29.3.3. Handling Conditions 867

29.3.4. ObjectOriented Basis of Condition

Handling 869

29.3.5. Restarts 870

29.3.6. Anonymous Restarts 871

29.3.7. Named Restarts 873

29.3.8. Restart Functions 874

29.3.9. Comparison of Restarts and

Catch/Throw 874

29.3.10. Generalized Restarts 876

29.3.11. Interactive Condition

Handling 877

29.3.12. Serious Conditions 877

29.3.13. NonSerious Conditions 878

29.3.14. Condition Types 878

29.3.15. Signaling Conditions 879

29.3.16. Resignaling Conditions 879

29.3.17. Condition Handlers 880

29.3.18. Printing Conditions 880

29.4. Program Interface to the Condition

System 882

29.4.1. Signaling Conditions 882

29.4.2. Assertions 885

29.4.3. Exhaustive Case Analysis 888

29.4.4. Handling Conditions 891

29.4.5. Defining Conditions 894

29.4.6. Creating Conditions 897

29.4.7. Establishing Restarts 897

29.4.8. Finding and Manipulating

Restarts 906

29.4.9. Warnings 908

29.4.10. Restart Functions 909

29.4.11. Debugging Utilities 910

29.5. Predefined Condition Types 912

Appendix A. Series 919

A.1. Introduction 919

A.2. Series Functions 921

A.2.1. Scanners 921

A.2.2. Mapping 926

A.2.3. Truncation and Other Simple

Transducers 928

A.2.4. Conditional and Other Complex

Transducers 931

A.2.5. Collectors 934

A.2.6. Alteration of Series 938

A.3. Optimization 939

A.3.1. Basic Restrictions 939

A.3.2. Constraint Cycles 941

A.3.3. Defining New Series

Functions 944

A.3.4. Declarations 945

A.4. Primitives 946

Appendix B. Generators and
Gatherers 952

B.1. Introduction 952

B.2. Generators 953

B.3. Gatherers 953

B.4. Discussion 955

Appendix C. Backquote 956

References 968

Index of X3J13 Votes 972

Other Indexes 977

Preface
SECOND EDITION

Common Lisp has succeeded. Since publication of the first edition of this book in

1984, many implementors have used it as a de facto standard for Lisp implementation.

As a result, it is now much easier to port large Lisp programs from one implementa

tion to another. Common Lisp has proved to be a useful and stable platform for rapid

prototyping and systems delivery in artificial intelligence and other areas. With expe

rience gained in using Common Lisp for so many applications, implementors found

no shortage of opportunities for innovation. One of the important characteristics of

Lisp is its good support for experimental extension of the language; while Common

Lisp has been stable, it has not stagnated.

The 1984 definition of Common Lisp was imperfect and incomplete. In some

cases this was inadvertent: some odd boundary situation was overlooked and its

consequences not specified, or different passages were in conflict, or some property

of Lisp was so wellknown and traditionally relied upon that I forgot to write it down.

In other cases the informal committee that was defining Common Lisp could not settle

on a solution, and therefore agreed to leave some important aspect of the language

unspecified rather than choose a less than satisfactory definition. An example is error

handling; 1984 Common Lisp had plenty of ways to signal errors but no way for a

program to trap or process them.

Over the next year I collected reports of errors in the book and gaps in the language.

In December 1985, a group of implementors and users met in Boston to discuss the

state of Common Lisp. I prepared two lists for this meeting, one of errata and

clarifications that I thought would be relatively uncontroversial (boy, was I wrong!)

and one of more substantial changes I thought should be considered and perhaps

voted upon. Others also brought proposals to discuss. It became clear to everyone

that there was now enough interest in Common Lisp, and dependence on its stability,

that a more formal mechanism was needed for managing changes to the language.

This realization led to the formation of X3J13, a subcommittee of ANSI committee

X3, to produce a formal American National Standard for Common Lisp. That

process is nearing completion. X3J13 has completed the bulk of its technical work

xi

xii PREFACE (SECOND EDITION)

in rectifying the 1984 definition and codifying extensions to that definition that have

received widespread use and approval. A draft standard is now being prepared; it

will probably be available in 1990. There will then be a period (required by ANSI)

for public review. X3J13 must then consider the comments it receives and respond

appropriately. If the comments result in substantial changes to the draft standard,

multiple public review periods may be required before the draft can be approved as

an American National Standard.

Fortunately, X3J13 has done an outstanding job of documenting its work. For

every change that came to a formal vote, a document was prepared that described the

problem to be solved and one or more solutions. For each solution there is a detailed

proposal for changing the language;a rationale; test cases that distinguish the proposal

from the status quo or from other proposals for solving that problem; discussions of

current practice, cost to implementors, cost to users, cost of not adopting the proposal,

benefits of adoption, aesthetic criteria; and any relevant informal discussion that may

have preceded creation of the formal proposal. All of these proposal documents were

made available online as well as in paper form. By my count, by June 1989 some

186 such proposals were approved as language changes. (This count does not include

many proposals that came before the committee but were rejected.)

The purpose of this second edition is to bridge the gap between the first edition

and the forthcoming ANSI standard for Common Lisp. Because of the requirement

for formal public review, it will be some time yet before the ANSI standard is final.

This book in no way resembles the forthcoming standard (which is being written

independently by Kathy Chapman of Digital Equipment Corporation with assistance

from the X3J13 Drafting Subcommittee).

I have incorporated into this second edition a great deal of material based on

the votes of X3J13, in order to give the reader a picture of where the language is

heading. My purpose here is not simply to quote the X3J13 documents verbatim but

to paraphrase them and relate them to the structure of the first edition. A single vote

by X3J13 may be discussed in many parts of this book, and a single passage of this

book may be affected by many of the votes.

I wish to be very clear: this book is not an official document of X3J13, though it is

based on publicly available material produced by X3J13. In no way does this book

constitute a definitive description of the forthcoming ANSI standard. The commit

tee’s decisions have been remarkably stable (it has rescinded earlier decisions only

two or three times), and I do not expect radical changes in direction. Nevertheless,

it is quite probable that the draft standard will be substantively revised in response

to editorial review or public comment. I have therefore reported here on the actions

of X3J13 not to inscribe them in stone, but to make clear how the language of the

first edition is likely to change. I have tried to be careful in my wording to avoid

saying “the language has been changed” and to state simply that “X3J13 voted at

PREFACE (SECOND EDITION) xiii

suchandso time to make the following change.”

Until the day when an official ANSI Common Lisp standard emerges, it is likely

that the 1984 definition of Common Lisp will continue to be used widely. This book

has been designed to be used as a reference both to the 1984 definition and to the

language as modified by the actions of X3J13.

It contains the entire text of the first edition of Common Lisp: The Language, with

corrections and minor editorial changes; however, more than half of the material in

this edition is new. All new material is identified by solid lines in the left margin.

Dotted lines in the left margin indicate material from the first edition that applies to

the 1984 definition but that has been modified by a vote of X3J13. Modifications to

these outmoded passages are explained by preceding or following text (which will

have a solid line in the margin). In summary:

. To use the 1984 language definition, read all material that does not have a solid

line in the margin.

. To use the updated language definition, read everything, but be wary of material

with a dotted line in the margin.

At the end of the book is an index of the X3J13 votes, ordered by the committee’s

internal code names (included to ease crossreference to the X3J13 documents, which

may be useful during the public review periods). References to this list of votes

appear as numbers in angle brackets; thus “〈14〉” refers to the vote on issue number

14, whereas “[14]” refers to reference 14 in the bibliography.

I have kept changes to the wording of the firstedition material to a minimum.

Obvious spelling and typographical errors have been corrected, and the entire text

has been edited to a uniform style of spelling and punctuation. (Note in particular

that the first edition used the spelling “signalling” but this edition, in deference to

the style decision of the X3J13 Drafting Subcommittee, uses “signaling.”) A few

minor changes were made to accommodate typographical or layout constraints. (For

example, the word “also” has been deleted from the first sentence of chapter 1, partly

to make that paragraph look better and partly to allow a better page break at the bottom

of page 2.) In a very few cases the first edition contained substantive errors that I

could not in good conscience correct silently; these have been flagged by paragraphs

beginning with the phrase Notice of correction.

The chapter and section numbering of this edition matches that of the first edition,

with the exception that a new section 7.9 has been interpolated. Four new chapters

(26–29) describe substantial changes approved by X3J13: an extended loop macro,

a pretty printer interface, the Common Lisp Object System, and the Common Lisp

Condition System.

X3J13, in the course of its work, formed a subcommittee to study whether addi

tional means of iteration should be standardized for use in Common Lisp, for a great

xiv PREFACE (SECOND EDITION)

deal of existing practice in this area was not included in the first edition because of

lack of agreement in 1984. The X3J13 Iteration Subcommittee produced reports on

three possible facilities. One (loop) was approved for inclusion in the forthcoming

draft standard and is described in chapter 26.

X3J13 expressed interest in the other two approaches (series and generators),

but the consensus as of January 1989 was that these other approaches were not

yet sufficiently mature or in sufficiently widespread use to warrant inclusion in

the draft Common Lisp standard at that time. However, the subcommittee was

directed to continue work on these approaches and X3J13 is open to the possibility

of standardizing them at a later date. Please note that I do not wish the prejudge

the question of whether X3J13 will ever choose to make the other two proposals

the subject of standardization. Nevertheless, I have chosen to include them in the

second edition, in cooperation with Dr. Richard C. Waters, as appendices A and B,

in order to make these ideas available to the Lisp community. In my judgement these

proposals address an area of language design not otherwise covered by Common

Lisp and are likely to have practical value even if they are never adopted as part of a

formal standard.

Some new material in this book has nothing to do with the work of X3J13. In

many places I have added explanations, clarifications, new examples, warnings, and

tips on writing portable code. Appendix C contains a piece of code that may help in

understanding the backquote syntax.

This second edition, unlike the first edition, also includes a few diagrams to pep

up the text. However, there are absolutely no new jokes, and very few outright lies.

Acknowledgments
SECOND EDITION

First and foremost, I must thank the many people in the Lisp community who have

worked so hard to specify, implement, and use Common Lisp. Some of these have

volunteered many hours of effort as members of ANSI committee X3J13. Others

have made presentations or proposals to X3J13, and yet others have sent suggestions

and corrections to the first edition directly to me. This book builds on their efforts as

well as mine.

An early draft of this book was made available to all members of X3J13 for their

criticism. I have also worked with the many public documents that have been written

during the course of the committee’s work (which is not over yet). It is my hope

that this book is an accurate reflection of the committee’s actions as of October 1989.

Nevertheless, any errors or inconsistencies are my responsibility. The fact that I have

made a draft available to certain persons, received feedback from them, or thanked

them in these acknowledgments does not necessarily imply that any one of them or

any of the institutions with which they are affiliated endorse this book or anything of

its contents.

Digital Press and I gave permission to X3J13 to use any or all parts of the first

edition in the production of an ANSI Common Lisp standard. Conversely, in writing

this book I have worked with publicly available documents produced by X3J13 in

the course of its work, and in some cases as a courtesy have obtained the consent of

the authors of those documents to quote them extensively. This common ancestry

will result in similarities between this book and the emerging ANSI Common Lisp

standard (that is the purpose, after all). Nevertheless, this second edition has no

official connection whatsoever with X3J13 or ANSI, nor is it endorsed by either of

those institutions.

The following persons have been members of X3J13 or involved in its activities

at one time or another: Jim Allard, Dave Andre, Jim Antonisse, William Arbaugh,

John Aspinall, Bob Balzer, Gerald Barber, Richard Barber, Kim Barrett, David

Bartley, Roger Bate, Alan Bawden, Michael Beckerle, Paul Beiser, Eric Benson,

Daniel Bobrow, Mary Boelk, Skona Brittain, Gary Brown, Tom Bucken, Robert

xv

xvi ACKNOWLEDGMENTS (SECOND EDITION)

Buckley, Gary Byers, Dan Carnese, Bob Cassels, Jérôme Chailloux, Kathy Chap

man, Thomas Christaller, Will Clinger, Peter Coffee, John Cugini, Pavel Curtis,

Doug Cutting, Christopher Dabrowski, Jeff Dalton, Linda DeMichiel, Fred Dis

cenzo, Jerry Duggan, Patrick Dussud, Susan Ennis, Scott Fahlman, Jogn Fitch, John

Foderaro, Richard Gabriel, Steven Gadol, Nick Gall, Oscar Garcia, Robert Gian

siracusa, Brad Goldstein, David Gray, Richard Greenblatt, George Hadden, Steve

Haflich, Dave Henderson, Carl Hewitt, Carl Hoffman, Cheng Hu, Masayuki Ida,

Takayasu Ito, Sonya Keene, James Kempf, Gregory Jennings, Robert Kerns, Gre

gor Kiczales, Kerry Kimbrough, Dieter Kolb, Timothy Koschmann, Ed Krall, Fritz

Kunze, Aaron Larson, Joachim Laubsch, Kevin Layer, Michael Levin, Ray Lim,

Thom Linden, David Loeffler, Sandra Loosemore, Barry Margolin, Larry Masinter,

David Matthews, Robert Mathis, John McCarthy, Chris McConnell, Rob McLachlan,

Jay Mendelsohn, Martin Mikelsons, Tracey Miles, Richard Mlyarnik, David Moon,

Jarl Nilsson, Leo Noordhulsen, Ronald Ohlander, Julian Padget, Jeff Peck, Jan Ped

ersen, Bob Pellegrino, Crispin Perdue, Dan Pierson, Kent Pitman, Dexter Pratt,

Christian Quiennec, B. Raghavan, Douglas Rand, Jonathan Rees, Chris Richard

son, Jeff Rininger, Walter van Roggen, Jeffrey Rosenking, Don Sakahara, William

Scherlis, David Slater, James Smith, Alan Snyder, Angela Sodan, Richard Soley, S.

Sridhar, Bill St. Clair, Philip Stanhope, Guy Steele, Herbert Stoyan, Hiroshi Torii,

Dave Touretzky, Paul Tucker, Rick Tucker, Thomas Turba, David Unietis, Mary Van

Deusen, Ellen Waldrum, Richard Waters, Allen Wechsler, Mark Wegman, Jon L

White, Skef Wholey, Alexis Wieland, Martin Yonke, Bill York, Taiichi Yuasa, Gail

Zacharias, and Jan Zubkoff.

I must express particular gratitude and appreciation to a number of people for their

exceptional efforts:

Larry Masinter, chairman of the X3J13 Cleanup Subcommittee, developed the

standard format for documenting all proposals to be voted upon. The result has been

an outstanding tehcnical and historical record of all the actions taken by X3J13 to

rectify and improve Common Lisp.

Sandra Loosemore, chairwoman of the X3J13 Compiler Subcommittee, produced

many proposals for clarifying the semantics of the compilation process. She has been

a diligent stickler for detail and has helped to clarify many parts of Common Lisp

left vague in the first edition.

Jon L White, chairman of the X3J13 Iteration Subcommittee, supervised the

consideration of several controversial proposals, one of which (loop) was eventually

adopted by X3J13.

Thom Linden, chairman of the X3J13 Character Subcommittee, led a team in grap

pling with the difficult problem of accommodating various character sets in Common

Lisp. One result is that Common Lisp will be more attractive for international use.

Kent Pitman, chairman of the X3J13 Error Handling Subcommittee, plugged the

ACKNOWLEDGMENTS (SECOND EDITION) xvii

biggest outstanding hole in Common Lisp as described by the first edition.

Kathy Chapman, chairwoman of the X3J13 Drafting Subcommittee, and principal

author of the draft standard, has not only written a great deal of text but also insisted

on coherent and consistent terminology and pushed the rest of the committee forward

when necessary.

Robert Mathis, chairman of X3J13, has kept administrative matters flowing

smoothly during technical controversies.

Mary Van Deusen, secretary of X3J13, kept excellent minutes that were a tremen

dous aid to me in tracing the history of a number of complex discussions.

Jan Zubkoff, X3J13 meeting and mailing organizer, knows what’s going on, as

always. She is a master of organization and of physical arrangements. Moreover, she

once again pulled me out of the fire at the last minute.

Dick Gabriel, international representative for X3J13, has kept information flowing

smoothly between Europe, Japan, and the United States. He provided a great deal

of the energy and drive for the completion of the Common Lisp Object System

specification. He has also provided me with a great deal of valuable advice and

has been on call for lastminute consultation at all hours during the final stages of

preparation for this book.

David Moon has consistently been a source of reason, expert knowledge, and

careful scrutiny. He has read the first edition and the X3J13 proposals perhaps more

carefully than anyone else.

David Moon, Jon L White, Gregor Kiczales, Robert Mathis, Mary Boelk provided

extensive feedback on an early draft of this book. I thank them as well as the many

others who commented in one way or another on the draft.

I wish to thank the authors of large proposals to X3J13 that have made material

available for more or less wholesale inclusion in this book as distinct chapters. This

material was produced primarily for the use of X3J13 in its work. It has been included

here on a nonexclusive basis with the consent of the authors.

The author of the chapter on loop (Jon L White) notes that the chapter is based on

documentation written at Lucid, Inc., by Molly M. Miller, Sonia Orin Lyris, and Kris

Dinkel. Glenn Burke, Scott Fahlman, Colin Meldrum, David Moon, Cris Perdue,

and Dick Waters contributed to the design of the loop macro.

The authors of the Common Lisp Object System specification (Daniel G. Bobrow,

Linda G. DeMichiel, Richard P. Gabriel, Sonya E. Keene, Gregor Kiczales, and David

A. Moon) wish to thank Patrick Dussud, Kenneth Kahn, Jim Kempf, Larry Masinter,

Mark Stefik, Daniel L. Weinreb, and Jon L White for their contributions.

The author of the chapter on Conditions (Kent M. Pitman) notes that there is a paper

[38] containing background information about the design of the condition system,

which is based on the condition system of the Symbolics Lisp Machines [49]. The

members of the X3J13 Error Handling Subcommittee were Andy Daniels and Kent

xviii ACKNOWLEDGMENTS (SECOND EDITION)

Pitman. Richard Mlynarik and David A. Moon made major design contributions.

Useful comments, questions, suggestions, and criticisms were provided by Paul

Anagnostopoulos, Alan Bawden, William Chiles, Pavel Curtis, Mary Fontana, Dick

Gabriel, Dick King, Susan Lander, David D. Loeffler, Ken Olum, David C. Plummer,

Alan Snyder, Eric Weaver, and Daniel L. Weinreb. The Condition System was

designed specifically to accommodate the needs of Common Lisp. The design

is, however, most directly based on the “New Error System” (NES) developed at

Symbolics by David L. Andre, Bernard S. Greenberg, Mike McMahon, David A.

Moon, and Daniel L. Weinreb. The NES was in turn based on experiences with

the original Lisp Machine error system (developed at MIT), which was found to be

inadequate for the needs of the modern Lisp Machine environments. Many aspects

of the NES were inspired by the (PL/I) condition system used by the Honeywell

Multics operating system. Henry Lieberman provided conceptual guidance and

encouragement in the design of the NES. A reimplementation of the NES for non

Symbolics Lisp Machine dialects (MIT, LMI, and TI) was done at MIT by Richard M.

Stallman. During the process of that reimplementation, some conceptual changes

were made which have significantly influenced the Common Lisp Condition System.

As for the smaller but no less important proposals, Larry Masinter deserves recog

nition as an author of over half of them. He has worked indefatigably to write up

proposals and to polish drafts by other authors. Kent Pitman, David Moon, and San

dra Loosemore have also been notably prolific, as well as Jon L White, Dan Pierson,

Walter van Roggen, Skona Brittain, Scott Fahlman, and myself. Other authors of

proposals include David Andre, John Aspinall, Kim Barrett, Eric Benson, Daniel

Bobrow, Bob Cassels, Kathy Chapman, WIlliam Clinger, Pavel Curtis, Doug Cut

ting, Jeff Dalton, Linda DiMichiel, Richard Gabriel, Steven Haflich, Sonya Keene,

James Kempf, Gregor Kiczales, Dieter Kolb, Barry Margolin, Chris McConnell, Jeff

Peck, Jan Pedersen, Crispin Perdue, Jonathan Rees, Don Sakahara, David Touretzky,

Richard Waters, and Gail Zacharias.

I am grateful to Donald E. Knuth and his colleagues for producing the TEX text

formatting system [28], which was used to produce and typeset the manuscript.

Knuth did an especially good job of publishing the program for TEX [29]; I had to

consult the code about eight times while debugging particularly complicated macros.

Thanks to the extensive indexing and crossreferences, in each case it took me less

than five minutes to find the relevant fragment of that 500page program.

I also owe a debt to Leslie Lamport, author of the LaTEX macro package [30] for

TEX, within which I implemented the document style for this book.

Blue Sky Research sells and supports Textures, an implementation of TEX for

Apple Macintosh computers; Gayla Groom and Barry Smith of Blue Sky Research

provided excellent technical support when I needed it. Other software tools that were

invaluable in preparing this book were QuicKeys (sold by CE Software, Inc.), which

ACKNOWLEDGMENTS (SECOND EDITION) xix

provides keyboard macros; Gōfer (sold by Microlytics, Inc.), which performs rapid

text searches in multiple files; Symantec Utilities for Macintosh (sold by Symantec

Corporation), which saved me from more than one disk crash; and the PostScript

language and compatible fonts (sold by Adobe Systems Incorporated).

Some of this software (such as LaTEX) I obtained for free and some I bought, but all

have proved to be useful tools of excellent quality. I am grateful to these developers

for creating them.

Electronic mail has been indispensible to the writing of this book, as well to as

the work of X3J13. (It is a humbling experience to publish a book and then for

the next five years to receive at least one electronic mail message a week, if not

twenty, pointing out some mistake or defect.) Kudos to those develop and maintain

the Internet, which arose from the Arpanet and other networks.

Chase Duffy, George Horesta, and Will Buddenhagen of Digital Press have given

me much encouragement and support. David Ford designed the book and provided

specifications that I could code into TEX. Alice Cheyer and Kate Schmit edited the

copy for style and puzzled over the more obscure jokes with great patience. Marilyn

Rowland created the index; Tim Evans and I did some polishing. Laura Fillmore and

her colleagues at Editorial, Inc., have tirelessly and meticulously checked one draft

after another and has kept the paperwork flowing smoothly during the last hectic

weeks of proofreading, page makeup, and typesetting.

Thinking Machines Corporation has supported all my work with X3J13. I thank

all my colleagues there for their encouragement and help.

Others who provided indispensible encouragement and support include Guy and

Nalora Steele; David Steele; Cordon and Ruth Kerns; David, Patricia, Tavis, Jacob,

Nicholas, and Daniel Auwerda; Donald and Denise Kerns; and David, Joyce, and

Christine Kerns.

Most of the writing of this book took place between 10 P.M. and 3 A.M. (I’m not

as young as I used to be). I am grateful to Barbara, Julia, Peter, and Matthew for

putting up with it, and for their love.

Guy L. Steele Jr.

Lexington, Massachusetts

All Saints’ Day, 1989

Acknowledgments
FIRST EDITION (1984)

Common Lisp was designed by a diverse group of people affiliated with many

institutions.

Contributors to the design and implementation of Common Lisp and to the polish

ing of this book are hereby gratefully acknowledged:

Paul Anagnostopoulos Digital Equipment Corporation

Dan Aronson CarnegieMellon University

Alan Bawden Massachusetts Institute of Technology

Eric Benson University of Utah, Stanford University, and Symbolics,

Incorporated

Jon Bentley CarnegieMellon University and Bell Laboratories

Jerry Boetje Digital Equipment Corporation

Gary Brooks Texas Instruments

Rodney A. Brooks Stanford University

Gary L. Brown Digital Equipment Corporation

Richard L. Bryan Symbolics, Incorporated

Glenn S. Burke Massachusetts Institute of Technology

Howard I. Cannon Symbolics, Incorporated

George J. Carrette Massachusetts Institute of Technology

Robert Cassels Symbolics, Incorporated

Monica Cellio CarnegieMellon University

David Dill CarnegieMellon University

Scott E. Fahlman CarnegieMellon University

Richard J. Fateman University of California, Berkeley

Neal Feinberg CarnegieMellon University

Ron Fischer Rutgers University

John Foderaro University of California, Berkeley

Steve Ford Texas Instruments

xx

ACKNOWLEDGMENTS (FIRST EDITION, 1984) xxi

Richard P. Gabriel Stanford University and Lawrence Livermore National

Laboratory

Joseph Ginder CarnegieMellon University and Perq Systems Corp.

Bernard S. Greenberg Symbolics, Incorporated

Richard Greenblatt Lisp Machines Incorporated (LMI)

Martin L. Griss University of Utah and HewlettPackard Incorporated

Steven Handerson CarnegieMellon University

Charles L. Hedrick Rutgers University

Gail Kaiser CarnegieMellon University

Earl A. Killian Lawrence Livermore National Laboratory

Steve Krueger Texas Instruments

John L. Kulp Symbolics, Incorporated

Jim Large CarnegieMellon University

Rob Maclachlan CarnegieMellon University

William Maddox CarnegieMellon University

Larry M. Masinter Xerox Corporation, Palo Alto Research Center

John McCarthy Stanford University

Michael E. McMahon Symbolics, Incorporated

Brian Milnes CarnegieMellon University

David A. Moon Symbolics, Incorporated

Beryl Morrison Digital Equipment Corporation

Don Morrison University of Utah

Dan Pierson Digital Equipment Corporation

Kent M. Pitman Massachusetts Institute of Technology

Jonathan Rees Yale University

Walter van Roggen Digital Equipment Corporation

Susan Rosenbaum Texas Instruments

William L. Scherlis CarnegieMellon University

Lee Schumacher CarnegieMellon University

Richard M. Stallman Massachusetts Institute of Technology

Barbara K. Steele CarnegieMellon University

Guy L. Steele Jr. CarnegieMellon University and Tartan Laboratories

Incorporated

Peter Szolovits Massachusetts Institute of Technology

William vanMelle Xerox Corporation, Palo Alto Research Center

Ellen Waldrum Texas Instruments

Allan C. Wechsler Symbolics, Incorporated

Daniel L. Weinreb Symbolics, Incorporated

Jon L White Xerox Corporation, Palo Alto Research Center

Skef Wholey CarnegieMellon University

xxii ACKNOWLEDGMENTS (FIRST EDITION, 1984)

Richard Zippel Massachusetts Institute of Technology

Leonard Zubkoff CarnegieMellon University and Tartan Laboratories

Incorporated

Some contributions were relatively small; others involved enormous expenditures

of effort and great dedication. A few of the contributors served more as worthy

adversaries than as benefactors (and do not necessarily endorse the final design

reported here), but their pointed criticisms were just as important to the polishing

of Common Lisp as all the positively phrased suggestions. All of the people named

above were helpful in one way or another, and I am grateful for the interest and

spirit of cooperation that allowed most decisions to be made by consensus after due

discussion.

Considerable encouragement and moral support were also provided by:

Norma Abel Digital Equipment Corporation

Roger Bate Texas Instruments

Harvey Cragon Texas Instruments

Dennis Duncan Digital Equipment Corporation

Sam Fuller Digital Equipment Corporation

A. Nico Habermann CarnegieMellon University

Berthold K. P. Horn Massachusetts Institute of Technology

Gene Kromer Texas Instruments

Gene Matthews Texas Instruments

Allan Newell CarnegieMellon University

Dana Scott CarnegieMellon University

Harry Tennant Texas Instruments

Patrick H. Winston Massachusetts Institute of Technology

Lowell Wood Lawrence Livermore National Laboratory

William A. Wulf CarnegieMellon University and Tartan Laboratories

Incorporated

I am very grateful to each of them.

Jan Zubkoff of CarnegieMellon University provided a great deal of organization,

secretarial support, and unfailing good cheer in the face of adversity.

The development of Common Lisp would most probably not have been possible

without the electronic message system provided by the ARPANET. Design decisions

were made on several hundred distinct points, for the most part by consensus, and by

simple majority vote when necessary. Except for two oneday facetoface meetings,

all of the language design and discussion was done through the ARPANET message

system, which permitted effortless dissemination of messages to dozens of people,

and several interchanges per day. The message system also provided automatic

ACKNOWLEDGMENTS (FIRST EDITION, 1984) xxiii

archiving of the entire discussion, which has proved invaluable in the preparation

of this reference manual. Over the course of thirty months, approximately 3000

messages were sent (an average of three per day), ranging in length from one line

to twenty pages. Assuming 5000 characters per printed page of text, the entire

discussion totaled about 1100 pages. It would have been substantially more difficult

to have conducted this discussion by any other means, and would have required much

more time.

The ideas in Common Lisp have come from many sources and been polished by

much discussion. I am responsible for the form of this book, and for any errors or

inconsistencies that may remain; but the credit for the design and support of Common

Lisp lies with the individuals named above, each of whom has made significant

contributions.

The organization and content of this book were inspired in large part by the

MacLISP Reference Manual by David A. Moon and others [33], and by the LISP

Machine Manual (fourth edition) by Daniel Weinreb and David Moon [55], which in

turn acknowledges the efforts of Richard Stallman, Mike McMahon, Alan Bawden,

Glenn Burke, and “many people too numerous to list.”

I thank Phyllis Keenan, Chase Duffy, Virginia Anderson, John Osborn, and

Jonathan Baker of Digital Press for their help in preparing this book for publica

tion. Jane Blake did an admirable job of copyediting. James Gibson and Katherine

Downs of Waldman Graphics were most cooperative in typesetting this book from

my online manuscript files.

I am grateful to CarnegieMellon University and to Tartan Laboratories Incorpo

rated for supporting me in the writing of this book over the last three years.

Part of the work on this book was done in conjunction with the CarnegieMellon

University Spice Project, an effort to construct an advanced scientific software devel

opment environment for personal computers. The Spice Project is supported by the

Defense Advanced Research Projects Agency, Department of Defense, ARPA Order

3597, monitored by the Air Force Avionics Laboratory under contract F3361578

C1551. The views and conclusions contained in this book are those of the author

and should not be interpreted as representing the official policies, either expressed or

implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

Most of the writing of this book took place between midnight and 5 A.M. I am

grateful to Barbara, Julia, and Peter for putting up with it, and for their love.

Guy L. Steele Jr.

Pittsburgh, Pennsylvania

March 1984

Would it be wonderful if, under the

pressure of all these difficulties, the

Convention should have been forced

into some deviations from that artifi

cial structure and regular symmetry

which an abstract view of the subject

might lead an ingenious theorist to

bestow on a constitution planned in

his closet or in his imagination?

—James Madison, The Federalist

No. 37, January 11, 1788

1

Introduction

Common Lisp is a new dialect of Lisp, a successor to MacLisp [33, 37], influenced

strongly by Zetalisp [55, 34] and to some extent by Scheme [46] and Interlisp [50].

1.1. Purpose

Common Lisp is intended to meet these goals:

Commonality

Common Lisp originated in an attempt to focus the work of several implementation

groups, each of which was constructing successor implementations of MacLisp for

different computers. These implementations had begun to diverge because of the

differences in the implementation environments: microcoded personal computers

(Zetalisp, Spice Lisp), commercial timeshared computers (NIL—the “New Imple

mentation of Lisp”), and supercomputers (S1 Lisp). While the differences among

the several implementation environments of necessity will continue to force certain

incompatibilities among the implementations, Common Lisp serves as a common

dialect to which each implementation makes any necessary extensions.

Portability

Common Lisp intentionally excludes features that cannot be implemented easily

on a broad class of machines. On the one hand, features that are difficult or

expensive to implement on hardware without special microcode are avoided or

provided in a more abstract and efficiently implementable form. (Examples of

this are the invisible forwarding pointers and locatives of Zetalisp. Some of the

problems that they solve are addressed in different ways in Common Lisp.) On

the other hand, features that are useful only on certain “ordinary” or “commer

cial” processors are avoided or made optional. (An example of this is the type

1

2 COMMON LISP

declaration facility, which is useful in some implementations and completely ig

nored in others. Type declarations are completely optional and for correct pro

grams affect only efficiency, not semantics.) Common Lisp is designed to make it

easy to write programs that depend as little as possible on machinespecific char

acteristics, such as word length, while allowing some variety of implementation

techniques.

Consistency

Most Lisp implementations are internally inconsistent in that by default the interpreter

and compiler may assign different semantics to correct programs. This semantic

difference stems primarily from the fact that the interpreter assumes all variables to

be dynamically scoped, whereas the compiler assumes all variables to be local unless

explicitly directed otherwise. This difference has been the usual practice in Lisp for

the sake of convenience and efficiency but can lead to very subtle bugs. The definition

of Common Lisp avoids such anomalies by explicitly requiring the interpreter and

compiler to impose identical semantics on correct programs so far as possible.

Expressiveness

Common Lisp culls what experience has shown to be the most useful and under

standable constructs from not only MacLisp but also Interlisp, other Lisp dialects,

and other programming languages. Constructs judged to be awkward or less useful

have been excluded. (An example is the store construct of MacLisp.)

Compatibility

Unless there is a good reason to the contrary, Common Lisp strives to be compatible

with Lisp Machine Lisp, MacLisp, and Interlisp, roughly in that order.

Efficiency

Common Lisp has a number of features designed to facilitate the production of high

quality compiled code in those implementations whose developers care to invest

effort in an optimizing compiler. One implementation of Common Lisp, namely S1

Lisp, already has a compiler that produces code for numerical computations that is

competitive in execution speed to that produced by a Fortran compiler [11]. The

S1 Lisp compiler extends the work done in MacLisp to produce extremely efficient

numerical code [19].

Power

Common Lisp is a descendant of MacLisp, which has traditionally placed emphasis

on providing systembuilding tools. Such tools may in turn be used to build the

INTRODUCTION 3

userlevel packages such as Interlisp provides; these packages are not, however, part

of the Common Lisp core specification. It is expected such packages will be built on

top of the Common Lisp core.

Stability

It is intended that Common Lisp will change only slowly and with due deliberation.

The various dialects that are supersets of Common Lisp may serve as laboratories

within which to test language extensions, but such extensions will be added to

Common Lisp only after careful examination and experimentation.

The goals of Common Lisp are thus very close to those of Standard Lisp [31] and

Portable Standard Lisp [51]. Common Lisp differs from Standard Lisp primarily

in incorporating more features, including a richer and more complicated set of data

types and more complex control structures.

This book is intended to be a language specification rather than an implementation

specification (although implementation notes are scattered throughout the text). It

defines a set of standard language concepts and constructs that may be used for

communication of data structures and algorithms in the Common Lisp dialect. This

set of concepts and constructs is sometimes referred to as the “core Common Lisp

language” because it contains conceptually necessary or important features. It is not

necessarily implementationally minimal. While many features could be defined in

terms of others by writing Lisp code, and indeed may be implemented that way, it

was felt that these features should be conceptually primitive so that there might be

agreement among all users as to their usage. (For example, bignums and rational

numbers could be implemented as Lisp code given operations on fixnums. However,

it is important to the conceptual integrity of the language that they be regarded by the

user as primitive, and they are useful enough to warrant a standard definition.)

For the most part, this book defines a programming language, not a programming

environment. A few interfaces are defined for invoking such standard programming

tools as a compiler, an editor, a program trace facility, and a debugger, but very little

is said about their nature or operation. It is expected that one or more extensive

programming environments will be built using Common Lisp as a foundation, and

will be documented separately.

There are now many implementations of Common Lisp, some programmed by

research groups in universities and some by companies that sell them commercially,

and a number of useful programming environments have indeed grown up around

these implementations. What is more, all the goals stated above have been achieved,

most notably that of portability. Moving large bodies of Lisp code from one computer

to another is now routine.

4 COMMON LISP

1.2. Notational Conventions

A number of special notational conventions are used throughout this book for the

sake of conciseness.

1.2.1. Decimal Numbers

All numbers in this book are in decimal notation unless there is an explicit indication

to the contrary. (Decimal notation is normally taken for granted, of course. Unfortu

nately, for certain other dialects of Lisp, MacLisp in particular, the default notation

for numbers is octal (base 8) rather than decimal, and so the use of decimal notation

for describing Common Lisp is, taken in its historical context, a bit unusual!)

1.2.2. Nil, False, and the Empty List

In Common Lisp, as in most Lisp dialects, the symbol nil is used to represent both

the empty list and the “false” value for Boolean tests. An empty list may, of course,

also be written (); this normally denotes the same object as nil. (It is possible, by

extremely perverse manipulation of the package system, to cause the sequence of

letters nil to be recognized not as the symbol that represents the empty list but as

another symbol with the same name. This obscure possibility will be ignored in this

book.) These two notations may be used interchangeably as far as the Lisp system

is concerned. However, as a matter of style, this book uses the notation () when it

is desirable to emphasize the use of an empty list, and uses the notation nil when it

is desirable to emphasize the use of the Boolean “false”. The notation ´nil (note the

explicit quotation mark) is used to emphasize the use of a symbol. For example:

(defun three () 3) ;Emphasize empty parameter list

(append ´() ´()) ⇒ () ;Emphasize use of empty lists

(not nil) ⇒ t ;Emphasize use as Boolean “false”

(get ´nil ´color) ;Emphasize use as a symbol

Any data object other than nil is construed to be Boolean “not false”, that is,

“true”. The symbol t is conventionally used to mean “true” when no other value is

more appropriate. When a function is said to “return false” or to “be false” in some

circumstance, this means that it returns nil. However, when a function is said to

“return true” or to “be true” in some circumstance, this means that it returns some

value other than nil, but not necessarily t.

INTRODUCTION 5

1.2.3. Evaluation, Expansion, and Equivalence

Execution of code in Lisp is called evaluation because executing a piece of code

normally results in a data object called the value produced by the code. The symbol

⇒ is used in examples to indicate evaluation. For example,

(+ 4 5) ⇒ 9

means “the result of evaluating the code (+ 4 5) is (or would be, or would have been)

9.”

The symbol → is used in examples to indicate macro expansion. For example,

(push x v) → (setf v (cons x v))

means “the result of expanding the macrocall form (push x v) is (setf v (cons x

v)).” This implies that the two pieces of code do the same thing; the second piece of

code is the definition of what the first does.

The symbol ≡ is used in examples to indicate code equivalence. For example,

(gcd x (gcd y z)) ≡ (gcd (gcd x y) z)

means “the value and effects of evaluating the form (gcd x (gcd y z)) are always the

same as the value and effects of (gcd (gcd x y) z) for any values of the variables x, y,

and z.” This implies that the two pieces of code do the same thing; however, neither

directly defines the other in the way macro expansion does.

1.2.4. Errors

When this book specifies that it “is an error” for some situation to occur, this means

that:

. No valid Common Lisp program should cause this situation to occur.

. If this situation occurs, the effects and results are completely undefined as far as

adherence to the Common Lisp specification is concerned.

. No Common Lisp implementation is required to detect such an error. Of course,

implementors are encouraged to provide for detection of such errors wherever

reasonable.

This is not to say that some particular implementation might not define the effects and

results for such a situation; the point is that no program conforming to the Common

Lisp specification may correctly depend on such effects or results.

On the other hand, if it is specified in this book that in some situation “an error is

signaled,” this means that:

6 COMMON LISP

. If this situation occurs, an error will be signaled (see error and cerror).

. Valid Common Lisp programs may rely on the fact that an error will be signaled.

. Every Common Lisp implementation is required to detect such an error.

In places where it is stated that soandso “must” or “must not” or “may not” be

the case, then it “is an error” if the stated requirement is not met. For example, if an

argument “must be a symbol,” then it “is an error” if the argument is not a symbol.

In all cases where an error is to be signaled, the word “signaled” is always used

explicitly in this book.

X3J13 has adopted a more elaborate terminology for errors, and has made some

effort to specify the type of error to be signaled in situations where signaling is

appropriate. This effort was not complete as of September 1989, and I have made

little attempt to incorporate the new error terminology or error type specifications in

this book. However, the new terminology is described and used in the specification

of the Common Lisp Object System appearing in chapter 28; this gives the flavor of

how erroneous situations will be described, and appropriate actions prescribed, in the

forthcoming ANSI Common Lisp standard.

1.2.5. Descriptions of Functions and Other Entities

Functions, variables, named constants, special forms, and macros are described using

a distinctive typographical format. Table 11 illustrates the manner in which Common

Lisp functions are documented. The first line specifies the name of the function, the

manner in which it accepts arguments, and the fact that it is a function. If the function

takes many arguments, then the names of the arguments may spill across two or three

lines. The paragraphs following this standard header explain the definition and uses

of the function and often present examples or related functions.

Sometimes two or more related functions are explained in a single combined

description. In this situation the headers for all the functions appear together, followed

by the combined description.

In general, actual code (including actual names of functions) appears in this type

face: (cons a b). Names that stand for pieces of code (metavariables) are written

in italics. In a function description, the names of the parameters appear in italics

for expository purposes. The word &optional in the list of parameters indicates that

all arguments past that point are optional; the default values for the parameters are

described in the text. Parameter lists may also contain &rest, indicating that an indef

inite number of arguments may appear, or &key, indicating that keyword arguments

are accepted. (The &optional/&rest/&key syntax is actually used in Common Lisp

function definitions for these purposes.)

INTRODUCTION 7

Table 11: Sample Function Description

[Function]sample-function arg1 arg2 &optional arg3 arg4

The function sample-function adds together arg1 and arg2, and then multiplies the

result by arg3. If arg3 is not provided or is nil, the multiplication isn’t done. sample-

function then returns a list whose first element is this result and whose second element

is arg4 (which defaults to the symbol foo). For example:

(sample-function 3 4) ⇒ (7 foo)

(sample-function 1 2 2 ´bar) ⇒ (6 bar)

In general, (sample-function x y) ≡ (list (+ x y) ´foo).

Table 12: Sample Variable Description

[Variable]*sample-variable*

The variable *sample-variable* specifies how many times the special form sample-

special-form should iterate. The value should always be a nonnegative integer or

nil (which means iterate indefinitely many times). The initial value is 0 (meaning no

iterations).

Table 13: Sample Constant Description

[Constant]sample-constant

The named constant sample-constant has as its value the height of the terminal screen

in furlongs times the base2 logarithm of the implementation’s total disk capacity in

bytes, as a floatingpoint number.

Table 12 illustrates the manner in which a global variable is documented. The

first line specifies the name of the variable and the fact that it is a variable. Purely

as a matter of convention, all global variables used by Common Lisp have names

beginning and ending with an asterisk.

Table 13 illustrates the manner in which a named constant is documented. The

first line specifies the name of the constant and the fact that it is a constant. (A

constant is just like a global variable, except that it is an error ever to alter its value

or to bind it to a new value.)

8 COMMON LISP

Table 14: Sample Special Form Description

[Special form]sample-special-form [name] ({var}∗) { form}+

This evaluates each form in sequence as an implicit progn, and does this as many times

as specified by the global variable *sample-variable*. Each variable var is bound

and initialized to 43 before the first iteration, and unbound after the last iteration.

The name name, if supplied, may be used in a return-from form to exit from the

loop prematurely. If the loop ends normally, sample-special-form returns nil. For

example:

(setq *sample-variable* 3)

(sample-special-form () form1 form2)

This evaluates form1, form2, form1, form2, form1, form2 in that order.

Table 15: Sample Macro Description

[Macro]sample-macro var [[declaration* | docstring]] {tag | statement}∗

This evaluates the statements as a prog body, with the variable var bound to 43.

(sample-macro x (return (+ x x))) ⇒ 86

(sample-macro var . body) → (prog ((var 43)) . body)

Tables 14 and 15 illustrate the documentation of special forms and macros, which

are closely related in purpose. These are very different from functions. Functions

are called according to a single, specific, consistent syntax; the &optional/&rest/&key

syntax specifies how the function uses its arguments internally but does not affect the

syntax of a call. In contrast, each special form or macro can have its own idiosyncratic

syntax. It is by special forms and macros that the syntax of Common Lisp is defined

and extended.

In the description of a special form or macro, an italicized word names a corre

sponding part of the form that invokes the special form or macro. Parentheses stand

for themselves and should be written as such when invoking the special form or

macro. Brackets, braces, stars, plus signs, and vertical bars are metasyntactic marks.

Brackets, [and], indicate that what they enclose is optional (may appear zero times

or one time in that place); the square brackets should not be written in code. Braces,

{ and }, simply parenthesize what they enclose but may be followed by a star, ∗, or

INTRODUCTION 9

a plus sign, +; a star indicates that what the braces enclose may appear any number

of times (including zero, that is, not at all), whereas a plus sign indicates that what

the braces enclose may appear any nonzero number of times (that is, must appear at

least once). Within braces or brackets, a vertical bar, |, separates mutually exclusive

choices. In summary, the notation {x}∗ means zero or more occurrences of x, the

notation {x}+ means one or more occurrences of x, and the notation [x] means

zero or one occurrence of x. These notations are also used for syntactic descriptions

expressed as BNFlike productions, as in table 222.

Double brackets, [[and]], indicate that any number of the alternatives enclosed

may be used, and those used may occur in any order, but each alternative may be

used at most once unless followed by a star. For example,

p [[x | {y}∗ | z]] q

means that at most one x, any number of y’s, and at most one z may appear between

the mandatory occurrences of p and q, and those that appear may be in any order.

A downward arrow, ↓, indicates a form of syntactic indirection that helps to make

[[]] notation more readable. If X is some nonterminal symbol occurring on the

lefthand side of some BNF production, then the righthand side of that production

is to be textually substituted for any occurrence of ↓X. Thus the two fragments

p [[↓xyzmixture]] q

xyzmixture ::= x | {y}∗ | z

are together equivalent to the previous example.

In the last example in table 15, notice the use of dot notation. The dot appearing

in the expression (sample-macro var . body) means that the name body stands for a

list of forms, not just a single form, at the end of a list. This notation is often used in

examples.

In the heading line in table 15, notice the use of [[]] notation to indicate that

any number of declarations may appear but at most one documentation string (which

may appear before, after, or somewhere in the middle of any declarations).

1.2.6. The Lisp Reader

The term “Lisp reader” refers not to you, the reader of this book, nor to some

person reading Lisp code, but specifically to a Lisp procedure, namely the function

read, which reads characters from an input stream and interprets them by parsing as

representations of Lisp objects.

10 COMMON LISP

1.2.7. Overview of Syntax

Certain characters are used in special ways in the syntax of Common Lisp. The

complete syntax is explained in detail in chapter 22, but a quick summary here may

be useful:

(A left parenthesis begins a list of items. The list may contain any number of

items, including zero. Lists may be nested. For example, (cons (car x) (cdr y))

is a list of three things, of which the last two are themselves lists.

) A right parenthesis ends a list of items.

´ An acute accent (also called single quote or apostrophe) followed by an expression

form is an abbreviation for (quote form). Thus´foo means (quote foo) and ´(cons

´a ´b) means (quote (cons (quote a) (quote b))).

; Semicolon is the comment character. It and all characters up to the end of the

line are discarded.

" Double quotes surround character strings:

"This is a thirty-nine-character string."

\ Backslash is an escape character. It causes the next character to be treated as

a letter rather than for its usual syntactic purpose. For example, A\(B denotes a

symbol whose name consists of the three characters A, (, and B. Similarly, "\""

denotes a character string containing one character, a double quote, because the

first and third double quotes serve to delimit the string, and the second double

quote serves as the contents of the string. The backslash causes the second double

quote to be taken literally and prevents it from being interpreted as the terminating

delimiter of the string.

| Vertical bars are used in pairs to surround the name (or part of the name) of

a symbol that has many special characters in it. It is roughly equivalent to

putting a backslash in front of every character so surrounded. For example,

|A(B)|, A|(|B|)|, and A\(B\) all mean the symbol whose name consists of the four

characters A, (, B, and).

#-- The number sign signals the beginning of a complicated syntactic structure. The

next character designates the precise syntax to follow. For example, #--o105 means

1058 (105 in octal notation); #--x105 means 10516 (105 in hexadecimal notation);

#--b1011 means 10112 (1011 in binary notation); #--\L denotes a character object

for the character L; and #--(a b c) denotes a vector of three elements a, b, and

c. A particularly important case is that #--´fn means (function fn), in a manner

analogous to ´form meaning (quote form).

INTRODUCTION 11

` Grave accent (“backquote”) signals that the next expression is a template that may

contain commas. The backquote syntax represents a program that will construct

a data structure according to the template.

, Commas are used within the backquote syntax.

: Colon is used to indicate which package a symbol belongs to. For example,

network:reset denotes the symbol named reset in the package named network.

A leading colon indicates a keyword, a symbol that always evaluates to itself.

The colon character is not actually part of the print name of the symbol. This is

all explained in chapter 11; until you read that, just keep in mind that a symbol

notated with a leading colon is in effect a constant that evaluates to itself.

Notice of correction. In the first edition, the characters “,” and “:” at the left

margin above were inadvertently omitted.

Brackets, braces, question mark, and exclamation point (that is, [,], {, }, ?, and !)

are not used for any purpose in standard Common Lisp syntax. These characters are

explicitly reserved to the user, primarily for use as macro characters for userdefined

lexical syntax extensions (see section 22.1.3).

All code in this book is written using lowercase letters. Common Lisp is generally
...

insensitive to the case in which code is written. Internally, names of symbols are

ordinarily converted to and stored in uppercase form. There are ways to force

case conversion on output if desired; see *print-case*. In this book, wherever an

interactive exchange between a user and the Lisp system is shown, the input is

exhibited with lowercase letters and the output with uppercase letters.

X3J13 voted in June 1989 〈150〉 to introduce readtable-case. Certain settings

allow the names of symbols to be casesensitive. The default behavior, however, is

as described in the previous paragraph. In any event, only uppercase letters appear

in the internal print names of symbols naming the standard Common Lisp facilities

described in this book.

2

Data Types

Common Lisp provides a variety of types of data objects. It is important to note that

in Lisp it is data objects that are typed, not variables. Any variable can have any

Lisp object as its value. (It is possible to make an explicit declaration that a variable

will in fact take on one of only a limited set of values. However, such a declaration

may always be omitted, and the program will still run correctly. Such a declaration

merely constitutes advice from the user that may be useful in gaining efficiency. See

declare.)

In Common Lisp, a data type is a (possibly infinite) set of Lisp objects. Many

Lisp objects belong to more than one such set, and so it doesn’t always make sense

to ask what is the type of an object; instead, one usually asks only whether an object

belongs to a given type. The predicate typep may be used to ask whether an object

belongs to a given type, and the function type-of returns a type to which a given

object belongs.

The data types defined in Common Lisp are arranged into a hierarchy (actually a

partial order) defined by the subset relationship. Certain sets of objects, such as the

set of numbers or the set of strings, are interesting enough to deserve labels. Symbols

are used for most such labels (here, and throughout this book, the word “symbol”

refers to atomic symbols, one kind of Lisp object, elsewhere known as literal atoms).

See chapter 4 for a complete description of type specifiers.

The set of all objects is specified by the symbol t. The empty data type, which

contains no objects, is denoted by nil.

A type called common encompasses all the data objects required by the Common
..

Lisp language. A Common Lisp implementation is free to provide other data types

that are not subtypes of common.

X3J13 voted in March 1989 〈17〉 to remove the type common (and the predicate

commonp) from the language, on the grounds that it has not proved to be useful in

practice and that it could be difficult to redefine in the face of other changes to the

Common Lisp type system (such as the introduction of CLOS classes).

12

DATA TYPES 13

The following categories of Common Lisp objects are of particular interest: num

bers, characters, symbols, lists, arrays, structures, and functions. There are others

as well. Some of these categories have many subdivisions. There are also standard

types defined to be the union of two or more of these categories. The categories

listed above, while they are data types, are neither more nor less “real” than other

data types; they simply constitute a particularly useful slice across the type hierarchy

for expository purposes.

Here are brief descriptions of various Common Lisp data types. The remaining

sections of this chapter go into more detail and also describe notations for objects of

each type. Descriptions of Lisp functions that operate on data objects of each type

appear in later chapters.

. Numbers are provided in various forms and representations. Common Lisp pro

vides a true integer data type: any integer, positive or negative, has in principle a

representation as a Common Lisp data object, subject only to total memory lim

itations (rather than machine word width). A true rational data type is provided:

the quotient of two integers, if not an integer, is a ratio. Floatingpoint numbers

of various ranges and precisions are also provided, as well as Cartesian complex

numbers.

. Characters represent printed glyphs such as letters or text formatting operations.

Strings are onedimensional arrays of characters. Common Lisp provides for a

rich character set, including ways to represent characters of various type styles.

. Symbols (sometimes called atomic symbols for emphasis or clarity) are named data

objects. Lisp provides machinery for locating a symbol object, given its name (in

the form of a string). Symbols have property lists, which in effect allow symbols

to be treated as record structures with an extensible set of named components,

each of which may be any Lisp object. Symbols also serve to name functions and

variables within programs.

. Lists are sequences represented in the form of linked cells called conses. There

is a special object (the symbol nil) that is the empty list. All other lists are built

recursively by adding a new element to the front of an existing list. This is done by

creating a new cons, which is an object having two components called the car and

the cdr. The car may hold anything, and the cdr is made to point to the previously

existing list. (Conses may actually be used completely generally as twoelement

record structures, but their most important use is to represent lists.)

. Arrays are dimensioned collections of objects. An array can have any nonnegative

number of dimensions and is indexed by a sequence of integers. A general array

can have any Lisp object as a component; other types of arrays are specialized

14 COMMON LISP

for efficiency and can hold only certain types of Lisp objects. It is possible for

two arrays, possibly with differing dimension information, to share the same set of

elements (such that modifying one array modifies the other also) by causing one to

be displaced to the other. Onedimensional arrays of any kind are called vectors.

Onedimensional arrays of characters are called strings. Onedimensional arrays

of bits (that is, of integers whose values are 0 or 1) are called bitvectors.

. Hash tables provide an efficient way of mapping any Lisp object (a key) to an

associated object.

. Readtables are used to control the builtin expression parser read.

. Packages are collections of symbols that serve as name spaces. The parser recog

nizes symbols by looking up character sequences in the current package.

. Pathnames represent names of files in a fairly implementationindependent manner.

They are used to interface to the external file system.

. Streams represent sources or sinks of data, typically characters or bytes. They are

used to perform I/O, as well as for internal purposes such as parsing strings.

. Randomstates are data structures used to encapsulate the state of the builtin

randomnumber generator.

. Structures are userdefined record structures, objects that have named components.

The defstruct facility is used to define new structure types. Some Common Lisp

implementations may choose to implement certain systemsupplied data types,

such as bignums, readtables, streams, hash tables, and pathnames, as structures,

but this fact will be invisible to the user.

. Functions are objects that can be invoked as procedures; these may take arguments
...

and return values. (All Lisp procedures can be construed to return values and

therefore every procedure is a function.) Such objects include compiledfunctions

(compiled code objects). Some functions are represented as a list whose car is a

particular symbol such as lambda. Symbols may also be used as functions.

X3J13 voted in June 1988 〈90〉 to specify that symbols are not of type function,

but are automatically coerced to functions in certain situations (see section 2.13).

X3J13 voted in June 1988 〈30〉 to adopt the Common Lisp Condition System,

thereby introducing a new category of data objects:

. Conditions are objects used to affect control flow in certain conventional ways by

means of signals and handlers that intercept those signals. In particular, errors are

signaled by raising particular conditions, and errors may be trapped by establishing

handlers for those conditions.

DATA TYPES 15

X3J13 voted in June 1988 〈12〉 to adopt the Common Lisp Object System, thereby

introducing additional categories of data objects:

. Classes determine the structure and behavior of other objects, their instances.

Every Common Lisp data object belongs to some class. (In some ways the CLOS

class system is a generalization of the system of type specifiers of the first edition

of this book, but the class system augments the type system rather than supplanting

it.)

. Methods are chunks of code that operate on arguments satisfying a particular

pattern of classes. Methods are not functions; they are not invoked directly on

arguments but instead are bundled into generic functions.

. Generic functions are functions that contain, among other information, a set of

methods. When invoked, a generic function executes a subset of its methods. The

subset chosen for execution depends in a specific way on the classes or identities

of the arguments to which it is applied.

These categories are not always mutually exclusive. The required relationships

among the various data types are explained in more detail in section 2.15.

2.1. Numbers

Several kinds of numbers are defined in Common Lisp. They are divided into

integers; ratios; floatingpoint numbers, with names provided for up to four different

floatingpoint representations; and complex numbers.

X3J13 voted in March 1989 〈151〉 to add the type real.

The number data type encompasses all kinds of numbers. For convenience, there

are names for some subclasses of numbers as well. Integers and ratios are of type

rational. Rational numbers and floatingpoint numbers are of type real. Real

numbers and complex numbers are of type number.

Although the names of these types were chosen with the terminology of mathemat

ics in mind, the correspondences are not always exact. Integers and ratios model the

corresponding mathematical concepts directly. Numbers of type float may be used

to approximate real numbers, both rational and irrational. The real type includes all

Common Lisp numbers that represent mathematical real numbers, though there are

mathematical real numbers (irrational numbers) that do not have an exact Common

Lisp representation. Only real numbers may be ordered using the <, >, <−−, and >−−

functions.

16 COMMON LISP

Compatibility note: The Fortran 77 standard defines the term real datum to mean “a processor

approximation to the value of a real number.” In practice the Fortran basic real type is the

floatingpoint data type that Common Lisp calls single-float. The Fortran double precision

type is Common Lisp’s double-float. The Pascal real data type is an “implementationdefined

subset of the real numbers.” In practice this is usually a floatingpoint type, often what

Common Lisp calls double-float.

A translation of an algorithm written in Fortran or Pascal that uses real data usually will

use some appropriate precision of Common Lisp’s float type. Some algorithms may gain

accuracy or flexibility by using Common Lisp’s rational or real type instead.

2.1.1. Integers

The integer data type is intended to represent mathematical integers. Unlike most

programming languages, Common Lisp in principle imposes no limit on the magni

tude of an integer; storage is automatically allocated as necessary to represent large

integers.

In every Common Lisp implementation there is a range of integers that are rep

resented more efficiently than others; each such integer is called a fixnum, and an

integer that is not a fixnum is called a bignum. Common Lisp is designed to hide

this distinction as much as possible; the distinction between fixnums and bignums is

visible to the user in only a few places where the efficiency of representation is im

portant. Exactly which integers are fixnums is implementationdependent; typically

they will be those integers in the range −2n to 2n − 1, inclusive, for some n not less

than 15. See most-positive-fixnum and most-negative-fixnum.

X3J13 voted in January 1989 〈76〉 to specify that fixnum must be a supertype of the

type (signed-byte 16), and additionally that the value of array-dimension-limit must

be a fixnum (implying that the implementor should choose the range of fixnums to

be large enough to accommodate the largest size of array to be supported).

Rationale: This specification allows programmers to declare variables in portable code to be

of type fixnum for efficiency. Fixnums are guaranteed to encompass at least the set of 16bit

signed integers (compare this to the data type short int in the C programming language). In

addition, any valid array index must be a fixnum, and therefore variables used to hold array

indices (such as a dotimes variable) may be declared fixnum in portable code.

Integers are ordinarily written in decimal notation, as a sequence of decimal digits,

optionally preceded by a sign and optionally followed by a decimal point. For

example:

DATA TYPES 17

0 ;Zero

-0 ;This always means the same as 0

+6 ;The first perfect number

28 ;The second perfect number

1024. ;Two to the tenth power

-1 ;eπi

15511210043330985984000000. ;25 factorial (25!), probably a bignum

Compatibility note: MacLisp and Lisp Machine Lisp normally assume that integers are

written in octal (radix8) notation unless a decimal point is present. Interlisp assumes integers

are written in decimal notation and uses a trailing Q to indicate octal radix; however, a decimal

point, even in trailing position, always indicates a floatingpoint number. This is of course

consistent with Fortran. Ada does not permit trailing decimal points but instead requires them

to be embedded. In Common Lisp, integers written as described above are always construed

to be in decimal notation, whether or not the decimal point is present; allowing the decimal

point to be present permits compatibility with MacLisp.

Integers may be notated in radices other than ten. The notation

#--nnrddddd or #--nnRddddd

means the integer in radixnn notation denoted by the digits ddddd. More precisely,

one may write #--, a nonempty sequence of decimal digits representing an unsigned

decimal integer n, r (or R), an optional sign, and a sequence of radixn digits, to

indicate an integer written in radix n (which must be between 2 and 36, inclusive).

Only legal digits for the specified radix may be used; for example, an octal number

may contain only the digits 0 through 7. For digits above 9, letters of the alphabet of

either case may be used in order. Binary, octal, and hexadecimal radices are useful

enough to warrant the special abbreviations #--b for #--2r, #--o for #--8r, and #--x for #--16r. For

example:

#--2r11010101 ;Another way of writing 213 decimal

#--b11010101 ;Ditto

#--b+11010101 ;Ditto

#--o325 ;Ditto, in octal radix

#--xD5 ;Ditto, in hexadecimal radix

#--16r+D5 ;Ditto

#--o-300 ;Decimal −192, written in base 8

#--3r-21010 ;Same thing in base 3

#--25R-7H ;Same thing in base 25

#--xACCEDED ;181202413, in hexadecimal radix

18 COMMON LISP

2.1.2. Ratios

A ratio is a number representing the mathematical ratio of two integers. Integers

and ratios collectively constitute the type rational. The canonical representation of

a rational number is as an integer if its value is integral, and otherwise as the ratio of

two integers, the numerator and denominator, whose greatest common divisor is 1,

and of which the denominator is positive (and in fact greater than 1, or else the value

would be integral). A ratio is notated with / as a separator, thus: 3/5. It is possible to

notate ratios in noncanonical (unreduced) forms, such as 4/6, but the Lisp function

prin1 always prints the canonical form for a ratio.

If any computation produces a result that is a ratio of two integers such that the

denominator evenly divides the numerator, then the result is immediately converted

to the equivalent integer. This is called the rule of rational canonicalization.

Rational numbers may be written as the possibly signed quotient of decimal nu

merals: an optional sign followed by two nonempty sequences of digits separated

by a /. This syntax may be described as follows:

ratio ::= [sign] {digit}+ / {digit}+

The second sequence may not consist entirely of zeros. For example:

2/3 ;This is in canonical form

4/6 ;A noncanonical form for the same number

-17/23 ;A not very interesting ratio

-30517578125/32768 ;This is (−5/2)15

10/5 ;The canonical form for this is 2

To notate rational numbers in radices other than ten, one uses the same radix

specifiers (one of #--nnR, #--O, #--B, or #--X) as for integers. For example:

#--o-101/75 ;Octal notation for -65/61

#--3r120/21 ;Ternary notation for 15/7

#--Xbc/ad ;Hexadecimal notation for 188/173

#--xFADED/FACADE ;Hexadecimal notation for 1027565/16435934

2.1.3. FloatingPoint Numbers

Common Lisp allows an implementation to provide one or more kinds of floating

point number, which collectively make up the type float. Now a floatingpoint

number is a (mathematical) rational number of the form s · f · be−p, where s is +1 or

−1, the sign; b is an integer greater than 1, the base or radix of the representation;

p is a positive integer, the precision (in baseb digits) of the floatingpoint number;

DATA TYPES 19

f is a positive integer between b p−1 and b p − 1 (inclusive), the significand; and

e is an integer, the exponent. The value of p and the range of e depends on the

implementation and on the type of floatingpoint number within that implementation.

In addition, there is a floatingpoint zero; depending on the implementation, there

may also be a “minus zero.” If there is no minus zero, then 0.0 and -0.0 are both

interpreted as simply a floatingpoint zero.

Implementation note: The form of the above description should not be construed to require

the internal representation to be in signmagnitude form. Two’scomplement and other repre

sentations are also acceptable. Note that the radix of the internal representation may be other

than 2, as on the IBM 360 and 370, which use radix 16; see float-radix.

Floatingpoint numbers may be provided in a variety of precisions and sizes,

depending on the implementation. Highquality floatingpoint software tends to

depend critically on the precise nature of the floatingpoint arithmetic and so may not

always be completely portable. As an aid in writing programs that are moderately

portable, however, certain definitions are made here:

. A short floatingpoint number (type short-float) is of the representation of smallest

fixed precision provided by an implementation.

. A long floatingpoint number (type long-float) is of the representation of the

largest fixed precision provided by an implementation.

. Intermediate between short and long formats are two others, arbitrarily called

single and double (types single-float and double-float).

The precise definition of these categories is implementationdependent. However,

the rough intent is that short floatingpoint numbers be precise to at least four decimal

places (but also have a spaceefficient representation); single floatingpoint numbers,

to at least seven decimal places; and double floatingpoint numbers, to at least

fourteen decimal places. It is suggested that the precision (measured in bits,computed

as p log2 b) and the exponent size (also measured in bits, computed as the base2

logarithm of 1 plus the maximum exponent value) be at least as great as the values in

table 21.

Floatingpoint numbers are written in either decimal fraction or computerized

scientific notation: an optional sign, then a nonempty sequence of digits with an

embedded decimal point, then an optional decimal exponent specification. If there

is no exponent specifier, then the decimal point is required, and there must be digits

after it. The exponent specifier consists of an exponent marker, an optional sign, and

a nonempty sequence of digits. For preciseness, here is a modifiedBNF description

of floatingpoint notation.

20 COMMON LISP

Table 21: Recommended Minimum FloatingPoint Precision and Exponent Size

Format Minimum Precision Minimum Exponent Size

Short 13 bits 5 bits

Single 24 bits 8 bits

Double 50 bits 8 bits

Long 50 bits 8 bits

floatingpointnumber ::= [sign] {digit}∗ decimalpoint {digit}+ [exponent]

| [sign] {digit}+ [decimalpoint {digit}∗] exponent

sign ::= + | -
decimalpoint ::= .

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
exponent ::= exponentmarker [sign] {digit}+

exponentmarker ::= e | s | f | d | l | E | S | F | D | L

If no exponent specifier is present, or if the exponent marker e (or E) is used, then the

precise format to be used is not specified. When such a representation is read and

converted to an internal floatingpoint data object, the format specified by the variable

read-default-float-format is used; the initial value of this variable is single-float.

The letters s, f, d, and l (or their respective uppercase equivalents) explicitly

specify the use of short, single, double, and long format, respectively.

Examples of floatingpoint numbers:

0.0 ;Floatingpoint zero in default format

0E0 ;Also floatingpoint zero in default format

-.0 ;This may be a zero or a minus zero,

; depending on the implementation

0. ;The integer zero, not a floatingpoint zero!

0.0s0 ;A floatingpoint zero in short format

0s0 ;Also a floatingpoint zero in short format

3.1415926535897932384d0 ;A doubleformat approximation to π

6.02E+23 ;Avogadro’s number, in default format

602E+21 ;Also Avogadro’s number, in default format

3.010299957f-1 ;log10 2, in single format

-0.000000001s9 ;eπi in short format, the hard way

Notice of correction. The first edition unfortunately listed an incorrect value

(3.1010299957f-1) for the base10 logarithm of 2.

DATA TYPES 21

The internal format used for an external representation depends only on the expo

nent marker and not on the number of decimal digits in the external representation.

While Common Lisp provides terminology and notation sufficient to accommodate

four distinct floatingpoint formats, not all implementations will have the means to

support that many distinct formats. An implementation is therefore permitted to

provide fewer than four distinct internal floatingpoint formats, in which case at least

one of them will be “shared” by more than one of the external format names short,

single, double, and long according to the following rules:

. If one internal format is provided, then it is considered to be single, but serves also

as short, double, and long. The data types short-float, single-float, double-float,

and long-float are considered to be identical. An expression such as (eql 1.0s0

1.0d0) will be true in such an implementation because the two numbers 1.0s0 and

1.0d0 will be converted into the same internal format and therefore be considered

to have the same data type, despite the differing external syntax. Similarly, (typep

1.0L0 ´short-float) will be true in such an implementation. For output purposes

all floatingpoint numbers are assumed to be of single format and thus will print

using the exponent letter E or F.

. If two internal formats are provided, then either of two correspondences may be

used, depending on which is the more appropriate:

– One format is short; the other is single and serves also as double and long.

The data types single-float, double-float, and long-float are considered to be

identical, but short-float is distinct. An expression such as (eql 1.0s0 1.0d0)

will be false, but (eql 1.0f0 1.0d0) will be true. Similarly, (typep 1.0L0 ´short-

float) will be false, but (typep 1.0L0 ´single-float) will be true. For output

purposes all floatingpoint numbers are assumed to be of short or single format.

– One format is single and serves also as short; the other is double and serves

also as long. The data types short-float and single-float are considered to

be identical, and the data types double-float and long-float are considered to

be identical. An expression such as (eql 1.0s0 1.0d0) will be false, as will

(eql 1.0f0 1.0d0); but (eql 1.0d0 1.0L0) will be true. Similarly, (typep 1.0L0

´short-float) will be false, but (typep 1.0L0 ´double-float) will be true. For

output purposes all floatingpoint numbers are assumed to be of single or double

format.

. If three internal formats are provided, then either of two correspondences may be

used, depending on which is the more appropriate:

– One format is short; another format is single; and the third format is double and

serves also as long. Similar constraints apply.

22 COMMON LISP

– One format is single and serves also as short; another is double; and the third

format is long.

Implementation note: It is recommended that an implementation provide as many distinct

floatingpoint formats as feasible, using table 21 as a guideline. Ideally, shortformat floating

point numbers should have an “immediate” representation that does not require heap allocation;

singleformat floatingpoint numbers should approximate IEEE proposed standard single

format floatingpoint numbers; and doubleformat floatingpoint numbers should approximate

IEEE proposed standard doubleformat floatingpoint numbers [23, 17, 16].

2.1.4. Complex Numbers

Complex numbers (type complex) are represented in Cartesian form, with a real part

and an imaginary part, each of which is a noncomplex number (integer, ratio, or

floatingpoint number). It should be emphasized that the parts of a complex number

are not necessarily floatingpoint numbers; in this, Common Lisp is like PL/I and

differs from Fortran. However, both parts must be of the same type: either both are

rational, or both are of the same floatingpoint format.

Complex numbers may be notated by writing the characters #--C followed by a list of

the real and imaginary parts. If the two parts as notated are not of the same type, then

they are converted according to the rules of floatingpoint contagion as described in

chapter 12. (Indeed, #--C(a b) is equivalent to #--,(complex a b); see the description of

the function complex.) For example:

#--C(3.0s1 2.0s-1) ;Real and imaginary parts are short format

#--C(5 -3) ;A Gaussian integer

#--C(5/3 7.0) ;Will be converted internally to #--C(1.66666 7.0)

#--C(0 1) ;The imaginary unit, that is, i

The type of a specific complex number is indicated by a list of the word complex and

the type of the components; for example, a specialized representation for complex

numbers with short floatingpoint parts would be of type (complex short-float). The

type complex encompasses all complex representations.

A complex number of type (complex rational), that is, one whose components

are rational, can never have a zero imaginary part. If the result of a computation

would be a complex rational with a zero imaginary part, the result is immediately

converted to a noncomplex rational number by taking the real part. This is called the

rule of complex canonicalization. This rule does not apply to floatingpoint complex

numbers; #--C(5.0 0.0) and 5.0 are different.

...

DATA TYPES 23

2.2. Characters

Characters are represented as data objects of type character.

There are two subtypes of interest, called standard-char and string-char.
..

X3J13 voted in March 1989 〈11〉 to remove the type string-char.

A character object can be notated by writing #--\ followed by the character itself. For

example, #--\g means the character object for a lowercase g. This works well enough

for printing characters. Nonprinting characters have names, and can be notated by

writing #--\ and then the name; for example, #--\Space (or #--\SPACE or #--\space or #--\sPaCE)

means the space character. The syntax for character names after #--\ is the same as

that for symbols. However, only character names that are known to the particular

implementation may be used.

2.2.1. Standard Characters

Common Lisp defines a standard character set (subtype standard-char) for two pur

poses. Common Lisp programs that are written in the standard character set can be

read by any Common Lisp implementation; and Common Lisp programs that use

only standard characters as data objects are most likely to be portable. The Common

Lisp character set consists of a space character #--\Space, a newline character #--\Newline,

and the following ninetyfour nonblank printing characters or their equivalents:

! " #-- $ % & ´ () * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < −− > ?

@ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [\] ˆ _

` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ˜

The Common Lisp standard character set is apparently equivalent to the ninetyfive

standard ASCII printing characters plus a newline character. Nevertheless, Common

Lisp is designed to be relatively independent of the ASCII character encoding. For

example, the collating sequence is not specified except to say that digits must be

properly ordered, the uppercase letters must be properly ordered, and the lowercase

letters must be properly ordered (see char< for a precise specification). Other character

encodings, particularly EBCDIC, should be easily accommodated (with a suitable

mapping of printing characters).

Of the ninetyfour nonblank printing characters, the following are used in only

limited ways in the syntax of Common Lisp programs:

[] { } ? ! ˆ _ ˜ $ %

All of these characters except ! and _ are used within format strings as formatting
......................................

directives. Except for this, [,], {, }, ?, and ! are not used in Common Lisp and are

...

24 COMMON LISP

reserved to the user for syntactic extensions; ˆ and _ are not yet used in Common

Lisp but are part of the syntax of reserved tokens and are reserved to implementors;

˜ is not yet used in Common Lisp and is reserved to implementors; and $ and %

are normally regarded as alphabetic characters but are not used in the names of any

standard Common Lisp functions, variables, or other entities.

X3J13 voted in June 1989 〈139〉 to add a format directive ˜_ (see chapter 27).

The following characters are called semistandard:

#--\Backspace #--\Tab #--\Linefeed #--\Page #--\Return #--\Rubout

Not all implementations of Common Lisp need to support them; but those implemen

tations that use the standard ASCII character set should support them, treating them

as corresponding respectively to the ASCII characters BS (octal code 010), HT (011),

LF (012), FF (014), CR (015), and DEL (177). These characters are not members

of the subtype standard-char unless synonymous with one of the standard characters

specified above. For example, in a given implementation it might be sensible for the

implementor to define #--\Linefeed or #--\Return to be synonymous with #--\Newline, or

#--\Tab to be synonymous with #--\Space.

2.2.2. Line Divisions

The treatment of line divisions is one of the most difficult issues in designing portable

software, simply because there is so little agreement among operating systems. Some

use a single character to delimit lines; the recommended ASCII character for this

purpose is the line feed character LF (also called the new line character, NL), but

some systems use the carriage return character CR. Much more common is the

twocharacter sequence CR followed by LF. Frequently line divisions have no rep

resentation as a character but are implicit in the structuring of a file into records,

each record containing a line of text. A deck of punched cards has this structure, for

example.

Common Lisp provides an abstract interface by requiring that there be a single

character, #--\Newline, that within the language serves as a line delimiter. (The lan

guage C has a similar requirement.) An implementation of Common Lisp must

translate between this internal singlecharacter representation and whatever external

representation(s) may be used.

Implementation note: How the character called #--\Newline is represented internally is not

specified here, but it is strongly suggested that the ASCII LF character be used in Common

Lisp implementations that use the ASCII character encoding. The ASCII CR character is a

workable, but in most cases inferior, alternative.

DATA TYPES 25

When the first edition was written it was not yet clear that UNIX would become

so widely accepted. The decision to represent the line delimiter as a single character

has proved to be a good one.

The requirement that a line division be represented as a single character has certain

consequences. A character string written in the middle of a program in such a way

as to span more than one line must contain exactly one character to represent each

line division. Consider this code fragment:

(setq a-string "This string

contains

forty-two characters.")

Between g and c there must be exactly one character, #--\Newline; a twocharacter

sequence, such as #--\Return and then #--\Newline, is not acceptable, nor is the absence

of a character. The same is true between s and f.

When the character #--\Newline is written to an output file, the Common Lisp im

plementation must take the appropriate action to produce a line division. This might

involve writing out a record or translating #--\Newline to a CR/LF sequence.

Implementation note: If an implementation uses the ASCII character encoding, uses the

CR/LF sequence externally to delimit lines, uses LF to represent #--\Newline internally, and

supports #--\Return as a data object corresponding to the ASCII character CR, the question

arises as to what action to take when the program writes out #--\Return followed by #--\Newline. It

should first be noted that #--\Return is not a standard Common Lisp character, and the action to

be taken when #--\Return is written out is therefore not defined by the Common Lisp language.

A plausible approach is to buffer the #--\Return character and suppress it if and only if the next

character is #--\Newline (the net effect is to generate a CR/LF sequence). Another plausible

approach is simply to ignore the difficulty and declare that writing #--\Return and then #--\Newline

results in the sequence CR/CR/LF in the output.

2.2.3. Nonstandard Characters

Any implementation may provide additional characters, whether printing characters

or named characters. Some plausible examples:

26 COMMON LISP

#--\π #--\α #--\Break #--\Home-Up #--\Escape

The use of such characters may render Common Lisp programs nonportable.

2.2.4. Character Attributes
..

Every object of type character has three attributes: code, bits, and font. The code

attribute is intended to distinguish among the printed glyphs and formatting functions

for characters; it is a numerical encoding of the character proper. The bits attribute

allows extra flags to be associated with a character. The font attribute permits a

specification of the style of the glyphs (such as italics). Each of these attributes may

be understood to be a nonnegative integer.

The font attribute may be notated in unsigned decimal notation between the #-- and

the \. For example, #--3\a means the letter a in font 3. This might mean the same thing

as #--\α if font 3 were used to represent Greek letters. Note that not all Common Lisp

implementations provide for nonzero font attributes; see char-font-limit.

The bits attribute may be notated by preceding the name of the character by the

names or initials of the bits, separated by hyphens. The character itself may be

written instead of the name, preceded if necessary by \. For example:

#--\Control-Meta-Return #--\Meta-Control-Q

#--\Hyper-Space #--\Meta-\a

#--\Control-A #--\Meta-Hyper-\:

#--\C-M-Return #--\Hyper-\π

Note that not all Common Lisp implementations provide for nonzero bits attributes;

see char-bits-limit.

X3J13 voted in March 1989 〈11〉 to replace the notion of bits and font attributes

with that of implementationdefined attributes.

2.2.5. String Characters
..

Any character whose bits and font attributes are zero may be contained in strings. All

such characters together constitute a subtype of the characters; this subtype is called

string-char.

X3J13 voted in March 1989 〈11〉 to eliminate the type string-char. Two new

subtypes of character are base-character, defined to be equivalent to the result of the

function call

(upgraded-array-element-type ´standard-char)

DATA TYPES 27

and extended-character, defined to be equivalent to the type specifier

(and character (not base-character))

An implementation may support additional subtypes of character that may or may

not be supertypes of base-character. In addition, an implementation may define

base-character to be equivalent to character. The choice of any base characters that

are not standard characters is implementationdefined. Only base characters can be

elements of a base string. No upper bound is specified for the number of distinct

characters of type base-character—that is implementationdependent—but the lower

bound is 96, the number of standard Common Lisp characters.

2.3. Symbols

Symbols are Lisp data objects that serve several purposes and have several interesting

characteristics. Every object of type symbol has a name, called its print name. Given

a symbol, one can obtain its name in the form of a string. Conversely, given the name

of a symbol as a string, one can obtain the symbol itself. (More precisely, symbols

are organized into packages, and all the symbols in a package are uniquely identified

by name. See chapter 11.)

Symbols have a component called the property list, or plist. By convention this is

always a list whose evennumbered components (calling the first component zero) are

symbols, here functioning as property names, and whose oddnumbered components

are associated property values. Functions are provided for manipulating this property

list; in effect, these allow a symbol to be treated as an extensible record structure.

Symbols are also used to represent certain kinds of variables in Lisp programs, and

there are functions for dealing with the values associated with symbols in this role.

A symbol can be notated simply by writing its name. If its name is not empty,

and if the name consists only of uppercase alphabetic, numeric, or certain pseudo

alphabetic special characters (but not delimiter characters such as parentheses or

space), and if the name of the symbol cannot be mistaken for a number, then the

symbol can be notated by the sequence of characters in its name. Any uppercase

letters that appear in the (internal) name may be written in either case in the external

notation (more on this below). For example:

FROBBOZ ;The symbol whose name is FROBBOZ

frobboz ;Another way to notate the same symbol

fRObBoz ;Yet another way to notate it

unwind-protect ;A symbol with a - in its name

+$;The symbol named +$

1+ ;The symbol named 1+

28 COMMON LISP

+1 ;This is the integer 1, not a symbol

pascal_style ;This symbol has an underscore in its name

bˆ2-4*a*c ;This is a single symbol!

; It has several special characters in its name

file.rel.43 ;This symbol has periods in its name

/usr/games/zork ;This symbol has slashes in its name

In addition to letters and numbers, the following characters are normally considered

to be alphabetic for the purposes of notating symbols:

+ - * / @ $ % ˆ & _ −− < > ˜ .

Some of these characters have conventional purposes for naming things; for example,

symbols that name special variables generally have names beginning and ending with

*. The last character listed above, the period, is considered alphabetic provided that

a token does not consist entirely of periods. A single period standing by itself is used

in the notation of conses and dotted lists; a token consisting of two or more periods

is syntactically illegal. (The period also serves as the decimal point in the notation

of numbers.)

The following characters are also alphabetic by default but are explicitly reserved

to the user for definition as reader macro characters (see section 22.1.3) or any other

desired purpose and therefore should not be used routinely in names of symbols:

? ! [] { }

A symbol may have uppercase letters, lowercase letters, or both in its print name.

However, the Lisp reader normally converts lowercase letters to the corresponding

uppercase letters when reading symbols. The net effect is that most of the time

case makes no difference when notating symbols. Case does make a difference

internally and when printing a symbol. Internally the symbols that name all standard

Common Lisp functions, variables, and keywords have uppercase names; their names

appear in lowercase in this book for readability. Typing such names with lowercase

letters works because the function read will convert lowercase letters to the equivalent

uppercase letters.

X3J13 voted in June 1989 〈150〉 to introduce readtable-case, which controls

whether read will alter the case of letters read as part of the name of a symbol.

If a symbol cannot be simply notated by the characters of its name because the

(internal) name contains special characters or lowercase letters, then there are two

“escape” conventions for notating them. Writing a \ character before any character

causes the character to be treated itself as an ordinary character for use in a symbol

name; in particular, it suppresses internal conversion of lowercase letters to their

DATA TYPES 29

uppercase equivalents. If any character in a notation is preceded by \, then that

notation can never be interpreted as a number. For example:

\(;The symbol whose name is (

\+1 ;The symbol whose name is +1

+\1 ;Also the symbol whose name is +1

\frobboz ;The symbol whose name is fROBBOZ

3.14159265\s0 ;The symbol whose name is 3.14159265s0

3.14159265\S0 ;A different symbol, whose name is 3.14159265S0

3.14159265s0 ;A shortformat floatingpoint approximation to π

APL\\360 ;The symbol whose name is APL\360

apl\\360 ;Also the symbol whose name is APL\360

\(bˆ2\)\ -\ 4*a*c ;The name is (Bˆ2) - 4*A*C;

; it has parentheses and two spaces in it

\(\bˆ2\)\ -\ 4*\a*\c ;The name is (bˆ2) - 4*a*c;

; the letters are explicitly lowercase

It may be tedious to insert a \ before every delimiter character in the name of a symbol

if there are many of them. An alternative convention is to surround the name of a

symbol with vertical bars; these cause every character between them to be taken as

part of the symbol’s name, as if \ had been written before each one, excepting only |

itself and \, which must nevertheless be preceded by \. For example:

|"| ;The same as writing \"

|(bˆ2) - 4*a*c| ;The name is (bˆ2) - 4*a*c

|frobboz| ;The name is frobboz, not FROBBOZ

|APL\360| ;The name is APL360, because the \ quotes the 3

|APL\\360| ;The name is APL\360

|apl\\360| ;The name is apl\360

|\|\|| ;Same as \|\|: the name is ||

|(Bˆ2) - 4*A*C| ;The name is (Bˆ2) - 4*A*C;

; it has parentheses and two spaces in it

|(bˆ2) - 4*a*c| ;The name is (bˆ2) - 4*a*c

2.4. Lists and Conses

A cons is a record structure containing two components called the car and the cdr.

Conses are used primarily to represent lists.

A list is recursively defined to be either the empty list or a cons whose cdr

component is a list. A list is therefore a chain of conses linked by their cdr components

and terminated by nil, the empty list. The car components of the conses are called

30 COMMON LISP

the elements of the list. For each element of the list there is a cons. The empty list

has no elements at all.

A list is notated by writing the elements of the list in order, separated by blank

space (space, tab, or return characters) and surrounded by parentheses.

(a b c) ;A list of three symbols

(2.0s0 (a 1) #--*) ;A list of three things: a short floatingpoint

; number, another list, and a character object

The empty list nil therefore can be written as (), because it is a list with no elements.

A dotted list is one whose last cons does not have nil for its cdr, rather some other

data object (which is also not a cons, or the firstmentioned cons would not be the last

cons of the list). Such a list is called “dotted” because of the special notation used

for it: the elements of the list are written between parentheses as before, but after the

last element and before the right parenthesis are written a dot (surrounded by blank

space) and then the cdr of the last cons. As a special case, a single cons is notated by

writing the car and the cdr between parentheses and separated by a spacesurrounded

dot. For example:

(a . 4) ;A cons whose car is a symbol

; and whose cdr is an integer

(a b c . d) ;A dotted list with three elements whose last cons

; has the symbol d in its cdr

Compatibility note: In MacLisp, the dot in dottedlist notation need not be surrounded by

white space or other delimiters. The dot is required to be delimited in Common Lisp, as in

Lisp Machine Lisp.

It is legitimate to write something like (a b . (c d)); this means the same as (a

b c d). The standard Lisp output routines will never print a list in the first form,

however; they will avoid dot notation wherever possible.

Often the term list is used to refer either to true lists or to dotted lists. When the

distinction is important, the term “true list” will be used to refer to a list terminated

by nil. Most functions advertised to operate on lists expect to be given true lists.

Throughout this book, unless otherwise specified, it is an error to pass a dotted list to

a function that is specified to require a list as an argument.

Implementation note: Implementors are encouraged to use the equivalent of the predicate

endp wherever it is necessary to test for the end of a list. Whenever feasible, this test should

explicitly signal an error if a list is found to be terminated by a nonnil atom. However, such

an explicit error signal is not required, because some such tests occur in important loops where

DATA TYPES 31

efficiency is important. In such cases, the predicate atom may be used to test for the end of the

list, quietly treating any nonnil listterminating atom as if it were nil.

Sometimes the term tree is used to refer to some cons and all the other conses

transitively accessible to it through car and cdr links until nonconses are reached;

these nonconses are called the leaves of the tree.

Lists, dotted lists, and trees are not mutually exclusive data types; they are simply

useful points of view about structures of conses. There are yet other terms, such as

association list. None of these are true Lisp data types. Conses are a data type, and

nil is the sole object of type null. The Lisp data type list is taken to mean the union

of the cons and null data types, and therefore encompasses both true lists and dotted

lists.

2.5. Arrays

An array is an object with components arranged according to a Cartesian coordinate

system. In general, these components may be any Lisp data objects.

The number of dimensions of an array is called its rank (this terminology is

borrowed from APL); the rank is a nonnegative integer. Likewise, each dimension is

itself a nonnegative integer. The total number of elements in the array is the product

of all the dimensions.

An implementation of Common Lisp may impose a limit on the rank of an array,

but this limit may not be smaller than 7. Therefore, any Common Lisp program

may assume the use of arrays of rank 7 or less. (A program may determine the

actual limit on array ranks for a given implementation by examining the constant

array-rank-limit.)

It is permissible for a dimension to be zero. In this case, the array has no elements,

and any attempt to access an element is in error. However, other properties of the

array, such as the dimensions themselves, may be used. If the rank is zero, then

there are no dimensions, and the product of the dimensions is then by definition 1. A

zerorank array therefore has a single element.

An array element is specified by a sequence of indices. The length of the sequence

must equal the rank of the array. Each index must be a nonnegative integer strictly

less than the corresponding array dimension. Array indexing is therefore zeroorigin,

not oneorigin as in (the default case of) Fortran.

As an example, suppose that the variable foo names a 3by5 array. Then the first

index may be 0, 1, or 2, and the second index may be 0, 1, 2, 3, or 4. One may

refer to array elements using the function aref; for example, (aref foo 2 1) refers

to element (2, 1) of the array. Note that aref takes a variable number of arguments:

an array, and as many indices as the array has dimensions. A zerorank array has no

32 COMMON LISP

dimensions, and therefore aref would take such an array and no indices, and return

the sole element of the array.

In general, arrays can be multidimensional,can share their contents with other array

objects, and can have their size altered dynamically (either enlarging or shrinking)

after creation. A onedimensional array may also have a fill pointer.

Multidimensional arrays store their components in rowmajor order; that is, in

ternally a multidimensional array is stored as a onedimensional array, with the

multidimensional index sets ordered lexicographically, last index varying fastest.

This is important in two situations: (1) when arrays with different dimensions share

their contents, and (2) when accessing very large arrays in a virtualmemory im

plementation. (The first situation is a matter of semantics; the second, a matter of

efficiency.)

An array that is not displaced to another array, has no fill pointer, and is not to have

its size adjusted dynamically after creation is called a simple array. The user may

provide declarations that certain arrays will be simple. Some implementations can

handle simple arrays in an especially efficient manner; for example, simple arrays

may have a more compact representation than nonsimple arrays.

X3J13 voted in June 1989 〈3〉 to clarify that if one or more of the :adjustable,

:fill-pointer, and :displaced-to arguments is true when make-array is called, then

whether the resulting array is simple is unspecified; but if all three arguments are

false, then the resulting array is guaranteed to be simple.

2.5.1. Vectors

Onedimensional arrays are called vectors in Common Lisp and constitute the type

vector (which is therefore a subtype of array). Vectors and lists are collectively

considered to be sequences. They differ in that any component of a onedimensional

array can be accessed in constant time, whereas the average component access time

for a list is linear in the length of the list; on the other hand, adding a new element to

the front of a list takes constant time, whereas the same operation on an array takes

time linear in the length of the array.

A general vector (a onedimensional array that can have any data object as an

element but that has no additional paraphernalia) can be notated by notating the

components in order, separated by whitespace and surrounded by #--(and). For

example:

#--(a b c) ;A vector of length 3

#--() ;An empty vector

#--(2 3 5 7 11 13 17 19 23 29 31 37 41 43 47)

;A vector containing the primes below 50

DATA TYPES 33

Note that when the function read parses this syntax, it always constructs a simple

general vector.

Rationale: Many people have suggested that brackets be used to notate vectors, as [a b c]

instead of #--(a b c). This notation would be shorter, perhaps more readable, and certainly in

accord with cultural conventions in other parts of computer science and mathematics. However,

to preserve the usefulness of the userdefinable macrocharacter feature of the function read,

it is necessary to leave some characters to the user for this purpose. Experience in MacLisp

has shown that users, especially implementors of languages for use in artificial intelligence

research, often want to define special kinds of brackets. Therefore Common Lisp avoids using

brackets and braces for any syntactic purpose.

Implementations may provide certain specialized representations of arrays for

efficiency in the case where all the components are of the same specialized (typically

numeric) type. All implementations provide specialized arrays for the cases when

the components are characters (or rather, a special subset of the characters); the one

dimensional instances of this specialization are called strings. All implementations

are also required to provide specialized arrays of bits, that is, arrays of type (array

bit); the onedimensional instances of this specialization are called bitvectors.

2.5.2. Strings

A string is simply a vector of characters. More precisely, a string is a specialized
...

vector whose elements are of type string-char.

X3J13 voted in March 1989 〈11〉 to eliminate the type string-char and to redefine

the type string to be the union of one or more specialized vector types, the types

of whose elements are subtypes of the type character. Subtypes of string include

simple-string, base-string, and simple-base-string.

base-string ≡ (vector base-character)

simple-base-string ≡ (simple-array base-character (*))

An implementation may support other string subtypes as well. All Common Lisp

functions that operate on strings treat all strings uniformly; note, however, that it is

an error to attempt to insert an extended character into a base string.

34 COMMON LISP

The type string is therefore a subtype of the type vector.

A string can be written as the sequence of characters contained in the string,

preceded and followed by a " (double quote) character. Any " or \ character in the

sequence must additionally have a \ character before it.

For example:

"Foo" ;A string with three characters in it

"" ;An empty string

"\"APL\\360?\" he cried." ;A string with twenty characters

"|x| −− |-x|" ;A tencharacter string

Notice that any vertical bar | in a string need not be preceded by a \. Similarly,

any double quote in the name of a symbol written using verticalbar notation need

not be preceded by a \. The doublequote and verticalbar notations are similar

but distinct: double quotes indicate a character string containing the sequence of

characters, whereas vertical bars indicate a symbol whose name is the contained

sequence of characters.

The characters contained by the double quotes, taken from left to right, occupy

locations within the string with increasing indices. The leftmost character is string

element number 0, the next one is element number 1, the next one is element number

2, and so on.

Note that the function prin1 will print any character vector (not just a simple one)

using this syntax, but the function read will always construct a simple string when it

reads this syntax.

2.5.3. BitVectors

A bitvector can be written as the sequence of bits contained in the string, preceded by

#--*; any delimiter character, such as whitespace, will terminate the bitvector syntax.

For example:

#--*10110 ;A fivebit bitvector; bit 0 is a 1

#--* ;An empty bitvector

The bits notated following the #--*, taken from left to right, occupy locations within

the bitvector with increasing indices. The leftmost notated bit is bitvector element

number 0, the next one is element number 1, and so on.

The function prin1 will print any bitvector (not just a simple one) using this

syntax, but the function read will always construct a simple bitvector when it reads

this syntax.

DATA TYPES 35

2.6. Hash Tables

Hash tables provide an efficient way of mapping any Lisp object (a key) to an

associated object. They are provided as primitives of Common Lisp because some

implementations may need to use internal storage management strategies that would

make it very difficult for the user to implement hash tables in a portable fashion.

Hash tables are described in chapter 16.

2.7. Readtables

A readtable is a data structure that maps characters into syntax types for the Lisp

expression parser. In particular, a readtable indicates for each character with syntax

macro character what its macro definition is. This is a mechanism by which the user

may reprogram the parser to a limited but useful extent. See section 22.1.5.

2.8. Packages

Packages are collections of symbols that serve as name spaces. The parser recognizes

symbols by looking up character sequences in the current package. Packages can be

used to hide names internal to a module from other code. Mechanisms are provided

for exporting symbols from a given package to the primary “user” package. See

chapter 11.

2.9. Pathnames

Pathnames are the means by which a Common Lisp program can interface to an

external file system in a reasonably implementationindependent manner. See sec

tion 23.1.1.

2.10. Streams

A stream is a source or sink of data, typically characters or bytes. Nearly all functions

that perform I/O do so with respect to a specified stream. The function open takes a

pathname and returns a stream connected to the file specified by the pathname. There

are a number of standard streams that are used by default for various purposes. See

chapter 21.

X3J13 voted in January 1989 〈167〉 to introduce subtypes of type stream:

broadcast-stream, concatenated-stream, echo-stream, synonym-stream, string-stream,

file-stream, and two-way-stream are disjoint subtypes of stream. Note particularly

that a synonym stream is always and only of type synonym-stream, regardless of the

type of the stream for which it is a synonym.

36 COMMON LISP

2.11. RandomStates

An object of type random-state is used to encapsulate state information used by the

pseudorandom number generator. For more information about random-state objects,

see section 12.9.

2.12. Structures

Structures are instances of userdefined data types that have a fixed number of named

components. They are analogous to records in Pascal. Structures are declared

using the defstruct construct; defstruct automatically defines access and constructor

functions for the new data type.

Different structures may print out in different ways; the definition of a structure type

may specify a print procedure to use for objects of that type (see the :print-function

option to defstruct). The default notation for structures is

#--S(structurename

slotname1 slotvalue1

slotname2 slotvalue2

...)

where #--S indicates structure syntax, structurename is the name (a symbol) of the

structure type, each slotname is the name (also a symbol) of a component, and each

corresponding slotvalue is the representation of the Lisp object in that slot.

2.13. Functions

A function is anything that may be correctly given to the funcall or apply function,
..

and is to be executed as code when arguments are supplied.

A compiledfunction is a compiled code object.

A lambdaexpression (a list whose car is the symbol lambda) may serve as a

function. Depending on the implementation, it may be possible for other lists to

serve as functions. For example, an implementation might choose to represent a

“lexical closure” as a list whose car contains some special marker.

A symbol may serve as a function; an attempt to invoke a symbol as a function

causes the contents of the symbol’s function cell to be used. See symbol-function and

defun.

The result of evaluating a function special form will always be a function.

X3J13 voted in June 1988 〈90〉 to revise these specifications. The type function

is to be disjoint from cons and symbol, and so a list whose car is lambda is not,

DATA TYPES 37

properly speaking, of type function, nor is any symbol. However, standard Common

Lisp functions that accept functional arguments will accept a symbol or a list whose

car is lambda and automatically coerce it to be a function; such standard functions

include funcall, apply, and mapcar. Such functions do not, however, accept a lambda

expression as a functional argument; therefore one may not write

(mapcar ´(lambda (x y) (sqrt (* x y))) p q)

but instead one must write something like

(mapcar #--´(lambda (x y) (sqrt (* x y))) p q)

This change makes it impermissible to represent a lexical closure as a list whose

car is some special marker.

The value of a function special form will always be of type function.

2.14. Unreadable Data Objects

Some objects may print in implementationdependent ways. Such objects cannot

necessarily be reliably reconstructed from a printed representation, and so they are

usually printed in a format informative to the user but not acceptable to the read

function: #--<useful information>. The Lisp reader will signal an error on encountering

#--<.

As a hypothetical example, an implementation might print

#--<stack-pointer si:rename-within-new-definition-maybe #--o311037552>

for an implementationspecific “internal stack pointer” data type whose printed rep

resentation includes the name of the type, some information about the stack slot

pointed to, and the machine address (in octal) of the stack slot.

See print-unreadable-object, a macro that prints an object using #--< syntax.

2.15. Overlap, Inclusion, and Disjointness of Types

The Common Lisp data type hierarchy is tangled and purposely left somewhat open

ended so that implementors may experiment with new data types as extensions to the

language. This section explicitly states all the defined relationships between types,

including subtype/supertype relationships, disjointness, and exhaustive partitioning.

The user of Common Lisp should not depend on any relationships not explicitly stated

here. For example, it is not valid to assume that because a number is not complex

and not rational that it must be a float, because implementations are permitted to

provide yet other kinds of numbers.

38 COMMON LISP

First we need some terminology. If x is a supertype of y, then any object of type

y is also of type x, and y is said to be a subtype of x. If types x and y are disjoint,

then no object (in any implementation) may be both of type x and of type y. Types

a1 through an are an exhaustive union of type x if each aj is a subtype of x, and

any object of type x is necessarily of at least one of the types aj; a1 through an are

furthermore an exhaustive partition if they are also pairwise disjoint.

. The type t is a supertype of every type whatsoever. Every object is of type t.

. The type nil is a subtype of every type whatsoever. No object is of type nil.

. The types cons, symbol, array, number, and character are pairwise disjoint.
..

X3J13 voted in June 1988 〈41〉 to extend the preceding paragraph as follows.

. The types cons, symbol, array, number, character, hash-table, readtable, package,

pathname, stream, random-state, and any single other type created by defstruct or

defclass are pairwise disjoint.

The wording of the first edition was intended to allow implementors to use the

defstruct facility to define the builtin types hash-table, readtable, package, pathname,

stream, random-state. The change still permits this implementation strategy but

forbids these builtin types from including, or being included in, other types (in the

sense of the defstruct :include option).

X3J13 voted in June 1988 〈90〉 to specify that the type function is disjoint from

the types cons, symbol, array, number, and character. The type compiled-function is a

subtype of function; implementations are free to define other subtypes of function.

. The types rational, float, and complex are pairwise disjoint subtypes of number.
..

X3J13 voted in March 1989 〈151〉 to rewrite the preceding item as follows.

. The types real and complex are pairwise disjoint subtypes of number.

Rationale: It might be thought that real and complex should form an exhaustive partition of

the type number. This is purposely avoided here in order to permit compatible experimentation

with extensions to the Common Lisp number system.

. The types rational and float are pairwise disjoint subtypes of real.

Rationale: It might be thought that rational and float should form an exhaustive partition of

the type real. This is purposely avoided here in order to permit compatible experimentation

with extensions to the Common Lisp number system.

. The types integer and ratio are disjoint subtypes of rational.

DATA TYPES 39

Rationale: It might be thought that integer and ratio should form an exhaustive partition of the

type rational. This is purposely avoided here in order to permit compatible experimentation

with extensions to the Common Lisp rational number system.

. The types fixnum and bignum are disjoint subtypes of integer.
..

Rationale: It might be thought that fixnum and bignum should form an exhaustive partition of

the type integer. This is purposely avoided here in order to permit compatible experimentation

with extensions to the Common Lisp integer number system, such as the idea of adding explicit

representations of infinity or of positive and negative infinity.

X3J13 voted in January 1989 〈76〉 to specify that the types fixnum and bignum do

in fact form an exhaustive partition of the type integer; more precisely, they voted to

specify that the type bignum is by definition equivalent to (and integer (not fixnum)).

This is consistent with the first edition text in section 2.1.1.

I interpret this to mean that implementators could still experiment with such

extensions as adding explicit representations of infinity, but such infinities would

necessarily be of type bignum.

. The types short-float, single-float, double-float, and long-float are subtypes

of float. Any two of them must be either disjoint or identical; if identical, then

any other types between them in the above ordering must also be identical to them

(for example, if single-float and long-float are identical types, then double-float

must be identical to them also).

. The type null is a subtype of symbol; the only object of type null is nil.

. The types cons and null form an exhaustive partition of the type list.

. The type standard-char is a subtype of string-char; string-char is a subtype of
..

character.

X3J13 voted in March 1989 〈11〉 to remove the type string-char. The preceding

item is replaced by the following.

. The type standard-char is a subtype of base-character. The types base-character

and extended-character form an exhaustive partition of character.

. The type string is a subtype of vector, for string means (vector string-char).
..

40 COMMON LISP

X3J13 voted in March 1989 〈11〉 to remove the type string-char. The preceding

item is replaced by the following.

. The type string is a subtype of vector; it is the union of all types (vector c) such

that c is a subtype of character.

. The type bit-vector is a subtype of vector, for bit-vector means (vector bit).

. The types (vector t), string, and bit-vector are disjoint.

. The type vector is a subtype of array; for all types x, the type (vector x) is the

same as the type (array x (*)).

. The type simple-array is a subtype of array.

. The types simple-vector, simple-string, and simple-bit-vector are disjoint sub
..

types of simple-array, for they respectively mean (simple-array t (*)), (simple-

array string-char (*)), and (simple-array bit (*)).

X3J13 voted in March 1989 〈11〉 to remove the type string-char. The preceding

item is replaced by the following.

. The types simple-vector, simple-string, and simple-bit-vector are disjoint sub

types of simple-array, for they mean (simple-array t (*)), the union of all types

(simple-array c (*)) such that c is a subtype of character, and (simple-array bit

(*)), respectively.

. The type simple-vector is a subtype of vector and indeed is a subtype of (vector

t).

. The type simple-string is a subtype of string. (Note that although string is a

subtype of vector, simple-string is not a subtype of simple-vector.)

Rationale: The hypothetical name simple-general-vector would have been more accurate than

simple-vector, but in this instance euphony and user convenience were deemed more important

to the design of Common Lisp than a rigid symmetry.

. The type simple-bit-vector is a subtype of bit-vector. (Note that although bit-

vector is a subtype of vector, simple-bit-vector is not a subtype of simple-vector.)

. The types vector and list are disjoint subtypes of sequence.

. The types random-state, readtable, package, pathname, stream, and hash-table are

pairwise disjoint.

DATA TYPES 41

X3J13 voted in June 1988 〈41〉 to make random-state, readtable, package, pathname,

stream, and hash-table pairwise disjoint from a number of other types as well; see

note above.

X3J13 voted in January 1989 〈167〉 to introduce subtypes of type stream.

. The types two-way-stream, echo-stream, broadcast-stream, file-stream, synonym-

stream, string-stream, and concatenated-stream are disjoint subtypes of stream.

. Any two types created by defstruct are disjoint unless one is a supertype of the

other by virtue of the :include option.

. An exhaustive union for the type common is formed by the types cons, symbol, (array
...

x) where x is either t or a subtype of common, string, fixnum, bignum, ratio, short-

float, single-float, double-float, long-float, (complex x) where x is a subtype

of common, standard-char, hash-table, readtable, package, pathname, stream, random-

state, and all types created by the user via defstruct. An implementation may not

unilaterally add subtypes to common; however, future revisions to the Common Lisp

standard may extend the definition of the common data type. Note that a type such

as number or array may or may not be a subtype of common, depending on whether

or not the given implementation has extended the set of objects of that type.

X3J13 voted in March 1989 〈17〉 to remove the type common from the language.

3

Scope and Extent

In describing various features of the Common Lisp language, the notions of scope

and extent are frequently useful. These notions arise when some object or construct

must be referred to from some distant part of a program. Scope refers to the spatial

or textual region of the program within which references may occur. Extent refers to

the interval of time during which references may occur.

As a simple example, consider this program:

(defun copy-cell (x) (cons (car x) (cdr x)))

The scope of the parameter named x is the body of the defun form. There is no

way to refer to this parameter from any other place but within the body of the defun.

Similarly, the extent of the parameter x (for any particular call to copy-cell) is the

interval from the time the function is invoked to the time it is exited. (In the general

case, the extent of a parameter may last beyond the time of function exit, but that

cannot occur in this simple case.)

Within Common Lisp, a referenceable entity is established by the execution of

some language construct, and the scope and extent of the entity are described relative

to the construct and the time (during execution of the construct) at which the entity is

established. For the purposes of this discussion, the term “entity” refers not only to

Common Lisp data objects, such as symbols and conses, but also to variable bindings

(both ordinary and special), catchers, and go targets. It is important to distinguish

between an entity and a name for the entity. In a function definition such as

(defun foo (x y) (* x (+ y 1)))

there is a single name, x, used to refer to the first parameter of the procedure whenever

it is invoked; however, a new binding is established on every invocation. A binding

is a particular parameter instance. The value of a reference to the name x depends not

only on the scope within which it occurs (the one in the body of foo in the example

occurs in the scope of the function definition’s parameters) but also on the particular

42

SCOPE AND EXTENT 43

binding or instance involved. (In this case, it depends on the invocation during which

the reference is made). More complicated examples appear at the end of this chapter.

There are a few kinds of scope and extent that are particularly useful in describing

Common Lisp:

. Lexical scope. Here references to the established entity can occur only within

certain program portions that are lexically (that is, textually) contained within the

establishing construct. Typically the construct will have a part designated the body,

and the scope of all entities established will be (or include) the body.

Example: the names of parameters to a function normally are lexically scoped.

. Indefinite scope. References may occur anywhere, in any program.

. Dynamic extent. References may occur at any time in the interval between estab

lishment of the entity and the explicit disestablishment of the entity. As a rule, the

entity is disestablished when execution of the establishing construct completes or

is otherwise terminated. Therefore entities with dynamic extent obey a stacklike

discipline, paralleling the nested executions of their establishing constructs.

Example: the with-open-file construct opens a connection to a file and creates

a stream object to represent the connection. The stream object has indefinite

extent, but the connection to the open file has dynamic extent: when control

exits the with-open-file construct, either normally or abnormally, the stream is

automatically closed.

Example: the binding of a “special” variable has dynamic extent.

. Indefinite extent. The entity continues to exist as long as the possibility of reference

remains. (An implementation is free to destroy the entity if it can prove that

reference to it is no longer possible. Garbage collection strategies implicitly

employ such proofs.)

Example: most Common Lisp data objects have indefinite extent.

Example: the bindings of lexically scoped parameters of a function have indefinite

extent. (By contrast, in Algol the bindings of lexically scoped parameters of a

procedure have dynamic extent.) The function definition

(defun compose (f g)

#--´(lambda (x)

(funcall f (funcall g x))))

when given two arguments, immediately returns a function as its value. The

parameter bindings for f and g do not disappear because the returned function,

when called, could still refer to those bindings. Therefore

44 COMMON LISP

(funcall (compose #--´sqrt #--´abs) -9.0)

produces the value 3.0. (An analogous procedure would not necessarily work

correctly in typical Algol implementations or, for that matter, in most Lisp dialects.)

In addition to the above terms, it is convenient to define dynamic scope to mean

indefinite scope and dynamic extent. Thus we speak of “special” variables as having

dynamic scope, or being dynamically scoped, because they have indefinite scope and

dynamic extent: a special variable can be referred to anywhere as long as its binding

is currently in effect.

The term “dynamic scope” is a misnomer. Nevertheless it is both traditional and

useful.

The above definitions do not take into account the possibility of shadowing. Re

mote reference of entities is accomplished by using names of one kind or another. If

two entities have the same name, then the second may shadow the first, in which case

an occurrence of the name will refer to the second and cannot refer to the first.

In the case of lexical scope, if two constructs that establish entities with the same

name are textually nested, then references within the inner construct refer to the entity

established by the inner one; the inner one shadows the outer one. Outside the inner

construct but inside the outer one, references refer to the entity established by the

outer construct. For example:

(defun test (x z)

(let ((z (* x 2))) (print z))

z)

The binding of the variable z by the let construct shadows the parameter binding for

the function test. The reference to the variable z in the print form refers to the let

binding. The reference to z at the end of the function refers to the parameter named

z.

In the case of dynamic extent, if the time intervals of two entities overlap, then

one interval will necessarily be nested within the other one. This is a property of the

design of Common Lisp.

Implementation note: Behind the assertion that dynamic extents nest properly is the as

sumption that there is only a single program or process. Common Lisp does not address the

problems of multiprogramming (timesharing) or multiprocessing (more than one active pro

cessor) within a single Lisp environment. The documentation for implementations that extend

Common Lisp for multiprogramming or multiprocessing should be very clear on what modifi

cations are induced by such extensions to the rules of extent and scope. Implementors should

note that Common Lisp has been carefully designed to allow special variables to be imple

mented using either the “deep binding” technique or the “shallow binding” technique, but the

SCOPE AND EXTENT 45

two techniques have different semantic and performance implications for multiprogramming

and multiprocessing.

A reference by name to an entity with dynamic extent will always refer to the

entity of that name that has been most recently established that has not yet been

disestablished. For example:

(defun fun1 (x)

(catch ´trap (+ 3 (fun2 x))))

(defun fun2 (y)

(catch ´trap (* 5 (fun3 y))))

(defun fun3 (z)

(throw ´trap z))

Consider the call (fun1 7). The result will be 10. At the time the throw is executed,

there are two outstanding catchers with the name trap: one established within pro

cedure fun1, and the other within procedure fun2. The latter is the more recent, and

so the value 7 is returned from the catch form in fun2. Viewed from within fun3, the

catch in fun2 shadows the one in fun1. Had fun2 been defined as

(defun fun2 (y)

(catch ´snare (* 5 (fun3 y))))

then the two catchers would have different names, and therefore the one in fun1 would

not be shadowed. The result would then have been 7.

As a rule, this book simply speaks of the scope or extent of an entity; the possibility

of shadowing is left implicit.

The important scope and extent rules in Common Lisp follow:

. Variable bindings normally have lexical scope and indefinite extent.

. Variable bindings for which there is a dynamic-extent declaration also have lexical

scope and indefinite extent,but objects that are the values of such bindings may have

dynamic extent. (The declaration is the programmer’s guarantee that the program

will behave correctly even if certain of the data objects have only dynamic extent

rather than the usual indefinite extent.)

. Bindings of variable names to symbol macros by symbol-macrolet have lexical

scope and indefinite extent.

. Variable bindings that are declared to be special have dynamic scope (indefinite

scope and dynamic extent).

46 COMMON LISP

. Bindings of function names established, for example, by flet and labels have

lexical scope and indefinite extent.

. Bindings of function names for which there is a dynamic-extent declaration also

have lexical scope and indefinite extent, but function objects that are the values of

such bindings may have dynamic extent.

. Bindings of function names to macros as established by macrolet have lexical scope

and indefinite extent.

. Condition handlers and restarts have dynamic scope (see chapter 29).

. A catcher established by a catch or unwind-protect special form has dynamic scope.

. An exit point established by a block construct has lexical scope and dynamic extent.

(Such exit points are also established by do, prog, and other iteration constructs.)

. The go targets established by a tagbody, named by the tags in the tagbody, and

referred to by go have lexical scope and dynamic extent. (Such go targets may also

appear as tags in the bodies of do, prog, and other iteration constructs.)

. Named constants such as nil and pi have indefinite scope and indefinite extent.

The rules of lexical scoping imply that lambdaexpressions appearing in the

function construct will, in general, result in “closures” over those nonspecial vari

ables visible to the lambdaexpression. That is, the function represented by a lambda

expression may refer to any lexically apparent nonspecial variable and get the correct

value, even if the construct that established the binding has been exited in the course

of execution. The compose example shown earlier in this chapter provides one illus

tration of this. The rules also imply that special variable bindings are not “closed

over” as they may be in certain other dialects of Lisp.

Constructs that use lexical scope effectively generate a new name for each estab

lished entity on each execution. Therefore dynamic shadowing cannot occur (though

lexical shadowing may). This is of particular importance when dynamic extent is

involved. For example:

(defun contorted-example (f g x)

(if (−− x 0)

(funcall f)

(block here

(+ 5 (contorted-example g

#--´(lambda ()

(return-from here 4))

(- x 1))))))

SCOPE AND EXTENT 47

Consider the call (contorted-example nil nil 2). This produces the result 4. During

the course of execution, there are three calls on contorted-example, interleaved with

two establishments of blocks:

(contorted-example nil nil 2)

(block here1 ...)

(contorted-example nil #--´(lambda () (return-from here1 4)) 1)

(block here2 ...)

(contorted-example #--´(lambda () (return-from here1 4))

#--´(lambda () (return-from here2 4))

0)

(funcall f)

where f ⇒ #--´(lambda () (return-from here1 4))

(return-from here1 4)

At the time the funcall is executed there are two block exit points outstanding, each

apparently named here. In the trace above, these exit points are distinguished for

expository purposes by subscripts. The return-from form executed as a result of the

funcall operation refers to the outer outstanding exit point (here1), not the inner

one (here2). This is a consequence of the rules of lexical scoping: it refers to that

exit point textually visible at the point of execution of the function construct (here

abbreviated by the #--´ syntax) that resulted in creation of the function object actually

invoked by the funcall.

If, in this example, one were to change the form (funcall f) to (funcall g), then

the value of the call (contorted-example nil nil 2) would be 9. The value would

change because the funcall would cause the execution of (return-from here2 4),

thereby causing a return from the inner exit point (here2). When that occurs, the

value 4 is returned from the middle invocation of contorted-example, 5 is added to

that to get 9, and that value is returned from the outer block and the outermost call

to contorted-example. The point is that the choice of exit point returned from has

nothing to do with its being innermost or outermost; rather, it depends on the lexical

scoping information that is effectively packaged up with a lambdaexpression when

the function construct is executed.

This function contorted-example works only because the function named by f is

invoked during the extent of the exit point. Block exit points are like nonspecial

variable bindings in having lexical scope, but they differ in having dynamic extent

48 COMMON LISP

rather than indefinite extent. Once the flow of execution has left the block construct,

the exit point is disestablished. For example:

(defun illegal-example ()

(let ((y (block here #--´(lambda (z) (return-from here z)))))

(if (numberp y) y (funcall y 5))))

One might expect the call (illegal-example) to produce 5 by the following incorrect

reasoning: the let statement binds the variable y to the value of the block construct;

this value is a function resulting from the lambdaexpression. Because y is not a

number, it is invoked on the value 5. The return-from should then return this value

from the exit point named here, thereby exiting from the block again and giving

y the value 5 which, being a number, is then returned as the value of the call to

illegal-example.

The argument fails only because exit points are defined in Common Lisp to have

dynamic extent. The argument is correct up to the execution of the return-from. The

execution of the return-from is an error, however, not because it cannot refer to the

exit point, but because it does correctly refer to an exit point and that exit point has

been disestablished.

4

Type Specifiers

In Common Lisp, types are named by Lisp objects, specifically symbols and lists,

called type specifiers. Symbols name predefined classes of objects, whereas lists

usually indicate combinations or specializations of simpler types. Symbols or lists

may also be abbreviations for types that could be specified in other ways.

4.1. Type Specifier Symbols

The type symbols defined by the system include those shown in table 41. In

addition, when a structure type is defined using defstruct, the name of the structure

type becomes a valid type symbol.

Notice of correction. In the first edition, the type specifiers signed-byte and

unsigned-byte were inadvertently omitted from table 41.

X3J13 voted in March 1989 〈17〉 to eliminate the type common; this fact is indicated

by the brackets around the common type specifier in the table.

X3J13 voted in March 1989 〈11〉 to eliminate the type string-char; this fact is

indicated by the brackets around the string-char type specifier in the table.

X3J13 voted in March 1989 〈11〉 to add the type extended-character and the type

base-character.

X3J13 voted in March 1989 〈151〉 to add the type specifier real.

X3J13 votes have also implicitly added many other type specifiers as names of

classes (see chapter 28) or of conditions (see chapter 29).

4.2. Type Specifier Lists

If a type specifier is a list, the car of the list is a symbol, and the rest of the list is

subsidiary type information. In many cases a subsidiary item may be unspecified.

The unspecified subsidiary item is indicated by writing *. For example, to completely

49

50 COMMON LISP

Table 41: Standard Type Specifier Symbols

array fixnum package simple-string

atom float pathname simple-vector

bignum function random-state single-float

bit hash-table ratio standard-char

bit-vector integer rational stream

character keyword readtable string

[common] list sequence [string-char]

compiled-function long-float short-float symbol

complex nil signed-byte t

cons null simple-array unsigned-byte

double-float number simple-bit-vector vector

X3J13 voted in March 1989 〈17〉 to remove the type common.

X3J13 voted in March 1989 〈11〉 to remove the type string-char.

X3J13 voted in March 1989 〈11〉 to add base-character and extended-character.

X3J13 voted in March 1989 〈151〉 to add the type real.

specify a vector type, one must mention the type of the elements and the length of

the vector, as for example

(vector double-float 100)

To leave the length unspecified, one would write

(vector double-float *)

To leave the element type unspecified, one would write

(vector * 100)

One may also leave both length and element type unspecified:

(vector * *)

Suppose that two type specifiers are the same except that the first has a * where the

second has a more explicit specification. Then the second denotes a subtype of the

type denoted by the first.

As a convenience, if a list has one or more unspecified items at the end, such items

may simply be dropped rather than writing an explicit * for each one. If dropping

all occurrences of * results in a singleton list, then the parentheses may be dropped

as well (the list may be replaced by the symbol in its car). For example, (vector

TYPE SPECIFIERS 51

double-float *) may be abbreviated to (vector double-float), and (vector * *) may

be abbreviated to (vector) and then to simply vector.

4.3. Predicating Type Specifiers

A type specifier list (satisfies predicate-name) denotes the set of all objects that

satisfy the predicate named by predicatename, which must be a symbol whose

global function definition is a oneargument predicate. (A name is required; lambda

expressions are disallowed in order to avoid scoping problems.) For example, the type

(satisfies numberp) is the same as the type number. The call (typep x ´(satisfies

p)) results in applying p to x and returning t if the result is true and nil if the result

is false.

As an example, the type string-char could be defined as
...

(deftype string-char ()

´(and character (satisfies string-char-p)))

See deftype.

X3J13 voted in March 1989 〈17〉 to remove the type string-char and the function

string-char-p from the language.

It is not a good idea for a predicate appearing in a satisfies type specifier to cause

any side effects when invoked.

4.4. Type Specifiers That Combine

The following type specifier lists define a type in terms of other types or objects.

(member object1 object2 ...)

This denotes the set containing precisely those objects named. An object is of this

type if and only if it is eql to one of the specified objects.

Compatibility note: This is roughly equivalent to the Interlisp DECL package’s memq.

(eql object)

X3J13 voted in June 1988 〈12〉 to add the eql type specifier. It may be used as a

parameter specializer for CLOS methods (see section 28.1.6.2 and find-method). It

denotes the set of the one object named; an object is of this type if and only if it is eql

to object. While (eql object) denotes the same type as (member object), only (eql

object) may be used as a CLOS parameter specializer.

52 COMMON LISP

(not type)

This denotes the set of all those objects that are not of the specified type.

(and type1 type2 ...)

This denotes the intersection of the specified types.

Compatibility note: This is roughly equivalent to the Interlisp DECL package’s allof.

When typep processes an and type specifier, it always tests each of the component

types in order from left to right and stops processing as soon as one component of the

intersection has been found to which the object in question does not belong. In this

respect an and type specifier is similar to an executable and form. The purpose of this

similarity is to allow a satisfies type specifier to depend on filtering by previous type

specifiers. For example, suppose there were a function primep that takes an integer

and says whether it is prime. Suppose also that it is an error to give any object other

than an integer to primep. Then the type specifier

(and integer (satisfies primep))

is guaranteed never to result in an error because the function primep will not be

invoked unless the object in question has already been determined to be an integer.

(or type1 type2 ...)

This denotes the union of the specified types. For example, the type list by definition

is the same as (or null cons). Also, the value returned by the function position is

always of type (or null (integer 0 *)) (either nil or a nonnegative integer).

Compatibility note: This is roughly equivalent to the Interlisp DECL package’s oneof.

As for and, when typep processes an or type specifier, it always tests each of the

component types in order from left to right and stops processing as soon as one

component of the union has been found to which the object in question belongs.

TYPE SPECIFIERS 53

4.5. Type Specifiers That Specialize

Some type specifier lists denote specializations of data types named by symbols.

These specializations may be reflected by more efficient representations in the un

derlying implementation. As an example, consider the type (array short-float).

Implementation A may choose to provide a specialized representation for arrays of

short floatingpoint numbers, and implementation B may choose not to.

If you should want to create an array for the express purpose of holding only short

float objects, you may optionally specify to make-array the element type short-float.

This does not require make-array to create an object of type (array short-float); it

merely permits it. The request is construed to mean “Produce the most specialized

array representation capable of holding shortfloats that the implementation can

provide.” Implementation A will then produce a specialized array of type (array

short-float), and implementation B will produce an ordinary array of type (array

t).

If one were then to ask whether the array were actually of type (array short-float),

implementation A would say “yes,” but implementation B would say “no.” This is

a property of make-array and similar functions: what you ask for is not necessarily

what you get.

Types can therefore be used for two different purposes: declaration and discrim
..

ination. Declaring to make-array that elements will always be of type short-float

permits optimization. Similarly, declaring that a variable takes on values of type

(array short-float) amounts to saying that the variable will take on values that

might be produced by specifying element type short-float to make-array. On the

other hand, if the predicate typep is used to test whether an object is of type (array

short-float), only objects actually of that specialized type can satisfy the test; in

implementation B no object can pass that test.

X3J13 voted in January 1989 〈8〉 to eliminate the differing treatment of types when

used “for discrimination” rather than “for declaration” on the grounds that imple

mentors have not treated the distinction consistently and (which is more important)

users have found the distinction confusing.

As a consequence of this change, the behavior of typep and subtypep on array and

complex type specifiers must be modified. See the descriptions of those functions.

In particular, under their new behavior, implementation B would say “yes,” agreeing

with implementation A, in the discussion above.

Note that the distinction between declaration and discrimination remains useful,

if only so that we may remark that the specialized (list) form of the function type

specifier may still be used only for declaration and not for discrimination.

X3J13 voted in June 1988 〈90〉 to clarify that while the specialized form of the

function type specifier (a list of the symbol function possibly followed by argument

54 COMMON LISP

and value type specifiers) may be used only for declaration, the symbol form (simply

the name function) may be used for discrimination.

The valid listformat names for data types are as follows:

(array elementtype dimensions)

This denotes the set of specialized arrays whose elements are all members of the type

elementtype and whose dimensions match dimensions. For declaration purposes,

this type encompasses those arrays that can result by specifying elementtype as the

element type to the function make-array; this may be different from what the type

means for discrimination purposes. elementtype must be a valid type specifier or

unspecified. dimensions may be a nonnegative integer, which is the number of

dimensions, or it may be a list of nonnegative integers representing the length of

each dimension (any dimension may be unspecified instead), or it may be unspecified.

For example:

(array integer 3) ;Threedimensional arrays of integers

(array integer (* * *)) ;Threedimensional arrays of integers

(array * (4 5 6)) ;4by5by6 arrays

(array character (3 *)) ;Twodimensional arrays of characters

; that have exactly three rows

(array short-float ()) ;Zerorank arrays of shortformat

; floatingpoint numbers

Note that (array t) is a proper subset of (array *). The reason is that (array t) is

the set of arrays that can hold any Common Lisp object (the elements are of type

t, which includes all objects). On the other hand, (array *) is the set of all arrays

whatsoever, including, for example, arrays that can hold only characters. Now (array

character) is not a subset of (array t); the two sets are in fact disjoint because (array

character) is not the set of all arrays that can hold characters but rather the set of

arrays that are specialized to hold precisely characters and no other objects. To test

whether an array foo can hold a character, one should not use

(typep foo ´(array character))

but rather

(subtypep ´character (array-element-type foo))

See array-element-type.

X3J13 voted in January 1989 〈8〉 to change typep and subtypep so that the special

ized array type specifier means the same thing for discrimination as for declaration:

TYPE SPECIFIERS 55

it encompasses those arrays that can result by specifying elementtype as the ele

ment type to the function make-array. Under this interpretation (array character)

might be the same type as (array t) (although it also might not be the same). See

upgraded-array-element-type. However,

(typep foo ´(array character))

is still not a legitimate test of whether the array foo can hold a character; one must

still say

(subtypep ´character (array-element-type foo))

to determine that question.

X3J13 also voted in January 1989 〈43〉 to specify that within the lexical scope of

an array type declaration, it is an error for an array element, when referenced, not

to be of the exact declared element type. A compiler may, for example, treat every

reference to an element of a declared array as if the reference were surrounded by a

the form mentioning the declared array element type (not the upgraded array element

type). Thus

(defun snarf-hex-digits (the-array)

(declare (type (array (unsigned-byte 4) 1) the-array))

(do ((j (- (length array) 1) (- j 1))

(val 0 (logior (ash val 4)

(aref the-array j))))

((< j 0) val)))

may be treated as

(defun snarf-hex-digits (the-array)

(declare (type (array (unsigned-byte 4) 1) the-array))

(do ((j (- (length array) 1) (- j 1))

(val 0 (logior (ash val 4)

(the (unsigned-byte 4)

(aref the-array j)))))

((< j 0) val)))

The declaration amounts to a promise by the user that the aref will never produce

a value outside the interval 0 to 15, even if in that particular implementation the

array element type (unsigned-byte 4) is upgraded to, say, (unsigned-byte 8). If such

56 COMMON LISP

upgrading does occur, then values outside that range may in fact be stored in the-

array, as long as the code in snarf-hex-digits never sees them.

As a general rule, a compiler would be justified in transforming

(aref (the (array elttype ...) a) ...)

into

(the elttype (aref (the (array elttype ...) a) ...)

It may also make inferences involving more complex functions, such as position or

find. For example, find applied to an array always returns either nil or an object

whose type is the element type of the array.

(simple-array elementtype dimensions)

This is equivalent to (array element-type dimensions) except that it additionally

specifies that objects of the type are simple arrays (see section 2.5).

(vector elementtype size)

This denotes the set of specialized onedimensional arrays whose elements are all of

type elementtype and whose lengths match size. This is entirely equivalent to (array

element-type (size)). For example:

(vector double-float) ;Vectors of doubleformat

; floatingpoint numbers

(vector * 5) ;Vectors of length 5

(vector t 5) ;General vectors of length 5

(vector (mod 32) *) ;Vectors of integers between 0 and 31

The specialized types (vector string-char) and (vector bit) are so useful that they
...

have the special names string and bit-vector. Every implementation of Common

Lisp must provide distinct representations for these as distinct specialized data types.

X3J13 voted in March 1989 〈11〉 to eliminate the type string-char and to redefine

the type string to be the union of one or more specialized vector types, the types of

whose elements are subtypes of the type character.

(simple-vector size)

This is the same as (vector t size) except that it additionally specifies that its elements

are simple general vectors.

TYPE SPECIFIERS 57

(complex type)

Every element of this type is a complex number whose real part and imaginary part are

each of type type. For declaration purposes, this type encompasses those complex

numbers that can result by giving numbers of the specified type to the function

complex; this may be different from what the type means for discrimination purposes.

As an example, Gaussian integers might be described as (complex integer), even in

implementations where giving two integers to the function complex results in an object

of type (complex rational).

X3J13 voted in January 1989 〈8〉 to change typep and subtypep so that the special

ized complex type specifier means the same thing for discrimination purposes as for

declaration purposes. See upgraded-complex-part-type.

(function (arg1type arg2type ...) valuetype)

This type may be used only for declaration and not for discrimination; typep will

signal an error if it encounters a specifier of this form. Every element of this type is a

function that accepts arguments at least of the types specified by the argjtype forms

and returns a value that is a member of the types specified by the valuetype form.

The &optional, &rest, and &key markers may appear in the list of argument types. The

valuetype may be a values type specifier in order to indicate the types of multiple

values.

X3J13 voted in January 1989 〈93〉 to specify that the argtype that follows a &rest

marker indicates the type of each actual argument that would be gathered into the

list for a &rest parameter, and not the type of the &rest parameter itself (which

is always list). Thus one might declare the function gcd to be of type (function

(&rest integer) integer), or the function aref to be of type (function (array &rest

fixnum) t).

X3J13 voted in March 1988 〈92〉 to specify that, in a function type specifier, an

argument type specifier following &key must be a list of two items, a keyword and

a type specifier. The keyword must be a valid keywordname symbol that may be

supplied in the actual arguments of a call to the function, and the type specifier

indicates the permitted type of the corresponding argument value. (The keyword

name symbol is typically a keyword, but another X3J13 vote 〈105〉 allows it to be

any symbol.) Furthermore, if &allow-other-keys is not present, the set of keyword

names mentioned in the function type specifier may be assumed to be exhaustive; for

example, a compiler would be justified in issuing a warning for a function call using

a keyword argument name not mentioned in the type declaration for the function

being called. If &allow-other-keys is present in the function type specifier, other

keyword arguments may be supplied when calling a function of the indicated type,

and if supplied such arguments may possibly be used.

...

58 COMMON LISP

As an example, the function cons is of type (function (t t) cons), because it can
...

accept any two arguments and always returns a cons. The function cons is also of

type (function (float string) list), because it can certainly accept a floatingpoint

number and a string (among other things), and its result is always of type list (in fact

a cons is never null, but that does not matter for this type declaration). The function

truncate is of type (function (number number) (values number number)), as well as of

type (function (integer (mod 8)) integer).

X3J13 voted in January 1989 〈91〉 to alter the meaning of the function type specifier

when used in type and ftype declarations. While the preceding formulation may be

theoretically elegant, they have found that it is not useful to compiler implementors

and that it is not the interpretation that users expect. X3J13 prescribed instead the

following interpretation of declarations.

A declaration specifier of the form

(ftype (function (arg1type arg2type ... argntype) valuetype) fname)

implies that any function call of the form

(fname arg1 arg2 ...)

within the scope of the declaration can be treated as if it were rewritten to use

theforms in the following manner:

(the valuetype

(fname (the arg1type arg1)

(the arg2type arg2)

...

(the argntype argn)))

That is, it is an error for any of the actual arguments not to be of its specified type

argtype or for the result not to be of the specified type valuetype. (In particular, if

any argument is not of its specified type, then the result is not guaranteed to be of the

specified type—if indeed a result is returned at all.)

Similarly, a declaration specifier of the form

(type (function (arg1type arg2type ... argntype) valuetype) var)

is interpreted to mean that any reference to the variable var will find that its value is

a function, and that it is an error to call this function with any actual argument not of

its specified type argtype. Also, it is an error for the result not to be of the specified

type valuetype. For example, a function call of the form

TYPE SPECIFIERS 59

(funcall var arg1 arg2 ...)

could be rewritten to use theforms as well. If any argument is not of its specified

type, then the result is not guaranteed to be of the specified type—if indeed a result

is returned at all.

Thus, a type or ftype declaration specifier describes type requirements imposed

on calls to a function as opposed to requirements imposed on the definition of the

function. This is analogous to the treatment of type declarations of variables as

imposing type requirements on references to variables, rather than on the contents of

variables. See the vote of X3J13 on type declaration specifiers in general, discussed

in section 9.2.

In the same manner as for variable type declarations in general, if two or more

of these declarations apply to the same function call (which can occur if declaration

scopes are suitably nested), then they all apply; in effect, the types for each argument

or result are intersected. For example, the code fragment

(locally (declare (ftype (function (biped) digit)

butcher-fudge))

(locally (declare (ftype (function (featherless) opposable)

butcher-fudge))

(butcher-fudge sam)))

may be regarded as equivalent to

(the opposable

(the digit (butcher-fudge (the featherless

(the biped sam)))))

or to

(the (and opposable digit)

(butcher-fudge (the (and featherless biped) sam)))

That is, sam had better be both featherless and a biped, and the result of butcher-fudge

had better be both opposable and a digit; otherwise the code is in error. Therefore a

compiler may generate code that relies on these type assumptions, for example.

(values value1type value2type ...)

This type specifier is extremely restricted: it may be used only as the valuetype in

a function type specifier or in a the special form. It is used to specify individual

60 COMMON LISP

types when multiple values are involved. The &optional, &rest, and &key markers may

appear in the valuetype list; they thereby indicate the parameter list of a function

that, when given to multiple-value-call along with the values, would be suitable for

receiving those values.

4.6. Type Specifiers That Abbreviate

The following type specifiers are, for the most part, abbreviations for other type

specifiers that would be far too verbose to write out explicitly (using, for example,

member).

(integer low high)

Denotes the integers between low and high. The limits low and high must each

be an integer, a list of an integer, or unspecified. An integer is an inclusive limit,

a list of an integer is an exclusive limit, and * means that a limit does not exist

and so effectively denotes minus or plus infinity, respectively. The type fixnum is

simply a name for (integer smallest largest) for implementationdependent values

of smallest and largest (see most-negative-fixnum and most-positive-fixnum). The

type (integer 0 1) is so useful that it has the special name bit.

(mod n)

Denotes the set of nonnegative integers less than n. This is equivalent to (integer 0

n−1) or to (integer 0 (n)).

(signed-byte s)

Denotes the set of integers that can be represented in two’scomplement form in a

byte of s bits. This is equivalent to (integer −2s−1 2s−1−1). Simply signed-byte

or (signed-byte *) is the same as integer.

(unsigned-byte s)

Denotes the set of nonnegative integers that can be represented in a byte of s bits.

This is equivalent to (mod 2s), that is, (integer 0 2s−1). Simply unsigned-byte or

(unsigned-byte *) is the same as (integer 0 *), the set of nonnegative integers.

(rational low high)

Denotes the rationals between low and high. The limits low and high must each be a

rational, a list of a rational, or unspecified. A rational is an inclusive limit, a list of a

rational is an exclusive limit, and * means that a limit does not exist and so effectively

denotes minus or plus infinity, respectively.

TYPE SPECIFIERS 61

(float low high)

Denotes the set of floatingpoint numbers between low and high. The limits low

and high must each be a floatingpoint number, a list of a floatingpoint number, or

unspecified; a floatingpoint number is an inclusive limit, a list of a floatingpoint

number is an exclusive limit, and * means that a limit does not exist and so effectively

denotes minus or plus infinity, respectively.

In a similar manner, one may use:

(short-float low high)

(single-float low high)

(double-float low high)

(long-float low high)

In this case, if a limit is a floatingpoint number (or a list of one), it must be one of

the appropriate format.

X3J13 voted in March 1989 〈151〉 to add a list form of the real type specifier to

denote an interval of real numbers.

(real low high)

Denotes the real numbers between low and high. The limits low and high must each

be a real, a list of a real, or unspecified. A real is an inclusive limit, a list of a real is

an exclusive limit, and * means that a limit does not exist and so effectively denotes

minus or plus infinity, respectively.

(string size)..

Means the same as (array string-char (size)): the set of strings of the indicated

size.

(simple-string size)

Means the same as (simple-array string-char (size)): the set of simple strings of

the indicated size.

X3J13 voted in March 1989 〈11〉 to eliminate the type string-char and to redefine

the type string to be the union of one or more specialized vector types, the types of

whose elements are subtypes of the type character. Similarly, the type simple-string

is redefined to be the union of one or more specialized simple vector types, the types

of whose elements are subtypes of the type character.

62 COMMON LISP

(base-string size)

Means the same as (vector base-character size): the set of base strings of the

indicated size.

(simple-base-string size)

Means the same as (simple-array base-character (size)): the set of simple base

strings of the indicated size.

(bit-vector size)

Means the same as (array bit (size)): the set of bitvectors of the indicated size.

(simple-bit-vector size)

This means the same as (simple-array bit (size)): the set of bitvectors of the

indicated size.

4.7. Defining New Type Specifiers

New type specifiers can come into existence in two ways. First, defining a new

structure type with defstruct automatically causes the name of the structure to be a

new type specifier symbol. Second, the deftype special form can be used to define

new typespecifier abbreviations.

[Macro]deftype name lambdalist [[{declaration}∗ | docstring]] { form}∗

This is very similar to a defmacro form: name is the symbol that identifies the type

specifier being defined, lambdalist is a lambdalist (and may contain &optional and

&rest markers), and the forms constitute the body of the expander function. If we view

a type specifier list as a list containing the type specifier name and some argument

forms, the argument forms (unevaluated) are bound to the corresponding parameters

in lambdalist. Then the body forms are evaluated as an implicit progn, and the value

of the last form is interpreted as a new type specifier for which the original specifier

was an abbreviation. The name is returned as the value of the deftype form.

deftype differs from defmacro in that if no initform is specified for an &optional

parameter, the default value is *, not nil.

If the optional documentation string docstring is present, then it is attached to the

name as a documentation string of type type; see documentation.

Here are some examples of the use of deftype:

TYPE SPECIFIERS 63

(deftype mod (n) `(integer 0 (,n)))

(deftype list () ´(or null cons))

(deftype square-matrix (&optional type size)

"SQUARE-MATRIX includes all square two-dimensional arrays."

`(array ,type (,size ,size)))

(square-matrix short-float 7) means (array short-float (7 7))

(square-matrix bit) means (array bit (* *))

If the type name defined by deftype is used simply as a type specifier symbol, it

is interpreted as a type specifier list with no argument forms. Thus, in the example

above, square-matrix would mean (array * (* *)), the set of twodimensional arrays.

This would unfortunately fail to convey the constraint that the two dimensions be the

same; (square-matrix bit) has the same problem. A better definition is

(defun equidimensional (a)

(or (< (array-rank a) 2)

(apply #--´−− (array-dimensions a))))

(deftype square-matrix (&optional type size)

`(and (array ,type (,size ,size))

(satisfies equidimensional)))

X3J13 voted in March 1988 〈78〉 to specify that the body of the expander function

defined by deftype is implicitly enclosed in a block construct whose name is the same

as the name of the defined type. Therefore return-from may be used to exit from the

function.

X3J13 voted in March 1989 〈50〉 to clarify that, while defining forms normally

appear at top level, it is meaningful to place them in nontoplevel contexts; deftype

must define the expander function within the enclosing lexical environment, not

within the global environment.

4.8. Type Conversion Function

The following function may be used to convert an object to an equivalent object of

another type.

64 COMMON LISP

[Function]coerce object result-type

The resulttype must be a type specifier; the object is converted to an “equivalent”

object of the specified type. If the coercion cannot be performed, then an error is

signaled. In particular, (coerce x ´nil) always signals an error. If object is already

of the specified type, as determined by typep, then it is simply returned. It is not

generally possible to convert any object to be of any type whatsoever; only certain

conversions are permitted:

. Any sequence type may be converted to any other sequence type, provided the new

sequence can contain all actual elements of the old sequence (it is an error if it

cannot). If the resulttype is specified as simply array, for example, then (array t)

is assumed. A specialized type such as string or (vector (complex short-float))

may be specified; of course, the result may be of either that type or some more

general type, as determined by the implementation. Elements of the new sequence

will be eql to corresponding elements of the old sequence. If the sequence is

already of the specified type, it may be returned without copying it; in this, (coerce

sequence type) differs from (concatenate type sequence), for the latter is required

to copy the argument sequence. In particular, if one specifies sequence, then the

argument may simply be returned if it already is a sequence.

(coerce ´(a b c) ´vector) ⇒ #--(a b c)

X3J13 voted in June 1989 〈158〉 to specify that coerce should signal an error if

the new sequence type specifies the number of elements and the old sequence has a

different length.

X3J13 voted in March 1989 〈11〉 to specify that if the resulttype is string then it

is understood to mean (vector character), and simple-string is understood to mean

(simple-array character (*)).

. Some strings, symbols, and integers may be converted to characters. If object is
...

a string of length 1, then the sole element of the string is returned. If object is a

symbol whose print name is of length 1, then the sole element of the print name is

returned. If object is an integer n, then (int-char n) is returned. See character.

(coerce "a" ´character) ⇒ #--\a

X3J13 voted in March 1989 〈11〉 to eliminate int-char from Common Lisp. Pre

sumably this eliminates the possibility of coercing an integer to a character, although

the vote did not address this question directly.

. Any noncomplex number can be converted to a short-float, single-float, double-

float, or long-float. If simply float is specified, and object is not already a float

of some kind, then the object is converted to a single-float.

TYPE SPECIFIERS 65

(coerce 0 ´short-float) ⇒ 0.0S0

(coerce 3.5L0 ´float) ⇒ 3.5L0

(coerce 7/2 ´float) ⇒ 3.5

. Any number can be converted to a complex number. If the number is not already

complex, then a zero imaginary part is provided by coercing the integer zero to

the type of the given real part. (If the given real part is rational, however, then the

rule of canonical representation for complex rationals will result in the immediate

reconversion of the result from type complex back to type rational.)

(coerce 4.5s0 ´complex) ⇒ #--C(4.5S0 0.0S0)

(coerce 7/2 ´complex) ⇒ 7/2

(coerce #--C(7/2 0) ´(complex double-float))

⇒ #--C(3.5D0 0.0D0)

. Any object may be coerced to type t.

(coerce x ´t) ≡ (identity x) ≡ x

X3J13 voted in June 1988 〈90〉 to allow coercion of certain objects to the type

function:

. A symbol or lambdaexpression can be converted to a function. A symbol is

coerced to type function as if by applying symbol-function to the symbol; an error

is signaled if the predicate fboundp is not true of the symbol or if the symbol names

a macro or special form. A list x whose car is the symbol lambda is coerced to a

function as if by execution of (eval `#--´,x), that is, of (eval (list ´function x)).

Coercions from floatingpoint numbers to rationals and from ratios to integers

are purposely not provided because of rounding problems. The functions rational,

rationalize, floor, ceiling, truncate, and round may be used for such purposes.

Similarly, coercions from characters to integers are purposely not provided; char-

code or char-int may be used explicitly to perform such conversions.

4.9. Determining the Type of an Object

The following function may be used to obtain a type specifier describing the type of

a given object.

[Function]type-of object

(type-of object) returns an implementationdependent result: some type of which
......................................

the object is a member. Implementors are encouraged to arrange for type-of to

...

66 COMMON LISP

return the most specific type that can be conveniently computed and is likely to be

useful to the user. If the argument is a userdefined named structure created by

defstruct, then type-of will return the type name of that structure. Because the

result is implementationdependent, it is usually better to use type-of primarily for

debugging purposes; however, in a few situations portable code requires the use of

type-of, such as when the result is to be given to the coerce or map function. On the

other hand, often the typep function or the typecase construct is more appropriate

than type-of.

Compatibility note: In MacLisp the function type-of is called typep, and anomalously so, for

it is not a predicate.

Many have observed (and rightly so) that this specification is totally wimpy and

therefore nearly useless. X3J13 voted in June 1989 〈179〉 to place the following

constraints on type-of:

. Let x be an object such that (typep x type) is true and type is one of the following:

array float package sequence

bit-vector function pathname short-float

character hash-table random-state single-float

complex integer ratio stream

condition long-float rational string

cons null readtable symbol

double-float number restart vector

Then (subtypep (type-of x) type)) must return the values t and t; that is, type-of

applied to x must return either type itself or a subtype of type that subtypep can

recognize in that implementation.

. For any object x, (subtypep (type-of x) (class-of x)) must produce the values t

and t.

. For every object x, (typep x (type-of x)) must be true. (This implies that type-of

can never return nil, for no object is of type nil.)

. type-of never returns t and never uses a satisfies, and, or, not, or values type

specifier in its result.

. For objects of CLOS metaclass structure-class or of standard-class, type-of

returns the proper name of the class returned by class-of if it has a proper name,

and otherwise returns the class itself. In particular, for any object created by a

TYPE SPECIFIERS 67

defstruct constructor function, where the defstruct had the name name and no

:type option, type-of will return name.

As an example, (type-of "acetylcholinesterase") may return string or simple-

string or (simple-string 20), but not array or simple-vector. As another example,

it is permitted for (type-of 1729) to return integer or fixnum (if it is indeed a fixnum) or

(signed-byte 16) or (integer 1729 1729) or (integer 1685 1750) or even (mod 1730),

but not rational or number, because

(typep (+ (expt 9 3) (expt 10 3)) ´integer)

is true, integer is in the list of types mentioned above, and

(subtypep (type-of (+ (expt 1 3) (expt 12 3))) ´integer)

would be false if type-of were to return rational or number.

4.10. Type Upgrading

X3J13 voted in January 1989 〈8〉 to add new functions by which a program can

determine, in a given Common Lisp implementation, how that implementation will

upgrade a type when constructing an array specialized to contain elements of that

type, or a complex number specialized to contain parts of that type.

[Function]upgraded-array-element-type type

A type specifier is returned, indicating the element type of the most specialized array

representation capable of holding items of the specified argument type. The result

is necessarily a supertype of the given type. Furthermore, if a type A is a subtype

of type B, then (upgraded-array-element-type A) is a subtype of (upgraded-array-

element-type B).

The manner in which an array element type is upgraded depends only on the

element type as such and not on any other property of the array such as size, rank,

adjustability, presence or absence of a fill pointer, or displacement.

Rationale: If upgrading were allowed to depend on any of these properties, all of which can

be referred to, directly or indirectly, in the language of type specifiers, then it would not be

possible to displace an array in a consistent and dependable manner to another array created

with the same :element-type argument but differing in one of these properties.

Note that upgraded-array-element-type could be defined as

68 COMMON LISP

(defun upgraded-array-element-type (type)

(array-element-type (make-array 0 :element-type type)))

but this definition has the disadvantage of allocating an array and then immedi

ately discarding it. The clever implementor surely can conjure up a more practical

approach.

[Function]upgraded-complex-part-type type

A type specifier is returned, indicating the element type of the most specialized

complex number representation capable of having parts of the specified argument

type. The result is necessarily a supertype of the given type. Furthermore, if a

type A is a subtype of type B, then (upgraded-complex-part-type A) is a subtype of

(upgraded-complex-part-type B).

5

Program Structure

In chapter 2 the syntax was sketched for notating data objects in Common Lisp. The

same syntax is used for notating programs because all Common Lisp programs have

a representation as Common Lisp data objects.

Lisp programs are organized as forms and functions. Forms are evaluated (relative

to some context) to produce values and side effects. Functions are invoked by

applying them to arguments. The most important kind of form performs a function

call; conversely, a function performs computation by evaluating forms.

In this chapter, forms are discussed first and then functions. Finally, certain “top

level” special forms are discussed; the most important of these is defun, whose

purpose is to define a named function.

5.1. Forms

The standard unit of interaction with a Common Lisp implementation is the form,

which is simply a data object meant to be evaluated as a program to produce one

or more values (which are also data objects). One may request evaluation of any

data object, but only certain ones are meaningful. For instance, symbols and lists are

meaningful forms, while arrays normally are not. Examples of meaningful forms are

3, whose value is 3, and (+ 3 4), whose value is 7. We write 3 ⇒ 3 and (+ 3 4) ⇒ 7

to indicate these facts. (⇒ means “evaluates to.”)

Meaningful forms may be divided into three categories: selfevaluating forms,

such as numbers; symbols, which stand for variables; and lists. The lists in turn may

be divided into three categories: special forms, macro calls, and function calls.

Any Common Lisp data object not explicitly defined here to be a valid form is not
...

a valid form. It is an error to evaluate anything but a valid form.

Implementation note: An implementation is free to make implementationdependent exten

sions to the evaluator but is strongly encouraged to signal an error on any attempt to evaluate

69

...

70 COMMON LISP

anything but a valid form or an object for which a meaningful evaluation extension has been

purposely defined.

X3J13 voted in October 1988 〈72〉 to specify that all standard Common Lisp data

objects other than symbols and lists (including defstruct structures defined without

the :type option) are selfevaluating.

5.1.1. SelfEvaluating Forms

All numbers, characters, strings, and bitvectors are selfevaluating forms. When

such an object is evaluated, that object (or possibly a copy in the case of numbers

or characters) is returned as the value of the form. The empty list (), which is also

the false value nil, is also a selfevaluating form: the value of nil is nil. Keywords

(symbols written with a leading colon) also evaluate to themselves: the value of

:start is :start.

X3J13 voted in January 1989 〈36〉 to clarify that it is an error to destructively

modify any object that appears as a constant in executable code, whether as a self

evaluating form or within a quote special form.

5.1.2. Variables

Symbols are used as names of variables in Common Lisp programs. When a symbol

is evaluated as a form, the value of the variable it names is produced. For example,

after doing (setq items 3), which assigns the value 3 to the variable named items,

then items ⇒ 3. Variables can be assigned to, as by setq, or bound, as by let. Any

program construct that binds a variable effectively saves the old value of the variable

and causes it to have a new value, and on exit from the construct the old value is

reinstated.

There are actually two kinds of variables in Common Lisp, called lexical (or static)

variables and special (or dynamic) variables. At any given time either or both kinds

of variable with the same name may have a current value. Which of the two kinds

of variable is referred to when a symbol is evaluated depends on the context of the

evaluation. The general rule is that if the symbol occurs textually within a program

construct that creates a binding for a variable of the same name, then the reference

is to the variable specified by the binding; if no such program construct textually

contains the reference, then it is taken to refer to the special variable of that name.

The distinction between the two kinds of variable is one of scope and extent. A

lexically bound variable can be referred to only by forms occurring at any place

textually within the program construct that binds the variable. A dynamically bound

PROGRAM STRUCTURE 71

(special) variable can be referred to at any time from the time the binding is made

until the time evaluation of the construct that binds the variable terminates. Therefore

lexical binding of variables imposes a spatial limitation on occurrences of references

(but no temporal limitation, for the binding continues to exist as long as the pos

sibility of reference remains). Conversely, dynamic binding of variables imposes a

temporal limitation on occurrences of references (but no spatial limitation). For more

information on scope and extent, see chapter 3.

The value a special variable has when there are currently no bindings of that

variable is called the global value of the (special) variable. A global value can

be given to a variable only by assignment, because a value given by binding is by

definition not global.

It is possible for a special variable to have no value at all, in which case it is said to

be unbound. By default, every global variable is unbound unless and until explicitly

assigned a value, except for those global variables defined in this book or by the

implementation already to have values when the Lisp system is first started. It is also

possible to establish a binding of a special variable and then cause that binding to be

valueless by using the function makunbound. In this situation the variable is also said

to be “unbound,” although this is a misnomer; precisely speaking, it is bound but

valueless. It is an error to refer to a variable that is unbound.

X3J13 voted in June 1989 〈180〉 to specify more precisely the effects of referring

to an unbound variable.

Reading an unbound variable or an undefined function must be detected in the

highest safety setting (see the safety quality of the optimize declaration specifier)

but the effect is undefined in any other safety setting. That is, reading an unbound

variable should signal an error and reading an undefined function should signal an

error. (“Reading a function” includes both references to the function using the

function special form, such as f in (function f), and references to the function in a

call, such as f in (f x y).)

For the case of inline functions (in implementations where they are supported),

a permitted point of view is that performing the inlining constitutes the read of the

function, so that an fboundp check need not be done at execution time. Put another

way, the effect of the application of fmakunbound to a function name on potentially

inlined references to that function is undefined.

When an unbound variable is detected an error of type unbound-variable is signaled,

and the name slot of the unbound-variable condition is initialized to the name of the

offending variable.

When an undefined function is detected an error of type undefined-function is

signaled, and the name slot of the undefined-function condition is initialized to the

name of the offending function.

The condition type unbound-slot, which inherits from cell-error, has an additional

72 COMMON LISP

slot instance, which can be initialized using the :instance keyword to make-condition.

The function unbound-slot-instance accesses this slot.

The type of error signaled by the default primary method for the CLOS slot-unbound

generic function is unbound-slot. The instance slot of the unbound-slot condition is

initialized to the offending instance and the name slot is initialized to the name of the

offending variable.

Certain global variables are reserved as “named constants.” They have a global

value and may not be bound or assigned to. For example, the symbols t and nil

are reserved. One may not assign a value to t or nil, and one may not bind t

or nil. The global value of t is always t, and the global value of nil is always

nil. Constant symbols defined by defconstant also become reserved and may not be

further assigned to or bound (although they may be redefined, if necessary, by using

defconstant again). Keyword symbols, which are notated with a leading colon, are

reserved and may never be assigned to or bound; a keyword always evaluates to itself.

5.1.3. Special Forms

If a list is to be evaluated as a form, the first step is to examine the first element of

the list. If the first element is one of the symbols appearing in table 51, then the list

is called a special form. (This use of the word “special” is unrelated to its use in the

phrase “special variable.”)

Special forms are generally environment and control constructs. Every special

form has its own idiosyncratic syntax. An example is the if special form: (if p (+

x 4) 5) in Common Lisp means what “if p then x+4 else 5” means in Algol.

The evaluation of a special form normally produces a value or values, but the

evaluation may instead call for a nonlocal exit; see return-from, go, and throw.

The set of special forms is fixed in Common Lisp; no way is provided for the user

to define more. The user can create new syntactic constructs, however, by defining

macros.

The set of special forms in Common Lisp is purposely kept very small because any

programanalyzing program must have special knowledge about every type of special

form. Such a program needs no special knowledge about macros because it is simple

to expand the macro and operate on the resulting expansion. (This is not to say that

many such programs, particularly compilers, will not have such special knowledge.

A compiler may be able to produce much better code if it recognizes such constructs

as typecase and multiple-value-bind and gives them customized treatment.)

An implementation is free to implement as a macro any construct described herein

as a special form. Conversely, an implementation is free to implement as a special

form any construct described herein as a macro if an equivalent macro definition

PROGRAM STRUCTURE 73

Table 51: Names of All Common Lisp Special Forms

block if progv

catch labels quote

[compiler-let] let return-from

declare let* setq

eval-when macrolet tagbody

flet multiple-value-call the

function multiple-value-prog1 throw

go progn unwind-protect

X3J13 voted in June 1989 〈25〉 to remove compiler-let from the language.

X3J13 voted in June 1988 〈12〉 to add the special forms generic-flet, generic-labels, symbol-

macrolet, and with-added-methods.

X3J13 voted in March 1989 〈113〉 to make locally a special form rather than a macro.

X3J13 voted in March 1989 〈111〉 to add the special form load-time-eval.

is also provided. The practical consequence is that the predicates macro-function

and special-form-p may both be true of the same symbol. It is recommended that

a programanalyzing program process a form that is a list whose car is a symbol as

follows:

1. If the program has particular knowledge about the symbol, process the form using

specialpurpose code. All of the symbols listed in table 51 should fall into this

category.

2. Otherwise, if macro-function is true of the symbol, apply either macroexpand or

macroexpand-1, as appropriate, to the entire form and then start over.

3. Otherwise, assume it is a function call.

5.1.4. Macros

If a form is a list and the first element is not the name of a special form, it may be the

name of a macro; if so, the form is said to be a macro call. A macro is essentially a

function from forms to forms that will, given a call to that macro, compute a new form

to be evaluated in place of the macro call. (This computation is sometimes referred

to as macro expansion.) For example, the macro named return will take a form such

as (return x) and from that form compute a new form (return-from nil x). We say

that the old form expands into the new form. The new form is then evaluated in place

of the original form; the value of the new form is returned as the value of the original

form.

74 COMMON LISP

X3J13 voted in January 1989 〈67〉 to clarify that macro calls, and subforms of

macro calls, need not be proper lists, but that use of dotted forms requires the macro

definition to use “. var” or “&rest var” in order to match them properly. It is then

the responsibility of the macro definition to recognize and appropriately handle such

dotted forms or subforms.

There are a number of standard macros in Common Lisp, and the user can define

more by using defmacro.

Macros provided by a Common Lisp implementation as described herein may

expand into code that is not portable among differing implementations. That is, a

macro call may be implementationindependent because the macro is defined in this

book, but the expansion need not be.

Implementation note: Implementors are encouraged to implement the macros defined in this

book, as far as is possible, in such a way that the expansion will not contain any implementation

dependent special forms, nor contain as forms data objects that are not considered to be forms

in Common Lisp. The purpose of this restriction is to ensure that the expansion can be

processed by a programanalyzing program in an implementationindependent manner. There

is no problem with a macro expansion containing calls to implementationdependent functions.

This restriction is not a requirement of Common Lisp; it is recognized that certain complex

macros may be able to expand into significantly more efficient code in certain implementations

by using implementationdependent special forms in the macro expansion.

5.1.5. Function Calls

If a list is to be evaluated as a form and the first element is not a symbol that names

a special form or macro, then the list is assumed to be a function call. The first

element of the list is taken to name a function. Any and all remaining elements of

the list are forms to be evaluated; one value is obtained from each form, and these

values become the arguments to the function. The function is then applied to the

arguments. The functional computation normally produces a value, but it may instead

call for a nonlocal exit; see throw. A function that does return may produce no value

or several values; see values. If and when the function returns, whatever values it

returns become the values of the functioncall form.

For example, consider the evaluation of the form (+ 3 (* 4 5)). The symbol +

names the addition function, not a special form or macro. Therefore the two forms

3 and (* 4 5) are evaluated to produce arguments. The form 3 evaluates to 3, and

the form (* 4 5) is a function call (to the multiplication function). Therefore the

forms 4 and 5 are evaluated, producing arguments 4 and 5 for the multiplication. The

multiplication function calculates the number 20 and returns it. The values 3 and 20

PROGRAM STRUCTURE 75

are then given as arguments to the addition function, which calculates and returns the

number 23. Therefore we say (+ 3 (* 4 5)) ⇒ 23.

X3J13 voted in October 1988 〈86〉 to clarify that while the arguments in a function

call are always evaluated in strict lefttoright order, whether the function to be called

is determined before or after argument evaluation is unspecified. Programs are in

error that rely on a particular order of evaluation of the first element of a function call

relative to the argument forms.

5.2. Functions

There are two ways to indicate a function to be used in a functioncall form. One is

to use a symbol that names the function. This use of symbols to name functions is

completely independent of their use in naming special and lexical variables. The other

way is to use a lambdaexpression, which is a list whose first element is the symbol

lambda. A lambdaexpression is not a form; it cannot be meaningfully evaluated.

Lambdaexpressions and symbols, when used in programs as names of functions,

can appear only as the first element of a functioncall form, or as the second element

of the function special form. Note that symbols and lambdaexpressions are treated

as names of functions in these two contexts. This should be distinguished from the

treatment of symbols and lambdaexpressions as function objects, that is, objects that

satisfy the predicate functionp, as when giving such an object to apply or funcall to

be invoked.

5.2.1. Named Functions

A name can be given to a function in one of two ways. A global name can be

given to a function by using the defun construct. A local name can be given to a

function by using the flet or labels special form. When a function is named, a

lambdaexpression is effectively associated with that name along with information

about the entities that are lexically apparent at that point. If a symbol appears as the

first element of a functioncall form, then it refers to the definition established by

the innermost flet or labels construct that textually contains the reference, or to the

global definition (if any) if there is no such containing construct.

5.2.2. LambdaExpressions

A lambdaexpression is a list with the following syntax:

(lambda lambdalist . body)

76 COMMON LISP

The first element must be the symbol lambda. The second element must be a list.

It is called the lambdalist, and specifies names for the parameters of the function.

When the function denoted by the lambdaexpression is applied to arguments, the

arguments are matched with the parameters specified by the lambdalist. The body

may then refer to the arguments by using the parameter names. The body consists

of any number of forms (possibly zero). These forms are evaluated in sequence, and

the results of the last form only are returned as the results of the application (the

value nil is returned if there are zero forms in the body). The complete syntax of a

lambdaexpression is:

(lambda ({var}∗
[&optional {var | (var [initform [svar]])}∗]

[&rest var]

[&key {var | ({var | (keyword var)} [initform [svar]])}∗]

[&aux {var | (var [initform])}∗])

[[{declaration}∗ | documentation-string]]

{ form}∗)

Each element of a lambdalist is either a parameter specifier or a lambdalist

keyword; lambdalist keywords begin with &. (Note that lambdalist keywords are not

keywords in the usual sense; they do not belong to the keyword package. They are

ordinary symbols each of whose names begins with an ampersand. This terminology

is unfortunately confusing but is retained for historical reasons.)

In all cases a var or svar must be a symbol, the name of a variable; each keyword
..

must be a keyword symbol, such as :start. An initform may be any form.

X3J13 voted in March 1988 〈105〉 to allow a keyword in the preceding specification

of a lambdalist to be any symbol whatsoever,not just a keyword symbol in the keyword

package. See below.

A lambdalist has five parts, any or all of which may be empty:

. Specifiers for the required parameters. These are all the parameter specifiers up to

the first lambdalist keyword; if there is no such lambdalist keyword, then all the

specifiers are for required parameters.

. Specifiers for optional parameters. If the lambdalist keyword &optional is present,

the optional parameter specifiers are those following the lambdalist keyword

&optional up to the next lambdalist keyword or the end of the list.

. A specifier for a rest parameter. The lambdalist keyword &rest, if present, must

be followed by a single rest parameter specifier, which in turn must be followed

by another lambdalist keyword or the end of the lambdalist.

PROGRAM STRUCTURE 77

. Specifiers for keyword parameters. If the lambdalist keyword &key is present, all

specifiers up to the next lambdalist keyword or the end of the list are keyword

parameter specifiers. The keyword parameter specifiers may optionally be followed

by the lambdalist keyword &allow-other-keys.

. Specifiers for aux variables. These are not really parameters. If the lambdalist

keyword &key is present, all specifiers after it are auxiliary variable specifiers.

When the function represented by the lambdaexpression is applied to arguments,

the arguments and parameters are processed in order from left to right. In the simplest

case, only required parameters are present in the lambdalist; each is specified simply

by a name var for the parameter variable. When the function is applied, there must

be exactly as many arguments as there are parameters, and each parameter is bound

to one argument. Here, and in general, the parameter is bound as a lexical variable

unless a declaration has been made that it should be a special binding; see defvar,

proclaim, and declare.

In the more general case, if there are n required parameters (n may be zero), there

must be at least n arguments, and the required parameters are bound to the first n

arguments. The other parameters are then processed using any remaining arguments.

If optional parameters are specified, then each one is processed as follows. If

any unprocessed arguments remain, then the parameter variable var is bound to

the next remaining argument, just as for a required parameter. If no arguments

remain, however, then the initform part of the parameter specifier is evaluated, and

the parameter variable is bound to the resulting value (or to nil if no initform appears

in the parameter specifier). If another variable name svar appears in the specifier, it

is bound to true if an argument was available, and to false if no argument remained

(and therefore initform had to be evaluated). The variable svar is called a suppliedp

parameter; it is bound not to an argument but to a value indicating whether or not an

argument had been supplied for another parameter.

After all optional parameter specifiers have been processed, then there may or

may not be a rest parameter. If there is a rest parameter, it is bound to a list of

all asyetunprocessed arguments. (If no unprocessed arguments remain, the rest

parameter is bound to the empty list.) If there is no rest parameter and there are no

keyword parameters, then there should be no unprocessed arguments (it is an error if

there are).

X3J13 voted in January 1989 〈155〉 to clarify that if a function has a rest parameter

and is called using apply, then the list to which the rest parameter is bound is

permitted, but not required, to share toplevel list structure with the list that was the

last argument to apply. Programmers should be careful about performing side effects

on the toplevel list structure of a rest parameter.

78 COMMON LISP

This was the result of a rather long discussion within X3J13 and the wider Lisp

community. To set it in its historical context, I must remark that in Lisp Machine

Lisp the list to which a rest parameter was bound had only dynamic extent; this in

conjunction with the technique of “cdrcoding” permitted a clever stackallocation

technique with very low overhead. However, the early designers of Common Lisp,

after a great deal of debate, concluded that it was dangerous for cons cells to have

dynamic extent; as an example, the “obvious” definition of the function list

(defun list (&rest x) x)

could fail catastrophically. Therefore the first edition simply implied that the list for

a rest parameter, like all other lists, would have indefinite extent. This still left open

the flip side of the question, namely, Is the list for a rest parameter guaranteed fresh?

This is the question addressed by the X3J13 vote. If it is always freshly consed,

then it is permissible to destroy it, for example by giving it to nconc. However,

the requirement always to cons fresh lists could impose an unacceptable overhead

in many implementations. The clarification approved by X3J13 specifies that the

programmer may not rely on the list being fresh; if the function was called using

apply, there is no way to know where the list came from.

Next, any keyword parameters are processed. For this purpose the same arguments

are processed that would be made into a list for a rest parameter. (Indeed, it is

permitted to specify both &rest and &key. In this case the remaining arguments are

used for both purposes; that is, all remaining arguments are made into a list for the

&rest parameter and are also processed for the &key parameters. This is the only

situation in which an argument is used in the processing of more than one parameter

specifier.) If &key is specified, there must remain an even number of arguments; these

are considered as pairs, the first argument in each pair being interpreted as a keyword

name and the second as the corresponding value.

It is an error for the first object of each pair to be anything but a keyword.
...

Rationale: This last restriction is imposed so that a compiler may issue warnings about certain

malformed calls to functions that take keyword arguments. It must be remembered that the

arguments in a function call that evaluate to keywords are just like any other arguments and

may be any evaluable forms. A compiler could not, without additional context, issue a warning

about the call

(fill seq item x y)

because in principle the variable x might have as its value a keyword such as :start. However,

a compiler would be justified in issuing a warning about the call

(fill seq item 0 10)

...

PROGRAM STRUCTURE 79

because the constant 0 is definitely not a keyword. Similarly, if in the first case the variable x

had been declared to be of type integer, then type analysis could enable the compiler to justify

a warning.

X3J13 voted in March 1988 〈105〉 to allow a keyword in a lambdalist to be any

symbol whatsoever, not just a keyword symbol in the keyword package. If, after

&key, a variable appears alone or within only one set of parentheses (possibly with

an initform and a svar), then the behavior is as before: a keyword symbol with the

same name as the variable is used as the keywordname when matching arguments

to parameter specifiers. Only a parameter specifier of the form ((keyword var) ...)

can cause the keywordname not to be a keyword symbol, by specifying a symbol

not in the keyword package as the keyword. For example:

(defun wager (&key ((secret password) nil) amount)

(format nil "You ˜A $˜D"

(if (eq password ´joe-sent-me) "win" "lose")

amount))

(wager :amount 100) ⇒ "You lose $100"

(wager :amount 100 ´secret ´joe-sent-me) ⇒ "You win $100"

The secret word could be made even more secret in this example by placing it in

some other obscure package, so that one would have to write

(wager :amount 100 ´obscure:secret ´joe-sent-me) ⇒ "You win $100"

to win anything.

In each keyword parameter specifier must be a name var for the parameter variable.

If an explicit keyword is specified, then that is the keyword name for the parameter.

Otherwise the name var serves to indicate the keyword name, in that a keyword with

the same name (in the keyword package) is used as the keyword. Thus

(defun foo (&key radix (type ´integer)) ...)

means exactly the same as

(defun foo (&key ((:radix radix)) ((:type type) ´integer)) ...)

The keyword parameter specifiers are, like all parameter specifiers, effectively pro

cessed from left to right. For each keyword parameter specifier, if there is an argument

pair whose keyword name matches that specifier’s keyword name (that is, the names

are eq), then the parameter variable for that specifier is bound to the second item

(the value) of that argument pair. If more than one such argument pair matches, it

80 COMMON LISP

is not an error; the leftmost argument pair is used. If no such argument pair exists,

then the initform for that specifier is evaluated and the parameter variable is bound to

that value (or to nil if no initform was specified). The variable svar is treated as for

ordinary optional parameters: it is bound to true if there was a matching argument

pair, and to false otherwise.

It is an error if an argument pair has a keyword name not matched by any parameter

specifier, unless at least one of the following two conditions is met:

. &allow-other-keys was specified in the lambdalist.

. Somewhere among the keyword argument pairs is a pair whose keyword is :allow-

other-keys and whose value is not nil.

If either condition obtains, then it is not an error for an argument pair to match no

parameter specified, and the argument pair is simply ignored (but such an argument

pair is accessible through the &rest parameter if one was specified). The purpose of

these mechanisms is to allow sharing of argument lists among several functions and

to allow either the caller or the called function to specify that such sharing may be

taking place.

After all parameter specifiers have been processed, the auxiliary variable specifiers

(those following the lambdalist keyword &aux) are processed from left to right. For

each one, the initform is evaluated and the variable var bound to that value (or to nil

if no initform was specified). Nothing can be done with &aux variables that cannot be

done with the special form let*:

(lambda (x y &aux (a (car x)) (b 2) c) ...)

≡ (lambda (x y) (let* ((a (car x)) (b 2) c) ...))

Which to use is purely a matter of style.

Whenever any initform is evaluated for any parameter specifier, that form may refer

to any parameter variable to the left of the specifier in which the initform appears,

including any suppliedp variables, and may rely on the fact that no other parameter

variable has yet been bound (including its own parameter variable).

Once the lambdalist has been processed, the forms in the body of the lambda

expression are executed. These forms may refer to the arguments to the function by

using the names of the parameters. On exit from the function, either by a normal

return of the function’s value(s) or by a nonlocal exit, the parameter bindings,

whether lexical or special, are no longer in effect. (The bindings are not necessarily

permanently discarded, for a lexical binding can later be reinstated if a “closure”

over that binding was created, perhaps by using function, and saved before the exit

occurred.)

Examples of &optional and &rest parameters:

PROGRAM STRUCTURE 81

((lambda (a b) (+ a (* b 3))) 4 5) ⇒ 19

((lambda (a &optional (b 2)) (+ a (* b 3))) 4 5) ⇒ 19

((lambda (a &optional (b 2)) (+ a (* b 3))) 4) ⇒ 10

((lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b c d x)))

⇒ (2 nil 3 nil nil)

((lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b c d x))

6)

⇒ (6 t 3 nil nil)

((lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b c d x))

6 3)

⇒ (6 t 3 t nil)

((lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b c d x))

6 3 8)

⇒ (6 t 3 t (8))

((lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b c d x))

6 3 8 9 10 11)

⇒ (6 t 3 t (8 9 10 11))

Examples of &key parameters:

((lambda (a b &key c d) (list a b c d)) 1 2)

⇒ (1 2 nil nil)

((lambda (a b &key c d) (list a b c d)) 1 2 :c 6)

⇒ (1 2 6 nil)

((lambda (a b &key c d) (list a b c d)) 1 2 :d 8)

⇒ (1 2 nil 8)

((lambda (a b &key c d) (list a b c d)) 1 2 :c 6 :d 8)

⇒ (1 2 6 8)

((lambda (a b &key c d) (list a b c d)) 1 2 :d 8 :c 6)

⇒ (1 2 6 8)

((lambda (a b &key c d) (list a b c d)) :a 1 :d 8 :c 6)

⇒ (:a 1 6 8)

((lambda (a b &key c d) (list a b c d)) :a :b :c :d)

⇒ (:a :b :d nil)

Examples of mixtures:

((lambda (a &optional (b 3) &rest x &key c (d a))

(list a b c d x))

1) ⇒ (1 3 nil 1 ())

82 COMMON LISP

((lambda (a &optional (b 3) &rest x &key c (d a))

(list a b c d x))

1 2) ⇒ (1 2 nil 1 ())

((lambda (a &optional (b 3) &rest x &key c (d a))

(list a b c d x))

:c 7) ⇒ (:c 7 nil :c ())

((lambda (a &optional (b 3) &rest x &key c (d a))

(list a b c d x))

1 6 :c 7) ⇒ (1 6 7 1 (:c 7))

((lambda (a &optional (b 3) &rest x &key c (d a))

(list a b c d x))

1 6 :d 8) ⇒ (1 6 nil 8 (:d 8))

((lambda (a &optional (b 3) &rest x &key c (d a))

(list a b c d x))

1 6 :d 8 :c 9 :d 10) ⇒ (1 6 9 8 (:d 8 :c 9 :d 10))

All lambdalist keywords are permitted, but not terribly useful, in lambda

expressions appearing explicitly as the first element of a functioncall form. They

are extremely useful, however, in functions given global names by defun.

All symbols whose names begin with & are conventionally reserved for use as

lambdalist keywords and should not be used as variable names. Implementations of

Common Lisp are free to provide additional lambdalist keywords.

[Constant]lambda-list-keywords

The value of lambda-list-keywords is a list of all the lambdalist keywords used in the

implementation, including the additional ones used only by defmacro. This list must

contain at least the symbols &optional, &rest, &key, &allow-other-keys, &aux, &body,

&whole, and &environment.

As an example of the use of &allow-other-keys and :allow-other-keys, consider

a function that takes two keyword arguments of its own and also accepts additional

keyword arguments to be passed to make-array:

(defun array-of-strings (str dims &rest keyword-pairs

&key (start 0) end &allow-other-keys)

(apply #--´make-array dims

:initial-element (subseq str start end)

PROGRAM STRUCTURE 83

:allow-other-keys t

keyword-pairs))

This function takes a string and dimensioning information and returns an array of the

specified dimensions, each of whose elements is the specified string. However, :start

and :end keyword arguments may be used in the usual manner (see chapter 14) to

specify that a substring of the given string should be used. In addition, the presence of

&allow-other-keys in the lambdalist indicates that the caller may specify additional

keyword arguments; the &rest argument provides access to them. These additional

keyword arguments are fed to make-array. Now, make-array normally does not allow

the keywords :start and :end to be used, and it would be an error to specify such

keyword arguments to make-array. However, the presence in the call to make-array of

the keyword argument :allow-other-keys with a nonnil value causes any extraneous

keyword arguments, including :start and :end, to be acceptable and ignored.

[Constant]lambda-parameters-limit

The value of lambda-parameters-limit is a positive integer that is the upper exclusive

bound on the number of distinct parameter names that may appear in a single lambda

list. This bound depends on the implementation but will not be smaller than 50.

Implementors are encouraged to make this limit as large as practicable without

sacrificing performance. See call-arguments-limit.

5.3. TopLevel Forms

The standard way for the user to interact with a Common Lisp implementation is via

a readevalprint loop: the system repeatedly reads a form from some input source

(such as a keyboard or a disk file), evaluates it, and then prints the value(s) to some

output sink (such as a display screen or another disk file). Any form (evaluable data

object) is acceptable; however, certain special forms are specifically designed to be

convenient for use as toplevel forms, rather than as forms embedded within other

forms in the way that (+ 3 4) is embedded within (if p (+ 3 4) 6). These toplevel

special forms may be used to define globally named functions, to define macros, to

make declarations, and to define global values for special variables.

It is not illegal to use these forms at other than top level, but whether it is meaningful
..

to do so depends on context. Compilers, for example, may not recognize these forms

properly in other than toplevel contexts. (As a special case, however, if a progn form

appears at top level, then all forms within that progn are considered by the compiler

to be toplevel forms.)

84 COMMON LISP

X3J13 voted in March 1989 〈50〉 to clarify that, while defining forms normally

appear at top level, it is meaningful to place them in nontoplevel contexts. All

defining forms that create functional objects from code appearing as argument forms

must ensure that such argument forms refer to the enclosing lexical environment.

Compilers must handle defining forms properly in all situations, not just toplevel

contexts. However, certain compiletime side effects of these defining forms are

performed only when the defining forms occur at top level (see section 25.1).

Compatibility note: In MacLisp, a toplevel progn is considered to contain toplevel forms

only if the first form is (quote compile). This odd marker is unnecessary in Common Lisp.

Macros are usually defined by using the special form defmacro. This facility is

fairly complicated; it is described in chapter 8.

5.3.1. Defining Named Functions

The defun special form is the usual means of defining named functions.

[Macro]defun name lambdalist [[{declaration}∗ | docstring]] { form}∗

Evaluating a defun form causes the symbol name to be a global name for the function

specified by the lambdaexpression

(lambda lambdalist {declaration | doc-string}∗ { form}∗)

defined in the lexical environment in which the defun form was executed. Because

defun forms normally appear at top level, this is normally the null lexical environment.

X3J13 voted in March 1989 〈50〉 to clarify that, while defining forms normally

appear at top level, it is meaningful to place them in nontoplevel contexts; defun

must define the function within the enclosing lexical environment, not within the null

lexical environment.

X3J13 voted in March 1989 〈89〉 to extend defun to accept any functionname (a

symbol or a list whose car is setf—see section 7.1) as a name. Thus one may write

(defun (setf cadr) ...)

to define a setf expansion function for cadr (although it may be much more convenient

to use defsetf or define-modify-macro).

PROGRAM STRUCTURE 85

If the optional documentation string docstring is present, then it is attached to the

name as a documentation string of type function; see documentation. If docstring

is not followed by a declaration, it may be present only if at least one form is also

specified, as it is otherwise taken to be a form. It is an error if more than one docstring

is present.

The forms constitute the body of the defined function; they are executed as an

implicit progn.

The body of the defined function is implicitly enclosed in a block construct whose

name is the same as the name of the function. Therefore return-from may be used to

exit from the function.

Other implementationdependent bookkeeping actions may be taken as well by

defun. The name is returned as the value of the defun form. For example:

(defun discriminant (a b c)

(declare (number a b c))

"Compute the discriminant for a quadratic equation.

Given a, b, and c, the value bˆ2-4*a*c is calculated.

The quadratic equation a*xˆ2+b*x+c−−0 has real, multiple,

or complex roots depending on whether this calculated

value is positive, zero, or negative, respectively."

(- (* b b) (* 4 a c)))

⇒ discriminant

and now (discriminant 1 2/3 -2) ⇒ 76/9

The documentation string in this example neglects to mention that the coefficients

a, b, and c must be real for the discrimination criterion to hold. Here is an improved

version:

"Compute the discriminant for a quadratic equation.

Given a, b, and c, the value bˆ2-4*a*c is calculated.

If the coefficients a, b, and c are all real (that is,

not complex), then the quadratic equation a*xˆ2+b*x+c−−0

has real, multiple, or complex roots depending on

whether this calculated value is positive, zero, or

negative, respectively."

It is permissible to use defun to redefine a function, to install a corrected version of

an incorrect definition, for example. It is permissible to redefine a macro as a function.

It is an error to attempt to redefine the name of a special form (see table 51) as a

function.

86 COMMON LISP

5.3.2. Declaring Global Variables and Named Constants

The defvar and defparameter special forms are the usual means of specifying globally

defined variables. The defconstant special form is used for defining named constants.

[Macro]defvar name [initialvalue [documentation]]

[Macro]defparameter name initialvalue [documentation]

[Macro]defconstant name initialvalue [documentation]

defvar is the recommended way to declare the use of a special variable in a program.

(defvar variable)

proclaims variable to be special (see proclaim), and may perform other system

dependent bookkeeping actions.

X3J13 voted in June 1987 〈61〉 to clarify that if no initialvalue form is provided,

defvar does not change the value of the variable; if no initialvalue form is provided

and the variable has no value, defvar does not give it a value.

If a second argument form is supplied,

(defvar variable initialvalue)

then variable is initialized to the result of evaluating the form initialvalue unless it

already has a value. The initialvalue form is not evaluated unless it is used; this

fact is useful if evaluation of the initialvalue form does something expensive like

creating a large data structure.

X3J13 voted in June 1987 〈60〉 to clarify that evaluation of the initialvalue and the

initialization of the variable occur, if at all, at the time the defvar form is executed,

and that the initialvalue form is evaluated if and only if the variable does not already

have a value.

The initialization is performed by assignment and thus assigns a global value to

the variable unless there are currently special bindings of that variable. Normally

there should not be any such special bindings.

defvar also provides a good place to put a comment describing the meaning of the

variable, whereas an ordinary special proclamation offers the temptation to declare

several variables at once and not have room to describe them all.

(defvar *visible-windows* 0

"Number of windows at least partially visible on the screen")

defparameter is similar to defvar, but defparameter requires an initialvalue form,

always evaluates the form, and assigns the result to the variable. The semantic

distinction is that defvar is intended to declare a variable changed by the program,

PROGRAM STRUCTURE 87

whereas defparameter is intended to declare a variable that is normally constant but

can be changed (possibly at run time), where such a change is considered a change

to the program. defparameter therefore does not indicate that the quantity never

changes; in particular, it does not license the compiler to build assumptions about the

value into programs being compiled.

defconstant is like defparameter but does assert that the value of the variable name

is fixed and does license the compiler to build assumptions about the value into

programs being compiled. (However, if the compiler chooses to replace references to

the name of the constant by the value of the constant in code to be compiled, perhaps

in order to allow further optimization, the compiler must take care that such “copies”

appear to be eql to the object that is the actual value of the constant. For example, the

compiler may freely make copies of numbers but must exercise care when the value

is a list.)

It is an error if there are any special bindings of the variable at the time the

defconstant form is executed (but implementations may or may not check for this).

Once a name has been declared by defconstant to be constant, any further as

signment to or binding of that special variable is an error. This is the case for

such systemsupplied constants as t and most-positive-fixnum. A compiler may also

choose to issue warnings about bindings of the lexical variable of the same name.

X3J13 voted in January 1989 〈48〉 to clarify the preceding paragraph by specifying

that it is an error to rebind constant symbols as either lexical or special variables.

Consequently, a valid reference to a symbol declared with defconstant always refers

to its global value. (Unfortunately, this violates the principle of referential trans

parency, for one cannot always choose names for lexical variables without regard to

surrounding context.)

For any of these constructs, the documentation should be a string. The string

is attached to the name of the variable, parameter, or constant under the variable

documentation type; see the documentation function.

X3J13 voted in March 1988 〈59〉 to clarify that the documentationstring is not eval

uated but must appear as a literal string when the defvar, defparameter, or defconstant

form is evaluated.

For example, the form

(defvar *avoid-registers* nil "Compilation control switch #--43")

is legitimate, but

(defvar *avoid-registers* nil

(format nil "Compilation control switch #--˜D"

(incf *compiler-switch-number*)))

88 COMMON LISP

is erroneous because the call to format is not a literal string.

(On the other hand, the form

(defvar *avoid-registers* nil

#--.(format nil "Compilation control switch #--˜D"

(incf *compiler-switch-number*)))

might be used to accomplish the same purpose, because the call to format is evaluated

at read time; when the defvar form is evaluated, only the result of the call to format,

a string, appears in the defvar form.)

These constructs are normally used only as toplevel forms. The value returned by

each of these constructs is the name declared.

5.3.3. Control of Time of Evaluation

The eval-when special form allows pieces of code to be executed only at compile
...

time, only at load time, or when interpreted but not compiled. Its uses are relatively

esoteric.

..

[Special form]eval-when ({situation}∗) { form}∗

The body of an eval-when form is processed as an implicit progn, but only in the

situations listed. Each situation must be a symbol, either compile, load, or eval.

eval specifies that the interpreter should process the body. compile specifies that

the compiler should evaluate the body at compile time in the compilation context.

load specifies that the compiler should arrange to evaluate the forms in the body when

the compiled file containing the eval-when form is loaded.

The eval-when construct may be more precisely understood in terms of a model of

how the compiler processes forms in a file to be compiled. Successive forms are read

from the file using the function read. These toplevel forms are normally processed

in what we shall call notcompiletime mode. There is another mode called compile

timetoo mode. The eval-when special form controls which of these two modes to

use.

Every form is processed as follows:

. If the form is an eval-when form:

– If the situation load is specified:

If the situation compile is specified, or if the current processing mode is

compiletimetoo and the situation eval is specified, then process each of the

forms in the body in compiletimetoo mode.

...

PROGRAM STRUCTURE 89

Otherwise, process each of the forms in the body in notcompiletime mode.

– If the situation load is not specified:

If the situation compile is specified, or if the current processing mode is

compiletimetoo and the situation eval is specified, then evaluate each of the

forms in the body in the compiler’s executing environment.

Otherwise, ignore the eval-when form entirely.

. If the form is not an eval-when form, then do two things. First, if the current

processing mode is compiletimetoo mode, evaluate the form in the compiler’s

executing environment. Second, perform normal compiler processing of the form

(compiling functions defined by defun forms, and so on).

One example of the use of eval-when is that if the compiler is to be able to properly

read a file that uses userdefined reader macro characters, it is necessary to write

(eval-when (compile load eval)

(set-macro-character #--\$ #--´(lambda (stream char)

(declare (ignore char))

(list ´dollar (read stream)))))

This causes the call to set-macro-character to be executed in the compiler’s execution

environment, thereby modifying its reader syntax table.

X3J13 voted in March 1989 〈73〉 to completely redesign the eval-when construct to

solve some problems concerning its treatment in other than toplevel contexts. The

new definition is upward compatible with the old definition, but the old keywords are

deprecated.

[Special form]eval-when ({situation}∗) { form}∗

The body of an eval-when form is processed as an implicit progn, but only in the

situations listed. Each situation must be a symbol, either :compile-toplevel, :load-

toplevel, or :execute.

The use of :compile-toplevel and :load-toplevel controls whether and when pro

cessing occurs for toplevel forms. The use of :execute controls whether processing

occurs for nontoplevel forms.

The eval-when construct may be more precisely understood in terms of a model of

how the file compiler, compile-file, processes forms in a file to be compiled.

Successive forms are read from the file by the file compiler using read. These

toplevel forms are normally processed in what we call “notcompiletime” mode.

There is one other mode, called “compiletimetoo” mode, which can come into play

90 COMMON LISP

for toplevel forms. The eval-when special form is used to annotate a program in a

way that allows the program doing the processing to select the appropriate mode.

Processing of toplevel forms in the file compiler works as follows:

. If the form is a macro call, it is expanded and the result is processed as a toplevel

form in the same processing mode (compiletimetoo or notcompiletime).

. If the form is a progn (or locally 〈113〉) form, each of its body forms is sequentially

processed as toplevel forms in the same processing mode.

. If the form is a compiler-let, macrolet, or symbol-macrolet, the file compiler makes

the appropriate bindings and recursively processes the body forms as an implicit

toplevel progn with those bindings in effect, in the same processing mode.

. If the form is an eval-when form, it is handled according to the following table:

LT CT EX CTTM Action

yes yes – – process body in compiletimetoo mode

yes no yes yes process body in compiletimetoo mode

yes no – no process body in notcompiletime mode

yes no no – process body in notcompiletime mode

no yes – – evaluate body

no no yes yes evaluate body

no no – no do nothing

no no no – do nothing

In the preceding table the column LT asks whether :load-toplevel is one of the

situations specified in the eval-when form; CT similarly refers to :compile-toplevel

and EX to :execute. The column CTTM asks whether the eval-when form was

encountered while in compiletimetoo mode. The phrase “process body” means

to process the body as an implicit toplevel progn in the indicated mode, and

“evaluate body” means to evaluate the body forms sequentially as an implicit progn

in the dynamic execution context of the compiler and in the lexical environment in

which the eval-when appears.

. Otherwise, the form is a toplevel form that is not one of the special cases. If in

compiletimetoo mode, the compiler first evaluates the form and then performs

normal compiler processing on it. If in notcompiletime mode, only normal

compiler processing is performed (see section 25.1). Any subforms are treated as

nontoplevel forms.

Note that toplevel forms are guaranteed to be processed in the order in which

they textually appear in the file, and that each toplevel form read by the compiler is

PROGRAM STRUCTURE 91

processed before the next is read. However, the order of processing (including, in

particular, macro expansion) of subforms that are not toplevel forms is unspecified.

For an eval-when form that is not a toplevel form in the file compiler (that is, either

in the interpreter, in compile, or in the file compiler but not at top level), if the :execute

situation is specified, its body is treated as an implicit progn. Otherwise, the body is

ignored and the eval-when form has the value nil.

For the sake of backward compatibility, a situation may also be compile, load, or

eval. Within a toplevel eval-when form these have the same meaning as :compile-

toplevel, :load-toplevel, and :execute, respectively; but their effect is undefined

when used in an eval-when form that is not at top level.

The following effects are logical consequences of the preceding specification:

. It is never the case that the execution of a single eval-when expression will execute

the body code more than once.

. The old keyword eval was a misnomer because execution of the body need not be

done by eval. For example, when the function definition

(defun foo () (eval-when (:execute) (print ´foo)))

is compiled the call to print should be compiled, not evaluated at compile time.

. Macros intended for use in toplevel forms should arrange for all sideeffects to be

done by the forms in the macro expansion. The macroexpander itself should not

perform the sideeffects.

(defmacro foo ()

(really-foo) ;Wrong

`(really-foo))

(defmacro foo ()

`(eval-when (:compile-toplevel

:load-toplevel :execute) ;Right

(really-foo)))

Adherence to this convention will mean that such macros will behave intuitively

when called in nontoplevel positions.

. Placing a variable binding around an eval-when reliably captures the binding be

cause the “compiletimetoo” mode cannot occur (because the eval-when could not

be a toplevel form). For example,

92 COMMON LISP

(let ((x 3))

(eval-when (:compile-toplevel :load-toplevel :execute)

(print x)))

will print 3 at execution (that is, load) time and will not print anything at compile

time. This is important so that expansions of defun and defmacro can be done in

terms of eval-when and can correctly capture the lexical environment. For example,

an implementation might expand a defun form such as

(defun bar (x) (defun foo () (+ x 3)))

into

(progn (eval-when (:compile-toplevel)

(compiler::notice-function ´bar ´(x)))

(eval-when (:load-toplevel :execute)

(setf (symbol-function ´bar)

#--´(lambda (x)

(progn (eval-when (:compile-toplevel)

(compiler::notice-function ´foo

´()))

(eval-when (:load-toplevel :execute)

(setf (symbol-function ´foo)

#--´(lambda () (+ x 3)))))))))

which by the preceding rules would be treated the same as

(progn (eval-when (:compile-toplevel)

(compiler::notice-function ´bar ´(x)))

(eval-when (:load-toplevel :execute)

(setf (symbol-function ´bar)

#--´(lambda (x)

(progn (eval-when (:load-toplevel :execute)

(setf (symbol-function ´foo)

#--´(lambda () (+ x 3)))))))))

Here are some additional examples.

(let ((x 1))

(eval-when (:execute :load-toplevel :compile-toplevel)

(setf (symbol-function ´foo1) #--´(lambda () x))))

The eval-when in the preceding expression is not at top level, so only the :execute

keyword is considered. At compile time, this has no effect. At load time (if the

PROGRAM STRUCTURE 93

let is at top level), or at execution time (if the let is embedded in some other form

which does not execute until later), this sets (symbol-function ´foo1) to a function

that returns 1.

(eval-when (:execute :load-toplevel :compile-toplevel)

(let ((x 2))

(eval-when (:execute :load-toplevel :compile-toplevel)

(setf (symbol-function ´foo2) #--´(lambda () x)))))

If the preceding expression occurs at the top level of a file to be compiled, it has

both a compile time and a loadtime effect of setting (symbol-function ´foo2) to a

function that returns 2.

(eval-when (:execute :load-toplevel :compile-toplevel)

(setf (symbol-function ´foo3) #--´(lambda () 3)))

If the preceding expression occurs at the top level of a file to be compiled, it has both

a compile time and a loadtime effect of setting the function cell of foo3 to a function

that returns 3.

(eval-when (:compile-toplevel)

(eval-when (:compile-toplevel)

(print ´foo4)))

The preceding expression always does nothing; it simply returns nil.

(eval-when (:compile-toplevel)

(eval-when (:execute)

(print ´foo5)))

If the preceding form occurs at the top level of a file to be compiled, foo5 is printed

at compile time. If this form occurs in a nontoplevel position, nothing is printed at

compile time. Regardless of context, nothing is ever printed at load time or execution

time.

(eval-when (:execute :load-toplevel)

(eval-when (:compile-toplevel)

(print ´foo6)))

If the preceding form occurs at the top level of a file to be compiled, foo6 is printed

at compile time. If this form occurs in a nontoplevel position, nothing is printed at

compile time. Regardless of context, nothing is ever printed at load time or execution

time.

6

Predicates

A predicate is a function that tests for some condition involving its arguments and

returns nil if the condition is false, or some nonnil value if the condition is true.

One may think of a predicate as producing a Boolean value, where nil stands for

false and anything else stands for true. Conditional control structures such as cond,

if, when, and unless test such Boolean values. We say that a predicate is true when

it returns a nonnil value, and is false when it returns nil; that is, it is true or false

according to whether the condition being tested is true or false.

By convention, the names of predicates usually end in the letter p (which stands

for “predicate”). Common Lisp uses a uniform convention in hyphenating names of

predicates. If the name of the predicate is formed by adding a p to an existing name,

such as the name of a data type, a hyphen is placed before the final p if and only

if there is a hyphen in the existing name. For example, number begets numberp but

standard-char begets standard-char-p. On the other hand, if the name of a predicate

is formed by adding a prefixing qualifier to the front of an existing predicate name,

the two names are joined with a hyphen and the presence or absence of a hyphen

before the final p is not changed. For example, the predicate string-lessp has no

hyphen before the p because it is the string version of lessp (a MacLisp function that

has been renamed < in Common Lisp). The name string-less-p would incorrectly

imply that it is a predicate that tests for a kind of object called a string-less, and

the name stringlessp would connote a predicate that tests whether something has no

strings (is “stringless”)!

The control structures that test Boolean values only test for whether or not the

value is nil, which is considered to be false. Any other value is considered to be true.

Often a predicate will return nil if it “fails” and some useful value if it “succeeds”;

such a function can be used not only as a test but also for the useful value provided

in case of success. An example is member.

If no better nonnil value is available for the purpose of indicating success, by

convention the symbol t is used as the “standard” true value.

94

PREDICATES 95

6.1. Logical Values

The names nil and t are constants in Common Lisp. Although they are symbols like

any other symbols, and appear to be treated as variables when evaluated, it is not

permitted to modify their values. See defconstant.

[Constant]nil

The value of nil is always nil. This object represents the logical false value and also

the empty list. It can also be written ().

[Constant]t

The value of t is always t.

6.2. Data Type Predicates

Perhaps the most important predicates in Lisp are those that deal with data types; that

is, given a data object one can determine whether or not it belongs to a given type, or

one can compare two type specifiers.

6.2.1. General Type Predicates

If a data type is viewed as the set of all objects belonging to the type, then the typep

function is a set membership test, while subtypep is a subset test.

[Function]typep object type

typep is a predicate that is true if object is of type type, and is false otherwise. Note

that an object can be “of” more than one type, since one type can include another.

The type may be any of the type specifiers mentioned in chapter 4 except that it may

not be or contain a type specifier list whose first element is function or values. A

specifier of the form (satisfies fn) is handled simply by applying the function fn to

object (see funcall); the object is considered to be of the specified type if the result

is not nil.

X3J13 voted in January 1989 〈8〉 to change typep to give specialized array and

complex type specifiers the same meaning for purposes of type discrimination as they

have for declaration purposes. Of course, this also applies to such type specifiers as

vector and simple-array (see section 4.5). Thus

96 COMMON LISP

(typep foo ´(array bignum))

in the first edition asked the question, Is foo an array specialized to hold bignums?

but under the new interpretation asks the question, Could the array foo have resulted

from giving bignum as the :element-type argument to make-array?

[Function]subtypep type1 type2

The arguments must be type specifiers that are acceptable to typep. The two type

specifiers are compared; this predicate is true if type1 is definitely a (not necessarily

proper) subtype of type2. If the result is nil, however, then type1 may or may not be

a subtype of type2 (sometimes it is impossible to tell, especially when satisfies type

specifiers are involved). A second returned value indicates the certainty of the result;

if it is true, then the first value is an accurate indication of the subtype relationship.

Thus there are three possible result combinations:

t t type1 is definitely a subtype of type2

nil t type1 is definitely not a subtype of type2

nil nil subtypep could not determine the relationship

X3J13 voted in January 1989 〈171〉 to place certain requirements upon the imple

mentation of subtypep, for it noted that implementations in many cases simply “give

up” and return the two values nil and nil when in fact it would have been possible to

determine the relationship between the given types. The requirements are as follows,

where it is understood that a type specifier s involves a type specifier u if either s

contains an occurrence of u directly or s contains a type specifier w defined by deftype

whose expansion involves u.

. subtypep is not permitted to return a second value of nil unless one or both of its

arguments involves satisfies, and, or, not, or member.

. subtypep should signal an error when one or both of its arguments involves values

or the list form of the function type specifier.

. subtypep must always return the two values t and t in the case where its arguments,

after expansion of specifiers defined by deftype, are equal.

In addition, X3J13 voted to clarify that in some cases the relationships between

types as reflected by subtypep may be implementationspecific. For example, in an

implementation supporting only one type of floatingpoint number, (subtypep ´float

´long-float) would return t and t, since the two types would be identical.

Note that satisfies is an exception because relationships between types involving

satisfies are undecidable in general, but (as X3J13 noted) and, or, not, and member

PREDICATES 97

are merely very messy to deal with. In all likelihood these will not be addressed

unless and until someone is willing to write a careful specification that covers all the

cases for the processing of these type specifiers by subtypep. The requirements stated

above were easy to state and probably suffice for most cases of interest.

X3J13 voted in January 1989 〈8〉 to change subtypep to give specialized array and

complex type specifiers the same meaning for purposes of type discrimination as they

have for declaration purposes. Of course, this also applies to such type specifiers as

vector and simple-array (see section 4.5).

If A and B are type specifiers (other than *, which technically is not a type specifier

anyway), then (array A) and (array B) represent the same type in a given implemen

tation if and only if they denote arrays of the same specialized representation in that

implementation; otherwise they are disjoint. To put it another way, they represent

the same type if and only if (upgraded-array-element-type ´A) and (upgraded-array-

element-type ´B) are the same type. Therefore

(subtypep ´(array A) ´(array B))

is true if and only if (upgraded-array-element-type ´A) is the same type as (upgraded-

array-element-type ´B).

The complex type specifier is treated in a similar but subtly different manner. If A and

B are two type specifiers (but not *, which technically is not a type specifier anyway),

then (complex A) and (complex B) represent the same type in a given implementation

if and only if they refer to complex numbers of the same specialized representation

in that implementation; otherwise they are disjoint. Note, however, that there is

no function called make-complex that allows one to specify a particular element type

(then to be upgraded); instead, one must describe specialized complex numbers in

terms of the actual types of the parts from which they were constructed. There is

no number of type (or rather, representation) float as such; there are only numbers

of type single-float, numbers of type double-float, and so on. Therefore we want

(complex single-float) to be a subtype of (complex float).

The rule, then, is that (complex A) and (complex B) represent the same type (and

otherwise are disjoint) in a given implementation if and only if either the type A

is a subtype of B, or (upgraded-complex-part-type ´A) and (upgraded-complex-part-

type ´B) are the same type. In the latter case (complex A) and (complex B) in fact

refer to the same specialized representation. Therefore

(subtypep ´(complex A) ´(complex B))

is true if and only if the results of (upgraded-complex-part-type ´A) and (upgraded-

complex-part-type ´B) are the same type.

Under this interpretation

98 COMMON LISP

(subtypep ´(complex single-float) ´(complex float))

must be true in all implementations; but

(subtypep ´(array single-float) ´(array float))

is true only in implementations that do not have a specialized array representation for

single-float elements distinct from that for float elements in general.

6.2.2. Specific Data Type Predicates

The following predicates test for individual data types.

[Function]null object

null is true if its argument is (), and otherwise is false. This is the same operation

performed by the function not; however, not is normally used to invert a Boolean

value, whereas null is normally used to test for an empty list. The programmer can

therefore express intent by the choice of function name.

(null x) ≡ (typep x ´null) ≡ (eq x ´())

[Function]symbolp object

symbolp is true if its argument is a symbol, and otherwise is false.

(symbolp x) ≡ (typep x ´symbol)

Compatibility note: The Interlisp equivalent of symbolp is called litatom.

[Function]atom object

The predicate atom is true if its argument is not a cons, and otherwise is false. Note

that (atom ´()) is true, because () ≡ nil.

(atom x) ≡ (typep x ´atom) ≡ (not (typep x ´cons))

Compatibility note: In some Lisp dialects, notably Interlisp, only symbols and numbers are

considered to be atoms; arrays and strings are considered to be neither atoms nor lists (conses).

PREDICATES 99

[Function]consp object

The predicate consp is true if its argument is a cons, and otherwise is false. Note that

the empty list is not a cons, so (consp ´()) ≡ (consp ´nil) ⇒ nil.

(consp x) ≡ (typep x ´cons) ≡ (not (typep x ´atom))

Compatibility note: Some Lisp implementations call this function pairp or listp. The name

pairp was rejected for Common Lisp because it emphasizes too strongly the dottedpair notion

rather than the usual usage of conses in lists. On the other hand, listp too strongly implies that

the cons is in fact part of a list, which after all it might not be; moreover, () is a list, though

not a cons. The name consp seems to be the appropriate compromise.

[Function]listp object

listp is true if its argument is a cons or the empty list (), and otherwise is false. It

does not check for whether the list is a “true list” (one terminated by nil) or a “dotted

list” (one terminated by a nonnull atom).

(listp x) ≡ (typep x ´list) ≡ (typep x ´(or cons null))

[Function]numberp object

numberp is true if its argument is any kind of number, and otherwise is false.

(numberp x) ≡ (typep x ´number)

[Function]integerp object

integerp is true if its argument is an integer, and otherwise is false.

(integerp x) ≡ (typep x ´integer)

Compatibility note: In MacLisp this is called fixp. Users have been confused as to whether

this meant integerp or fixnump, and so the name integerp has been adopted here.

[Function]rationalp object

rationalp is true if its argument is a rational number (a ratio or an integer), and

otherwise is false.

(rationalp x) ≡ (typep x ´rational)

100 COMMON LISP

[Function]floatp object

floatp is true if its argument is a floatingpoint number, and otherwise is false.

(floatp x) ≡ (typep x ´float)

[Function]realp object

X3J13 voted in March 1989 〈151〉 to add the function realp. realp is true if its

argument is a real number, and otherwise is false.

(realp x) ≡ (typep x ´real)

[Function]complexp object

complexp is true if its argument is a complex number, and otherwise is false.

(complexp x) ≡ (typep x ´complex)

[Function]characterp object

characterp is true if its argument is a character, and otherwise is false.

(characterp x) ≡ (typep x ´character)

[Function]stringp object

stringp is true if its argument is a string, and otherwise is false.

(stringp x) ≡ (typep x ´string)

[Function]bit-vector-p object

bit-vector-p is true if its argument is a bitvector, and otherwise is false.

(bit-vector-p x) ≡ (typep x ´bit-vector)

[Function]vectorp object

vectorp is true if its argument is a vector, and otherwise is false.

(vectorp x) ≡ (typep x ´vector)

PREDICATES 101

[Function]simple-vector-p object

vectorp is true if its argument is a simple general vector, and otherwise is false.

(simple-vector-p x) ≡ (typep x ´simple-vector)

[Function]simple-string-p object

simple-string-p is true if its argument is a simple string, and otherwise is false.

(simple-string-p x) ≡ (typep x ´simple-string)

[Function]simple-bit-vector-p object

simple-bit-vector-p is true if its argument is a simple bitvector, and otherwise is

false.

(simple-bit-vector-p x) ≡ (typep x ´simple-bit-vector)

[Function]arrayp object

arrayp is true if its argument is an array, and otherwise is false.

(arrayp x) ≡ (typep x ´array)

[Function]packagep object

packagep is true if its argument is a package, and otherwise is false.

(packagep x) ≡ (typep x ´package)

[Function]functionp object

functionp is true if its argument is suitable for applying to arguments, using for
...

example the funcall or apply function. Otherwise functionp is false.

functionp is always true of symbols, lists whose car is the symbol lambda, any

value returned by the function special form, and any values returned by the function

compile when the first argument is nil.

X3J13 voted in June 1988 〈90〉 to define

(functionp x) ≡ (typep x ´function)

102 COMMON LISP

Because the vote also specifies that types cons and symbol are disjoint from the type

function, this is an incompatible change; now functionp is in fact always false of

symbols and lists.

[Function]compiled-function-p object

compiled-function-p is true if its argument is any compiled code object, and otherwise

is false.

(compiled-function-p x) ≡ (typep x ´compiled-function)

[Function]commonp object
...

commonp is true if its argument is any standard Common Lisp data type, and otherwise

is false.

(commonp x) ≡ (typep x ´common)

X3J13 voted in March 1989 〈17〉 to remove the predicate commonp (and the type

common) from the language.

See also standard-char-p, string-char-p, streamp, random-state-p, readtablep,

hash-table-p, and pathnamep.

6.3. Equality Predicates

Common Lisp provides a spectrum of predicates for testing for equality of two

objects: eq (the most specific), eql, equal, and equalp (the most general). eq and equal

have the meanings traditional in Lisp. eql was added because it is frequently needed,

and equalp was added primarily in order to have a version of equal that would ignore

type differences when comparing numbers and case differences when comparing

characters. If two objects satisfy any one of these equality predicates, then they also

satisfy all those that are more general.

[Function]eq x y

(eq x y) is true if and only if x and y are the same identical object. (Implementa

tionally, x and y are usually eq if and only if they address the same identical memory

location.)

It should be noted that things that print the same are not necessarily eq to each

other. Symbols with the same print name usually are eq to each other because of the

use of the intern function. However, numbers with the same value need not be eq,

and two similar lists are usually not eq. For example:

PREDICATES 103

(eq ´a ´b) is false.

(eq ´a ´a) is true.

(eq 3 3) might be true or false, depending on the implementation.

(eq 3 3.0) is false.

(eq 3.0 3.0) might be true or false, depending on the implementation.

(eq #--c(3 -4) #--c(3 -4))

might be true or false, depending on the implementation.

(eq #--c(3 -4.0) #--c(3 -4)) is false.

(eq (cons ´a ´b) (cons ´a ´c)) is false.

(eq (cons ´a ´b) (cons ´a ´b)) is false.

(eq ´(a . b) ´(a . b)) might be true or false.

(progn (setq x (cons ´a ´b)) (eq x x)) is true.

(progn (setq x ´(a . b)) (eq x x)) is true.

(eq #--\A #--\A) might be true or false, depending on the implementation.

(eq "Foo" "Foo") might be true or false.

(eq "Foo" (copy-seq "Foo")) is false.

(eq "FOO" "foo") is false.

In Common Lisp, unlike some other Lisp dialects, the implementation is permitted

to make “copies” of characters and numbers at any time. (This permission is granted

because it allows tremendous performance improvements in many common situa

tions.) The net effect is that Common Lisp makes no guarantee that eq will be true

even when both its arguments are “the same thing” if that thing is a character or

number. For example:

(let ((x 5)) (eq x x)) might be true or false.

The predicate eql is the same as eq, except that if the arguments are characters or

numbers of the same type then their values are compared. Thus eql tells whether

two objects are conceptually the same, whereas eq tells whether two objects are

implementationally identical. It is for this reason that eql, not eq, is the default

comparison predicate for the sequence functions defined in chapter 14.

Implementation note: eq simply compares the two given pointers, so any kind of object that

is represented in an “immediate” fashion will indeed have likevalued instances satisfy eq. In

some implementations, for example, fixnums and characters happen to “work.” However, no

program should depend on this, as other implementations of Common Lisp might not use an

immediate representation for these data types.

An additional problem with eq is that the implementation is permitted to “collapse”
......................................

constants (or portions thereof) appearing in code to be compiled if they are equal. An

...

104 COMMON LISP

object is considered to be a constant in code to be compiled if it is a selfevaluating

form or is contained in a quote form. This is why (eq "Foo" "Foo") might be true

or false; in interpreted code it would normally be false, because reading in the form

(eq "Foo" "Foo") would construct distinct strings for the two arguments to eq, but

the compiler might choose to use the same identical string or two distinct copies

as the two arguments in the call to eq. Similarly, (eq ´(a . b) ´(a . b)) might be

true or false, depending on whether the constant conses appearing in the quote forms

were collapsed by the compiler. However, (eq (cons ´a ´b) (cons ´a ´b)) is always

false, because every distinct call to the cons function necessarily produces a new and

distinct cons.

X3J13 voted in March 1989 〈147〉 to clarify that eval and compile are not permitted

either to copy or to coalesce (“collapse”) constants (see eq) appearing in the code

they process; the resulting program behavior must refer to objects that are eql to

the corresponding objects in the source code. Only the compile-file/load process is

permitted to copy or coalesce constants (see section 25.1).

[Function]eql x y

The eql predicate is true if its arguments are eq, or if they are numbers of the same

type with the same value, or if they are character objects that represent the same

character. For example:

(eql ´a ´b) is false.

(eql ´a ´a) is true.

(eql 3 3) is true.

(eql 3 3.0) is false.

(eql 3.0 3.0) is true.

(eql #--c(3 -4) #--c(3 -4)) is true.

(eql #--c(3 -4.0) #--c(3 -4)) is false.

(eql (cons ´a ´b) (cons ´a ´c)) is false.

(eql (cons ´a ´b) (cons ´a ´b)) is false.

(eql ´(a . b) ´(a . b)) might be true or false.

(progn (setq x (cons ´a ´b)) (eql x x)) is true.

(progn (setq x ´(a . b)) (eql x x)) is true.

(eql #--\A #--\A) is true.

(eql "Foo" "Foo") might be true or false.

(eql "Foo" (copy-seq "Foo")) is false.

(eql "FOO" "foo") is false.

Normally (eql 1.0s0 1.0d0) would be false, under the assumption that 1.0s0 and

1.0d0 are of distinct data types. However, implementations that do not provide four

PREDICATES 105

distinct floatingpoint formats are permitted to “collapse” the four formats into some

smaller number of them; in such an implementation (eql 1.0s0 1.0d0) might be true.

The predicate −− will compare the values of two numbers even if the numbers are of

different types.

If an implementation supports positive and negative zeros as distinct values (as in

the IEEE proposed standard floatingpoint format), then (eql 0.0 -0.0) will be false.

Otherwise, when the syntax -0.0 is read it will be interpreted as the value 0.0, and so

(eql 0.0 -0.0) will be true. The predicate −− differs from eql in that (−− 0.0 -0.0) will

always be true, because −− compares the mathematical values of its operands, whereas

eql compares the representational values, so to speak.

Two complex numbers are considered to be eql if their real parts are eql and their

imaginary parts are eql. For example, (eql #--C(4 5) #--C(4 5)) is true and (eql #--C(4

5) #--C(4.0 5.0)) is false. Note that while (eql #--C(5.0 0.0) 5.0) is false, (eql #--C(5

0) 5) is true. In the case of (eql #--C(5.0 0.0) 5.0) the two arguments are of different

types and so cannot satisfy eql; that’s all there is to it. In the case of (eql #--C(5 0) 5),

however, #--C(5 0) is not a complex number but is always automatically reduced by

the rule of complex canonicalization to the integer 5, just as the apparent ratio 20/4 is

always simplified to 5.

The case of (eql "Foo" "Foo") is discussed above in the description of eq. While

eql compares the values of numbers and characters, it does not compare the contents

of strings. To compare the characters of two strings, one should use equal, equalp,

string−−, or string-equal.

Compatibility note: The Common Lisp function eql is similar to the Interlisp function eqp.

However, eql considers 3 and 3.0 to be different, whereas eqp considers them to be the same;

eqp behaves like the Common Lisp −− function, not like eql, when both arguments are numbers.

[Function]equal x y

The equal predicate is true if its arguments are structurally similar (isomorphic)

objects. A rough rule of thumb is that two objects are equal if and only if their printed

representations are the same.

Numbers and characters are compared as for eql. Symbols are compared as for

eq. This method of comparing symbols can violate the rule of thumb for equal and

printed representations, but only in the infrequently occurring case of two distinct

symbols with the same print name.

Certain objects that have components are equal if they are of the same type and

corresponding components are equal. This test is implemented in a recursive manner

and may fail to terminate for circular structures.

106 COMMON LISP

For conses, equal is defined recursively as the two car’s being equal and the two

cdr’s being equal.

Two arrays are equal only if they are eq, with one exception: strings and bitvectors

are compared elementbyelement. If either argument has a fill pointer, the fill pointer

limits the number of elements examined by equal. Uppercase and lowercase letters

in strings are considered by equal to be distinct. (In contrast, equalp ignores case

distinctions in strings.)

Compatibility note: In Lisp Machine Lisp, equal ignores the difference between uppercase

and lowercase letters in strings. This violates the rule of thumb about printed representations,

however, which is very useful, especially to novices. It is also inconsistent with the treatment

of single characters, which in Lisp Machine Lisp are represented as fixnums.

Two pathname objects are equal if and only if all the corresponding components

(host, device, and so on) are equivalent. (Whether or not uppercase and lowercase

letters are considered equivalent in strings appearing in components depends on

the file name conventions of the file system.) Pathnames that are equal should be

functionally equivalent.

X3J13 voted in June 1989 〈71〉 to clarify that equal never recursively descends

any structure or data type other than the ones explicitly described above: conses,

bitvectors, strings, and pathnames. Numbers and characters are compared as if by

eql, and all other data objects are compared as if by eq.

(equal ´a ´b) is false.

(equal ´a ´a) is true.

(equal 3 3) is true.

(equal 3 3.0) is false.

(equal 3.0 3.0) is true.

(equal #--c(3 -4) #--c(3 -4)) is true.

(equal #--c(3 -4.0) #--c(3 -4)) is false.

(equal (cons ´a ´b) (cons ´a ´c)) is false.

(equal (cons ´a ´b) (cons ´a ´b)) is true.

(equal ´(a . b) ´(a . b)) is true.

(progn (setq x (cons ´a ´b)) (equal x x)) is true.

(progn (setq x ´(a . b)) (equal x x)) is true.

(equal #--\A #--\A) is true.

(equal "Foo" "Foo") is true.

(equal "Foo" (copy-seq "Foo")) is true.

(equal "FOO" "foo") is false.

PREDICATES 107

To compare a tree of conses using eql (or any other desired predicate) on the leaves,

use tree-equal.

[Function]equalp x y

Two objects are equalp if they are equal; if they are characters and satisfy char-equal,

which ignores alphabetic case and certain other attributes of characters; if they are

numbers and have the same numerical value, even if they are of different types; or if

they have components that are all equalp.

Objects that have components are equalp if they are of the same type and corre

sponding components are equalp. This test is implemented in a recursive manner and

may fail to terminate for circular structures. For conses, equalp is defined recursively

as the two car’s being equalp and the two cdr’s being equalp.

Two arrays are equalp if and only if they have the same number of dimensions, the

dimensions match, and the corresponding components are equalp. The specializations

need not match; for example, a string and a general array that happens to contain

the same characters will be equalp (though definitely not equal). If either argument

has a fill pointer, the fill pointer limits the number of elements examined by equalp.

Because equalp performs elementbyelement comparisons of strings and ignores the

alphabetic case of characters, case distinctions are therefore also ignored when equalp

compares strings.

Two symbols can be equalp only if they are eq, that is, the same identical object.

X3J13 voted in June 1989 〈71〉 to specify that equalp compares components of hash

tables (see below), and to clarify that otherwise equalp never recursively descends

any structure or data type other than the ones explicitly described above: conses,

arrays (including bitvectors and strings), and pathnames. Numbers are compared

for numerical equality (see −−), characters are compared as if by char-equal, and all

other data objects are compared as if by eq.

Two hash tables are considered the same by equalp if and only if they satisfy a

fourpart test:

. They must be of the same kind; that is, equivalent :test arguments were given to

make-hash-table when the two hash tables were created.

. They must have the same number of entries (see hash-table-count).

. For every entry (key1, value1) in one hash table there must be a corresponding

entry (key2, value2) in the other, such that key1 and key2 are considered to be the

same by the :test function associated with the hash tables.

108 COMMON LISP

. For every entry (key1, value1) in one hash table and its corresponding entry (key2,

value2) in the other, such that key1 and key2 are the same, equalp must be true of

value1 and value2.

The four parts of this test are carried out in the order shown, and if some part of the

test fails, equalp returns nil and the other parts of the test are not attempted.

If equalp must compare two structures and the defstruct definition for one used

the :type option and the other did not, then equalp returns nil.

If equalp must compare two structures and neither defstruct definition used the

:type option, then equalp returns t if and only if the structures have the same type

(that is, the same defstruct name) and the values of all corresponding slots (slots

having the same name) are equalp.

As part of the X3J13 discussion of this issue the following observations were

made. Object equality is not a concept for which there is a uniquely determined

correct algorithm. The appropriateness of an equality predicate can be judged only

in the context of the needs of some particular program. Although these functions

take any type of argument and their names sound very generic, equal and equalp

are not appropriate for every application. Any decision to use or not use them

should be determined by what they are documented to do rather than by any abstract

characterization of their function. If neither equal nor equalp is found to be appropriate

in a particular situation, programmers are encouraged to create another operator that

is appropriate rather than blame equal or equalp for “doing the wrong thing.”

Note that one consequence of the vote to change the rules of floatingpoint conta

gion 〈37〉 (described in section 12.1) is to make equalp a true equivalence relation on

numbers.

(equalp ´a ´b) is false.

(equalp ´a ´a) is true.

(equalp 3 3) is true.

(equalp 3 3.0) is true.

(equalp 3.0 3.0) is true.

(equalp #--c(3 -4) #--c(3 -4)) is true.

(equalp #--c(3 -4.0) #--c(3 -4)) is true.

(equalp (cons ´a ´b) (cons ´a ´c)) is false.

(equalp (cons ´a ´b) (cons ´a ´b)) is true.

(equalp ´(a . b) ´(a . b)) is true.

(progn (setq x (cons ´a ´b)) (equalp x x)) is true.

(progn (setq x ´(a . b)) (equalp x x)) is true.

(equalp #--\A #--\A) is true.

(equalp "Foo" "Foo") is true.

(equalp "Foo" (copy-seq "Foo")) is true.

PREDICATES 109

(equalp "FOO" "foo") is true.

6.4. Logical Operators

Common Lisp provides three operators on Boolean values: and, or, and not. Of

these, and and or are also control structures because their arguments are evaluated

conditionally. The function not necessarily examines its single argument, and so is a

simple function.

[Function]not x

not returns t if x is nil, and otherwise returns nil. It therefore inverts its argument

considered as a Boolean value.

null is the same as not; both functions are included for the sake of clarity. As a

matter of style, it is customary to use null to check whether something is the empty

list and to use not to invert the sense of a logical value.

[Macro]and { form}∗

(and form1 form2 ...) evaluates each form, one at a time, from left to right. If any

form evaluates to nil, the value nil is immediately returned without evaluating the

remaining forms. If every form but the last evaluates to a nonnil value, and returns

whatever the last form returns. Therefore in general and can be used both for logical

operations, where nil stands for false and nonnil values stand for true, and as a

conditional expression. An example follows.

(if (and (>−− n 0)

(< n (length a-simple-vector))

(eq (elt a-simple-vector n) ´foo))

(princ "Foo!"))

The above expression prints Foo! if element n of a-simple-vector is the symbol

foo, provided also that n is indeed a valid index for a-simple-vector. Because and

guarantees lefttoright testing of its parts, elt is not called if n is out of range.

To put it another way, the and special form does shortcircuit Boolean evaluation,

like the and then operator in Ada and what in some Pascallike languages is called

cand (for “conditional and”); the Lisp and special form is unlike the Pascal or Ada

and operator, which always evaluates both arguments.

In the previous example writing

110 COMMON LISP

(and (>−− n 0)

(< n (length a-simple-vector))

(eq (elt a-simple-vector n) ´foo)

(princ "Foo!"))

would accomplish the same thing. The difference is purely stylistic. Some program

mers never use expressions containing side effects within and, preferring to use if or

when for that purpose.

From the general definition, one can deduce that (and x)≡ x. Also, (and) evaluates

to t, which is an identity for this operation.

One can define and in terms of cond in this way:

(and x y z ... w) ≡ (cond ((not x) nil)

((not y) nil)

((not z) nil)

. . .
(t w))

See if and when, which are sometimes stylistically more appropriate than and for

conditional purposes. If it is necessary to test whether a predicate is true of all

elements of a list or vector (element 0 and element 1 and element 2 and . . .), then

the function every may be useful.

[Macro]or { form}∗

(or form1 form2 ...) evaluates each form, one at a time, from left to right. If any

form other than the last evaluates to something other than nil, or immediately returns

that nonnil value without evaluating the remaining forms. If every form but the

last evaluates to nil, or returns whatever evaluation of the last of the forms returns.

Therefore in general or can be used both for logical operations, where nil stands for

false and nonnil values stand for true, and as a conditional expression.

To put it another way, the or special form does shortcircuit Boolean evaluation,

like the or else operator in Ada and what in some Pascallike languages is called

cor (for “conditional or”); the Lisp or special form is unlike the Pascal or Ada or

operator, which always evaluates both arguments.

From the general definition, one can deduce that (or x) ≡ x. Also, (or) evaluates

to nil, which is the identity for this operation.

One can define or in terms of cond in this way:

(or x y z ... w) ≡ (cond (x) (y) (z) ... (t w))

PREDICATES 111

See if and unless, which are sometimes stylistically more appropriate than or for

conditional purposes. If it is necessary to test whether a predicate is true of one or

more elements of a list or vector (element 0 or element 1 or element 2 or . . .), then

the function some may be useful.

7

Control Structure

Common Lisp provides a variety of special structures for organizing programs. Some

have to do with flow of control (control structures), while others control access to

variables (environment structures). Some of these features are implemented as special

forms; others are implemented as macros, which typically expand into complex

program fragments expressed in terms of special forms or other macros.

Function application is the primary method for construction of Lisp programs.

Operations are written as the application of a function to its arguments. Usually,

Lisp programs are written as a large collection of small functions, each of which

implements a simple operation. These functions operate by calling one another, and

so larger operations are defined in terms of smaller ones. Lisp functions may call

upon themselves recursively, either directly or indirectly.

Locally defined functions (flet, labels) and macros (macrolet) are quite versatile.

The new symbol macro facility allows even more syntactic flexibility.

While the Lisp language is more applicative in style than statementoriented,

it nevertheless provides many operations that produce side effects and consequently

requires constructs for controlling the sequencing of side effects. The construct progn,

which is roughly equivalent to an Algol beginend block with all its semicolons,

executes a number of forms sequentially, discarding the values of all but the last.

Many Lisp control constructs include sequencing implicitly, in which case they are

said to provide an “implicit progn.” Other sequencing constructs include prog1 and

prog2.

For looping, Common Lisp provides the general iteration facility do as well as a

variety of specialpurpose iteration facilities for iterating or mapping over various

data structures.

Common Lisp provides the simple oneway conditionals when and unless, the

simple twoway conditional if, and the more general multiway conditionals such as

cond and case. The choice of which form to use in any particular situation is a matter

of taste and style.

112

CONTROL STRUCTURE 113

Constructs for performing nonlocal exits with various scoping disciplines are

provided: block, return, return-from, catch, and throw.

The multiplevalue constructs provide an efficient way for a function to return

more than one value; see values.

7.1. Constants and Variables

Because some Lisp data objects are used to represent programs, one cannot always

notate a constant data object in a program simply by writing the notation for the

object unadorned; it would be ambiguous whether a constant object or a program

fragment was intended. The quote special form resolves this ambiguity.

There are two kinds of variables in Common Lisp, in effect: ordinary variables

and function names. There are some similarities between the two kinds, and in a

few cases there are similar functions for dealing with them, for example boundp and

fboundp. However, for the most part the two kinds of variables are used for very

different purposes: one to name defined functions, macros, and special forms, and

the other to name data objects.

X3J13 voted in March 1989 〈89〉 to introduce the concept of a functionname,

which may be either a symbol or a twoelement list whose first element is the symbol

setf and whose second element is a symbol. The primary purpose of this is to allow

setf expander functions to be CLOS generic functions with userdefined methods.

Many places in Common Lisp that used to require a symbol for a function name

are changed to allow 2lists as well; for example, defun is changed so that one may

write (defun (setf foo) ...), and the function special form is changed to accept any

functionname. See also fdefinition.

By convention, any function named (setf f) should return its first argument as its

only value, in order to preserve the specification that setf returns its newvalue. See

setf.

Implementations are free to extend the syntax of functionnames to include lists

beginning with additional symbols other than setf or lambda.

7.1.1. Reference

The value of an ordinary variable may be obtained simply by writing the name of the

variable as a form to be executed. Whether this is treated as the name of a special

variable or a lexical variable is determined by the presence or absence of an applicable

special declaration; see chapter 9.

The following functions and special forms allow reference to the values of constants

and variables in other ways.

114 COMMON LISP

[Special form]quote object

(quote x) simply returns x. The object is not evaluated and may be any Lisp object

whatsoever. This construct allows any Lisp object to be written as a constant value

in a program. For example:

(setq a 43)

(list a (cons a 3)) ⇒ (43 (43 . 3))

(list (quote a) (quote (cons a 3)) ⇒ (a (cons a 3))

Since quote forms are so frequently useful but somewhat cumbersome to type, a

standard abbreviation is defined for them: any form f preceded by a single quote

(´) character is assumed to have (quote) wrapped around it to make (quote f).

For example:

(setq x ´(the magic quote hack))

is normally interpreted by read to mean

(setq x (quote (the magic quote hack)))

See section 22.1.3.

X3J13 voted in January 1989 〈36〉 to clarify that it is an error to destructively

modify any object that appears as a constant in executable code, whether within a

quote special form or as a selfevaluating form.

See section 25.1 for a discussion of how quoted constants are treated by the

compiler.

X3J13 voted in March 1989 〈147〉 to clarify that eval and compile are not permitted

either to copy or to coalesce (“collapse”) constants (see eq) appearing in the code

they process; the resulting program behavior must refer to objects that are eql to the

corresponding objects in the source code. Moreover, the constraints introduced by

the votes on issues 〈34〉 and 〈32〉 on what kinds of objects may appear as constants

apply only to compile-file (see section 25.1).

[Special form]function fn

The value of function is always the functional interpretation of fn; fn is interpreted as

if it had appeared in the functional position of a function invocation. In particular, if

fn is a symbol, the functional definition associated with that symbol is returned; see

symbol-function. If fn is a lambdaexpression, then a “lexical closure” is returned,

that is, a function that when invoked will execute the body of the lambdaexpression

in such a way as to observe the rules of lexical scoping properly.

CONTROL STRUCTURE 115

X3J13 voted in June 1988 〈90〉 to specify that the result of a function special form

is always of type function. This implies that a form (function fn) may be interpreted

as (the (function fn)).

It is an error to use the function special form on a symbol that does not denote

a function in the lexical or global environment in which the special form appears.

Specifically, it is an error to use the function special form on a symbol that denotes a

macro or special form. Some implementations may choose not to signal this error for

performance reasons, but implementations are forbidden to extend the semantics of

function in this respect; that is, an implementation is not allowed to define the failure

to signal an error to be a “useful” behavior.

X3J13 voted in March 1989 〈89〉 to extend function to accept any functionname

(a symbol or a list whose car is setf—see section 7.1) as well as lambdaexpressions.

Thus one may write (function (setf cadr)) to refer to the setf expansion function

for cadr.

For example:

(defun adder (x) (function (lambda (y) (+ x y))))

The result of (adder 3) is a function that will add 3 to its argument:

(setq add3 (adder 3))

(funcall add3 5) ⇒ 8

This works because function creates a closure of the inner lambdaexpression that is

able to refer to the value 3 of the variable x even after control has returned from the

function adder.

More generally, a lexical closure in effect retains the ability to refer to lexically

visible bindings, not just values. Consider this code:

(defun two-funs (x)

(list (function (lambda () x))

(function (lambda (y) (setq x y)))))

(setq funs (two-funs 6))

(funcall (car funs)) ⇒ 6

(funcall (cadr funs) 43) ⇒ 43

(funcall (car funs)) ⇒ 43

The function two-funs returns a list of two functions, each of which refers to the

binding of the variable x created on entry to the function two-funs when it was called

with argument 6. This binding has the value 6 initially, but setq can alter a binding.

The lexical closure created for the first lambdaexpression does not “snapshot” the

value 6 for x when the closure is created. The second function can be used to alter

116 COMMON LISP

the binding (to 43, in the example), and this altered value then becomes accessible to

the first function.

In situations where a closure of a lambdaexpression over the same set of bindings

may be produced more than once, the various resulting closures may or may not be

eq, at the discretion of the implementation. For example:

(let ((x 5) (funs ´()))

(dotimes (j 10)

(push #--´(lambda (z)

(if (null z) (setq x 0) (+ x z)))

funs))

funs)

The result of the above expression is a list of ten closures. Each logically requires

only the binding of x. It is the same binding in each case, so the ten closures may

or may not be the same identical (eq) object. On the other hand, the result of the

expression

(let ((funs ´()))

(dotimes (j 10)

(let ((x 5))

(push (function (lambda (z)

(if (null z) (setq x 0) (+ x z))))

funs)))

funs)

is also a list of ten closures. However, in this case no two of the closures may be

eq, because each closure is over a distinct binding of x, and these bindings can be

behaviorally distinguished because of the use of setq.

The question of distinguishable behavior is important; the result of the simpler

expression

(let ((funs ´()))

(dotimes (j 10)

(let ((x 5))

(push (function (lambda (z) (+ x z)))

funs)))

funs)

is a list of ten closures that may be pairwise eq. Although one might think that a

different binding of x is involved for each closure (which is indeed the case), the

bindings cannot be distinguished because their values are identical and immutable,

CONTROL STRUCTURE 117

there being no occurrence of setq on x. A compiler would therefore be justified in

transforming the expression to

(let ((funs ´()))

(dotimes (j 10)

(push (function (lambda (z) (+ 5 z)))

funs))

funs)

where clearly the closures may be the same after all. The general rule, then, is

that the implementation is free to have two distinct evaluations of the same function

form produce identical (eq) closures if it can prove that the two conceptually distinct

resulting closures must in fact be behaviorally identical with respect to invocation.

This is merely a permitted optimization; a perfectly valid implementation might

simply cause every distinct evaluation of a function form to produce a new closure

object not eq to any other.

Frequently a compiler can deduce that a closure in fact does not need to close over

any variable bindings. For example, in the code fragment

(mapcar (function (lambda (x) (+ x 2))) y)

the function (lambda (x) (+ x 2)) contains no references to any outside entity. In this

important special case, the same “closure” may be used as the value for all evaluations

of the function special form. Indeed, this value need not be a closure object at all;

it may be a simple compiled function containing no environment information. This

example is simply a special case of the foregoing discussion and is included as a

hint to implementors familiar with previous methods of implementing Lisp. The

distinction between closures and other kinds of functions is somewhat pointless,

actually, as Common Lisp defines no particular representation for closures and no

way to distinguish between closures and nonclosure functions. All that matters is

that the rules of lexical scoping be obeyed.

Since function forms are so frequently useful but somewhat cumbersome to type,

a standard abbreviation is defined for them: any form f preceded by #--´ (#-- followed by

an apostrophe) is assumed to have (function) wrapped around it to make (function

f). For example,

(remove-if #--´numberp ´(1 a b 3))

is normally interpreted by read to mean

(remove-if (function numberp) ´(1 a b 3))

See section 22.1.4.

118 COMMON LISP

[Function]symbol-value symbol

symbol-value returns the current value of the dynamic (special) variable named by

symbol. An error occurs if the symbol has no value; see boundp and makunbound. Note

that constant symbols are really variables that cannot be changed, and so symbol-value

may be used to get the value of a named constant. In particular, symbol-value of a

keyword will return that keyword.

symbol-value cannot access the value of a lexical variable.

This function is particularly useful for implementing interpreters for languages

embedded in Lisp. The corresponding assignment primitive is set; alternatively,

symbol-value may be used with setf.

[Function]symbol-function symbol

symbol-function returns the current global function definition named by symbol. An

error is signalled if the symbol has no function definition; see fboundp. Note that

the definition may be a function or may be an object representing a special form or

macro. In the latter case, however, it is an error to attempt to invoke the object as a

function. If it is desired to process macros, special forms, and functions equally well,

as when writing an interpreter, it is best first to test the symbol with macro-function

and special-form-p and then to invoke the functional value only if these two tests

both yield false.

This function is particularly useful for implementing interpreters for languages

embedded in Lisp.

symbol-function cannot access the value of a lexical function name produced by

flet or labels; it can access only the global function value.

The global function definition of a symbol may be altered by using setf with

symbol-function. Performing this operation causes the symbol to have only the

specified definition as its global function definition; any previous definition, whether

as a macro or as a function, is lost. It is an error to attempt to redefine the name of a

special form (see table 51).

X3J13 voted in June 1988 〈90〉 to clarify the behavior of symbol-function in the

light of the redefinition of the type function.

. It is permissible to call symbol-function on any symbol for which fboundp returns

true. Note that fboundp must return true for a symbol naming a macro or a special

form.

. If fboundp returns true for a symbol but the symbol denotes a macro or special form,

then the value returned by symbol-function is not welldefined but symbol-function

will not signal an error.

CONTROL STRUCTURE 119

. When symbol-function is used with setf the new value must be of type function.

It is an error to set the symbol-function of a symbol to a symbol, a list, or the value

returned by symbol-function on the name of a macro or a special form.

[Function]fdefinition function-name

X3J13 voted in March 1989 〈89〉 to add the function fdefinition to the language. It

is exactly like symbol-function except that its argument may be any functionname

(a symbol or a list whose car is setf—see section 7.1); it returns the current global

function definition named by the argument functionname. One may use fdefinition

with setf to change the current global function definition associated with a function

name.

[Function]boundp symbol

boundp is true if the dynamic (special) variable named by symbol has a value; other

wise, it returns nil.

See also set and makunbound.

[Function]fboundp symbol

fboundp is true if the symbol has a global function definition. Note that fboundp is true

when the symbol names a special form or macro. macro-function and special-form-p

may be used to test for these cases.

X3J13 voted in June 1988 〈90〉 to emphasize that, despite the tightening of the

definition of the type function, fboundp must return true when the argument names a

special form or macro.

See also symbol-function and fmakunbound.

X3J13 voted in March 1989 〈89〉 to extend fboundp to accept any functionname

(a symbol or a list whose car is setf—see section 7.1). Thus one may write (fboundp

´(setf cadr)) to determine whether a setf expansion function has been globally

defined for cadr.

[Function]special-form-p symbol

The function special-form-p takes a symbol. If the symbol globally names a special

form, then a nonnil value is returned; otherwise nil is returned. A returned nonnil

value is typically a function of implementationdependent nature that can be used to

interpret (evaluate) the special form.

It is possible for both special-form-p and macro-function to be true of a symbol.

This is possible because an implementation is permitted to implement any macro

120 COMMON LISP

also as a special form for speed. On the other hand, the macro definition must be

available for use by programs that understand only the standard special forms listed

in table 51.

7.1.2. Assignment

The following facilities allow the value of a variable (more specifically, the value

associated with the current binding of the variable) to be altered. Such alteration is

different from establishing a new binding. Constructs for establishing new bindings

of variables are described in section 7.5.

[Special form]setq {var form}∗

The special form (setq var1 form1 var2 form2 ...) is the “simple variable assign

ment statement” of Lisp. First form1 is evaluated and the result is stored in the

variable var1, then form2 is evaluated and the result stored in var2, and so forth. The

variables are represented as symbols, of course, and are interpreted as referring to

static or dynamic instances according to the usual rules. Therefore setq may be used

for assignment of both lexical and special variables.

setq returns the last value assigned, that is, the result of the evaluation of its last

argument. As a boundary case, the form (setq) is legal and returns nil. There must

be an even number of argument forms. For example, in

(setq x (+ 3 2 1) y (cons x nil))

x is set to 6, y is set to (6), and the setq returns (6). Note that the first assignment

is performed before the second form is evaluated, allowing that form to use the new

value of x.

See also the description of setf, the Common Lisp “general assignment statement”

that is capable of assigning to variables, array elements, and other locations.

Some programmers choose to avoid setq as a matter of style, always using setf

for any kind of structure modification. Others use setq with simple variable names

and setf with all other generalized variables.

X3J13 voted in March 1989 〈173〉 to specify that if any var refers not to an ordinary

variable but to a binding made by symbol-macrolet, then that var is handled as if setf

had been used instead of setq.

[Macro]psetq {var form}∗

A psetq form is just like a setq form, except that the assignments happen in parallel.

First all of the forms are evaluated, and then the variables are set to the resulting

values. The value of the psetq form is nil. For example:

CONTROL STRUCTURE 121

(setq a 1)

(setq b 2)

(psetq a b b a)

a ⇒ 2

b ⇒ 1

In this example, the values of a and b are exchanged by using parallel assignment.

(If several variables are to be assigned in parallel in the context of a loop, the do

construct may be appropriate.)

See also the description of psetf, the Common Lisp “general parallel assignment

statement” that is capable of assigning to variables, array elements, and other loca

tions.

X3J13 voted in March 1989 〈173〉 to specify that if any var refers not to an ordinary

variable but to a binding made by symbol-macrolet, then that var is handled as if psetf

had been used instead of psetq.

[Function]set symbol value

set allows alteration of the value of a dynamic (special) variable. set causes the

dynamic variable named by symbol to take on value as its value.

X3J13 voted in January 1989 〈7〉 to clarify that the value may be any Lisp datum

whatsoever.

Only the value of the current dynamic binding is altered; if there are no bindings

in effect, the most global value is altered. For example,

(set (if (eq a b) ´c ´d) ´foo)

will either set c to foo or set d to foo, depending on the outcome of the test (eq a b).

set returns value as its result.

set cannot alter the value of a local (lexically bound) variable. The special form setq

is usually used for altering the values of variables (lexical or dynamic) in programs.

set is particularly useful for implementing interpreters for languages embedded in

Lisp. See also progv, a construct that performs binding rather than assignment of

dynamic variables.

[Function]makunbound symbol

[Function]fmakunbound symbol

makunbound causes the dynamic (special) variable named by symbol to become un

bound (have no value). fmakunbound does the analogous thing for the global function

definition named by symbol. For example:

122 COMMON LISP

(setq a 1)

a ⇒ 1

(makunbound ´a)

a ⇒ causes an error

(defun foo (x) (+ x 1))

(foo 4) ⇒ 5

(fmakunbound ´foo)

(foo 4) ⇒ causes an error

Both functions return symbol as the result value.

X3J13 voted in March 1989 〈89〉 to extend fmakunbound to accept any function

name (a symbol or a list whose car is setf—see section 7.1). Thus one may write

(fmakunbound ´(setf cadr)) to remove any global definition of a setf expansion

function for cadr.

7.2. Generalized Variables

In Lisp, a variable can remember one piece of data, that is, one Lisp object. The main

operations on a variable are to recover that object and to alter the variable to remember

a new object; these operations are often called access and update operations. The

concept of variables named by symbols can be generalized to any storage location

that can remember one piece of data, no matter how that location is named. Examples

of such storage locations are the car and cdr of a cons, elements of an array, and

components of a structure.

For each kind of generalized variable, typically there are two functions that imple

ment the conceptual access and update operations. For a variable, merely mentioning

the name of the variable accesses it, while the setq special form can be used to update

it. The function car accesses the car of a cons, and the function rplaca updates it.

The function symbol-value accesses the dynamic value of a variable named by a given

symbol, and the function set updates it.

Rather than thinking about two distinct functions that respectively access and

update a storage location somehow deduced from their arguments, we can instead

simply think of a call to the access function with given arguments as a name for the

storage location. Thus, just as x may be considered a name for a storage location (a

variable), so (car x) is a name for the car of some cons (which is in turn named by

x). Now, rather than having to remember two functions for each kind of generalized

variable (having to remember, for example, that rplaca corresponds to car), we adopt

a uniform syntax for updating storage locations named in this way, using the setf

macro. This is analogous to the way we use the setq special form to convert the name

CONTROL STRUCTURE 123

of a variable (which is also a form that accesses it) into a form that updates it. The

uniformity of this approach is illustrated in the following table.

Access Function Update Function Update Using setf

x (setq x datum) (setf x datum)

(car x) (rplaca x datum) (setf (car x) datum)

(symbol-value x) (set x datum) (setf (symbol-value x) datum)

setf is actually a macro that examines an access form and produces a call to the

corresponding update function.

Given the existence of setf in Common Lisp, it is not necessary to have setq,

rplaca, and set; they are redundant. They are retained in Common Lisp because of

their historical importance in Lisp. However, most other update functions (such as

putprop, the update function for get) have been eliminated from Common Lisp in the

expectation that setf will be uniformly used in their place.

[Macro]setf {place newvalue}∗

(setf place newvalue) takes a form place that when evaluated accesses a data object

in some location and “inverts” it to produce a corresponding form to update the

location. A call to the setf macro therefore expands into an update form that stores

the result of evaluating the form newvalue into the place referred to by the access

form.

If more than one placenewvalue pair is specified, the pairs are processed sequen

tially; that is,

(setf place1 newvalue1

place2 newvalue2)

...

placen newvaluen)

is precisely equivalent to

(progn (setf place1 newvalue1)

(setf place2 newvalue2)

...

(setf placen newvaluen))

For consistency, it is legal to write (setf), which simply returns nil.

The form place may be any one of the following:

. The name of a variable (either lexical or dynamic).

124 COMMON LISP

. A function call form whose first element is the name of any one of the following

functions:

aref car svref

nth cdr get

elt caar getf symbol-value

rest cadr gethash symbol-function

first cdar documentation symbol-plist

second cddr fill-pointer macro-function

third caaar caaaar cdaaar

fourth caadr caaadr cdaadr

fifth cadar caadar cdadar

sixth caddr caaddr cdaddr

seventh cdaar cadaar cddaar

eighth cdadr cadadr cddadr

ninth cddar caddar cdddar

tenth cdddr cadddr cddddr

X3J13 voted in March 1988 〈6〉 to add row-major-aref to this list.

X3J13 voted in June 1989 〈49〉 to add compiler-macro-function to this list.

X3J13 voted in March 1989 〈89〉 to clarify that this rule applies only when the

function name refers to a global function definition and not to a locally defined

function or macro.

. A function call form whose first element is the name of a selector function con

structed by defstruct.

X3J13 voted in March 1989 〈89〉 to clarify that this rule applies only when the

function name refers to a global function definition and not to a locally defined

function or macro.

. A function call form whose first element is the name of any one of the following

functions, provided that the new value is of the specified type so that it can be

CONTROL STRUCTURE 125

used to replace the specified “location” (which is in each of these cases not truly a

generalized variable):

Function Name Required Type

char string-char

schar string-char

bit bit

sbit bit

subseq sequence
...

X3J13 voted in March 1989 〈11〉 to eliminate the type string-char and to redefine

string to be the union of one or more specialized vector types, the types of whose

elements are subtypes of the type character. In the preceding table, the type

string-char should be replaced by some such phrase as “the elementtype of the

argument vector.”

X3J13 voted in March 1989 〈89〉 to clarify that this rule applies only when the

function name refers to a global function definition and not to a locally defined

function or macro.

In the case of subseq, the replacement value must be a sequence whose elements

may be contained by the sequence argument to subseq. (Note that this is not

so stringent as to require that the replacement value be a sequence of the same

type as the sequence of which the subsequence is specified.) If the length of the

replacement value does not equal the length of the subsequence to be replaced,

then the shorter length determines the number of elements to be stored, as for the

function replace.

. A function call form whose first element is the name of any one of the following

functions, provided that the specified argument to that function is in turn a place

form; in this case the new place has stored back into it the result of applying

the specified “update” function (which is in each of these cases not a true update

function):

Function Name Argument That Is a place Update Function Used

char-bit first set-char-bit

ldb second dpb

mask-field second deposit-field

X3J13 voted in March 1989 〈11〉 to eliminate char-bit and set-char-bit.

X3J13 voted in March 1989 〈89〉 to clarify that this rule applies only when the

function name refers to a global function definition and not to a locally defined

function or macro.

126 COMMON LISP

. A the type declaration form, in which case the declaration is transferred to the

newvalue form, and the resulting setf form is analyzed. For example,

(setf (the integer (cadr x)) (+ y 3))

is processed as if it were

(setf (cadr x) (the integer (+ y 3)))

. A call to apply where the first argument form is of the form #--´name, that is,

(function name), where name is the name of a function, calls to which are rec

ognized as places by setf. Suppose that the use of setf with apply looks like

this:

(setf (apply #--´name x1 x2 ... xn rest) x0)

The setf method for the function name must be such that

(setf (name z1 z2 ... zm) z0)

expands into a store form

(storefn zi1 zi2 ... zik zm)

That is, it must expand into a function call such that all arguments but the last

may be any permutation or subset of the new value z0 and the arguments of the

access form, but the last argument of the storing call must be the same as the last

argument of the access call. See define-setf-method for more details on accessing

and storing forms.

Given this, the setfofapply form shown above expands into

(apply #--´storefn xi1 xi2 ... xik rest)

As an example, suppose that the variable indexes contains a list of subscripts for

a multidimensional array foo whose rank is not known until run time. One may

access the indicated element of the array by writing

(apply #--´aref foo indexes)

and one may alter the value of the indicated element to that of newvalue by writing

(setf (apply #--´aref foo indexes) newvalue)

X3J13 voted in March 1989 〈89〉 to clarify that this rule applies only when the

function name apply refers to the global function definition and not to a locally

defined function or macro named apply.

CONTROL STRUCTURE 127

. A macro call, in which case setf expands the macro call and then analyzes the

resulting form.

X3J13 voted in March 1989 〈89〉 to clarify that this step uses macroexpand-1, not

macroexpand. This allows the chance to apply any of the rules preceding this one to

any of the intermediate expansions.

. Any form for which a defsetf or define-setf-method declaration has been made.

X3J13 voted in March 1989 〈89〉 to clarify that this rule applies only when the

function name in the form refers to a global function definition and not to a locally

defined function or macro.

X3J13 voted in March 1989 〈89〉 to add one more rule to the preceding list, coming

after all those listed above:

. Any other list whose first element is a symbol (call it f). In this case, the call to

setf expands into a call to the function named by the list (setf f) (see section 7.1).

The first argument is the new value and the remaining arguments are the values

of the remaining elements of place. This expansion occurs regardless of whether

either f or (setf f) is defined as a function locally, globally, or not at all. For

example,

(setf (f arg1 arg2 ...) newvalue)

expands into a form with the same effect and value as

(let ((#--:temp1 arg1) ;Force correct order of evaluation

(#--:temp2 arg2)

...

(#--:temp0 newvalue))

(funcall (function (setf f))

#--:temp0

#--:temp1

#--:temp2 ...))

By convention, any function named (setf f) should return its first argument as its

only value, in order to preserve the specification that setf returns its newvalue.

X3J13 voted in March 1989 〈173〉 to add this case as well:

. A variable reference that refers to a symbol macro definition made by symbol-

macrolet, in which case setf expands the reference and then analyzes the resulting

form.

128 COMMON LISP

setf carefully arranges to preserve the usual lefttoright order in which the various

subforms are evaluated. On the other hand, the exact expansion for any particular form

is not guaranteed and may even be implementationdependent; all that is guaranteed is

that the expansion of a setf form will be an update form that works for that particular

implementation, and that the lefttoright evaluation of subforms is preserved.

The ultimate result of evaluating a setf form is the value of newvalue. Therefore

(setf (car x) y) does not expand into precisely (rplaca x y), but into something

more like

(let ((G1 x) (G2 y)) (rplaca G1 G2) G2)

the precise expansion being implementationdependent.

The user can define new setf expansions by using defsetf.

X3J13 voted in June 1989 〈159〉 to extend the specification of setf to allow a place

whose setf method has more than one store variable (see define-setf-method). In

such a case as many values are accepted from the newvalue form as there are store

variables; extra values are ignored and missing values default to nil, as is usual in

situations involving multiple values.

A proposal was submitted to X3J13 in September 1989 to add a setf method for

values so that one could in fact write, for example,

(setf (values quotient remainder)

(truncate linewidth tabstop))

but unless this proposal is accepted users will have to define a setf method for values

themselves (not a difficult task).

[Macro]psetf {place newvalue}∗

psetf is like setf except that if more than one placenewvalue pair is specified, then

the assignments of new values to places are done in parallel. More precisely, all

subforms that are to be evaluated are evaluated from left to right; after all evaluations

have been performed, all of the assignments are performed in an unpredictable order.

(The unpredictability matters only if more than one place form refers to the same

place.) psetf always returns nil.

X3J13 voted in June 1989 〈159〉 to extend the specification of psetf to allow a

place whose setf method has more than one store variable (see define-setf-method).

In such a case as many values are accepted from the newvalue form as there are store

variables; extra values are ignored and missing values default to nil, as is usual in

situations involving multiple values.

CONTROL STRUCTURE 129

[Macro]shiftf {place}+ newvalue

Each place form may be any form acceptable as a generalized variable to setf. In

the form (shiftf place1 place2 ... placen newvalue), the values in place1 through

placen are accessed and saved, and newvalue is evaluated, for a total of n + 1 values

in all. Values 2 through n + 1 are then stored into place1 through placen, and value 1

(the original value of place1) is returned. It is as if all the places form a shift register;

the newvalue is shifted in from the right, all values shift over to the left one place,

and the value shifted out of place1 is returned. For example:

(setq x (list ´a ´b ´c)) ⇒ (a b c)

(shiftf (cadr x) ´z) ⇒ b

and now x ⇒ (a z c)

(shiftf (cadr x) (cddr x) ´q) ⇒ z

and now x ⇒ (a (c) . q)

The effect of (shiftf place1 place2 ... placen newvalue) is equivalent to

(let ((var1 place1)

(var2 place2)

...

(varn placen))

(setf place1 var2)

(setf place2 var3)

...

(setf placen newvalue)

var1)

except that the latter would evaluate any subforms of each place twice, whereas

shiftf takes care to evaluate them only once. For example:

(setq n 0)

(setq x ´(a b c d))

(shiftf (nth (setq n (+ n 1)) x) ´z) ⇒ b

and now x ⇒ (a z c d)

but

(setq n 0)

(setq x ´(a b c d))

(prog1 (nth (setq n (+ n 1)) x)

(setf (nth (setq n (+ n 1)) x) ´z)) ⇒ b

130 COMMON LISP

and now x ⇒ (a b z d)

Moreover, for certain place forms shiftf may be significantly more efficient than the

prog1 version.

X3J13 voted in June 1989 〈159〉 to extend the specification of shiftf to allow a

place whose setf method has more than one store variable (see define-setf-method).

In such a case as many values are accepted from the newvalue form as there are store

variables; extra values are ignored and missing values default to nil, as is usual in

situations involving multiple values.

Rationale: shiftf and rotatef have been included in Common Lisp as generalizations of

twoargument versions formerly called swapf and exchf. The twoargument versions have been

found to be very useful, but the names were easily confused. The generalization to many

argument forms and the change of names were both inspired by the work of Suzuki [47],

which indicates that use of these primitives can make certain complex pointermanipulation

programs clearer and easier to prove correct.

[Macro]rotatef {place}∗

Each place form may be any form acceptable as a generalized variable to setf. In

the form (rotatef place1 place2 ... placen), the values in place1 through placen

are accessed and saved. Values 2 through n and value 1 are then stored into place1

through placen. It is as if all the places form an endaround shift register that is

rotated one place to the left, with the value of place1 being shifted around the end

to placen. Note that (rotatef place1 place2) exchanges the contents of place1 and

place2.

The effect of (rotatef place1 place2 ... placen) is roughly equivalent to

(psetf place1 place2

place2 place3

...

placen place1)

except that the latter would evaluate any subforms of each place twice, whereas

rotatef takes care to evaluate them only once. Moreover, for certain place forms

rotatef may be significantly more efficient.

rotatef always returns nil.

X3J13 voted in June 1989 〈159〉 to extend the specification of rotatef to allow a

place whose setf method has more than one store variable (see define-setf-method).

In such a case as many values are accepted from the newvalue form as there are store

CONTROL STRUCTURE 131

variables; extra values are ignored and missing values default to nil, as is usual in

situations involving multiple values.

Other macros that manipulate generalized variables include getf, remf, incf, decf,

push, pop, assert, ctypecase, and ccase.

Macros that manipulate generalized variables must guarantee the “obvious” se

mantics: subforms of generalizedvariable references are evaluated exactly as many

times as they appear in the source program, and they are evaluated in exactly the

same order as they appear in the source program.

In generalizedvariable references such as shiftf, incf, push, and setf of ldb, the

generalized variables are both read and written in the same reference. Preserving

the source program order of evaluation and the number of evaluations is particularly

important.

As an example of these semantic rules, in the generalizedvariable reference (setf

reference value) the value form must be evaluated after all the subforms of the

reference because the value form appears to the right of them.

The expansion of these macros must consist of code that follows these rules or has

the same effect as such code. This is accomplished by introducing temporary variables

bound to the subforms of the reference. As an optimization in the implementation,

temporary variables may be eliminated whenever it can be proved that removing them

has no effect on the semantics of the program. For example, a constant need never

be saved in a temporary variable. A variable, or for that matter any form that does

not have side effects, need not be saved in a temporary variable if it can be proved

that its value will not change within the scope of the generalizedvariable reference.

Common Lisp provides builtin facilities to take care of these semantic compli

cations and optimizations. Since the required semantics can be guaranteed by these

facilities, the user does not have to worry about writing correct code for them, es

pecially in complex cases. Even experts can become confused and make mistakes

while writing this sort of code.

X3J13 voted in March 1988 〈146〉 to clarify the preceding discussion about the

order of evaluation of subforms in calls to setf and related macros. The general

intent is clear: evaluation proceeds from left to right whenever possible. However,

the lefttoright rule does not remove the obligation on writers of macros and define-

setf-method to work to ensure lefttoright order of evaluation.

Let it be emphasized that, in the following discussion, a form is something whose

syntactic use is such that it will be evaluated. A subform means a form that is nested

inside another form, not merely any Lisp object nested inside a form regardless of

syntactic context.

The evaluation ordering of subforms within a generalized variable reference is

determined by the order specified by the second value returned by get-setf-method.

132 COMMON LISP

For all predefined generalized variable references (getf, ldb), this order of evaluation

is exactly lefttoright. When a generalized variable reference is derived from a macro

expansion, this rule is applied after the macro is expanded to find the appropriate

generalized variable reference.

This is intended to make it clear that if the user writes a defmacro or define-setf-

method macro that doesn’t preserve lefttoright evaluation order, the order specified

in the user’s code holds. For example, given

(defmacro wrong-order (x y) `(getf ,y ,x))

then

(push value (wrong-order place1 place2))

will evaluate place2 first and then place1 because that is the order they are evaluated

in the macro expansion.

For the macros that manipulate generalized variables (push, pushnew, getf, remf,

incf, decf, shiftf, rotatef, psetf, setf, pop, and those defined with define-modify-

macro) the subforms of the macro call are evaluated exactly once in lefttoright

order, with the subforms of the generalized variable references evaluated in the order

specified above.

Each of push, pushnew, getf, remf, incf, decf, shiftf, rotatef, psetf, and pop

evaluates all subforms before modifying any of the generalized variable locations.

Moreover, setf itself, in the case when a call on it has more than two arguments,

performs its operation on each pair in sequence. That is, in

(setf place1 value1 place2 value2 ...)

the subforms of place1 and value1 are evaluated, the location specified by place1 is

modified to contain the value returned by value1, and then the rest of the setf form

is processed in a like manner.

For the macros check-type, ctypecase, and ccase, subforms of the generalized

variable reference are evaluated once per test of a generalized variable, but they may

be evaluated again if the type check fails (in the case of check-type) or if none of the

cases holds (in ctypecase or ccase).

For the macro assert, the order of evaluation of the generalized variable references

is not specified.

Another reason for building in these functions is that the appropriate optimizations

will differ from implementation to implementation. In some implementations most

of the optimization is performed by the compiler, while in others a simpler compiler

is used and most of the optimization is performed in the macros. The cost of binding

a temporary variable relative to the cost of other Lisp operations may differ greatly

CONTROL STRUCTURE 133

between one implementation and another, and some implementations may find it best

never to remove temporary variables except in the simplest cases.

A good example of the issues involved can be seen in the following generalized

variable reference:

(incf (ldb byte-field variable))

This ought to expand into something like

(setq variable

(dpb (1+ (ldb byte-field variable))

byte-field

variable))

In this expansion example we have ignored the further complexity of returning the

correct value, which is the incremented byte, not the new value of variable. Note

that the variable byte-field is evaluated twice, and the variable variable is referred

to three times: once as the location in which to store a value, and twice during the

computation of that value.

Now consider this expression:

(incf (ldb (aref byte-fields (incf i))

(aref (determine-words-array) i)))

It ought to expand into something like this:

(let ((temp1 (aref byte-fields (incf i)))

(temp2 (determine-words-array)))

(setf (aref temp2 i)

(dpb (1+ (ldb temp1 (aref temp2 i)))

temp1

(aref temp2 i))))

Again we have ignored the complexity of returning the correct value. What is

important here is that the expressions (incf i) and (determine-words-array) must not

be duplicated because each may have a side effect or be affected by side effects.

X3J13 voted in January 1989 〈160〉 to specify more precisely the order of evaluation

of subforms when setf is used with an access function that itself takes a place as

an argument, for example, ldb, mask-field, and getf. (The vote also discussed the

function char-bit, but another vote 〈11〉 removed that function from the language.)

The setf methods for such accessors produce expansions that effectively require

explicit calls to get-setf-method.

134 COMMON LISP

The code produced as the macro expansion of a setf form that itself admits a

generalized variable as an argument must essentially do the following major steps:

. It evaluates the valueproducing subforms, in lefttoright order, and binds the

temporary variables to them; this is called binding the temporaries.

. It reads the value from the generalized variable, using the supplied accessing form,

to get the old value; this is called doing the access. Note that this is done after all

the evaluations of the preceding step, including any side effects they may have.

. It binds the store variable to a new value, and then installs this new value into the

generalized variable using the supplied storing form; this is called doing the store.

Doing the access for a generalized variable reference is not part of the series of

evaluations that must be done in lefttoright order.

The placespecifier forms ldb, mask-field, and getf admit (other) place specifiers

as arguments. During the setf expansion of these forms, it is necessary to call

get-setf-method to determine how the inner, nested generalized variable must be

treated.

In a form such as

(setf (ldb bytespec placeform) newvalueform)

the place referred to by the placeform must always be both accessed and updated;

note that the update is to the generalized variable specified by placeform, not to any

object of type integer.

Thus this call to setf should generate code to do the following:

. Evaluate bytespec and bind into a temporary

. Bind the temporaries for placeform

. Evaluate newvalueform and bind into the store variable

. Do the access to placeform

. Do the store into placeform with the given bitfield of the accessed integer replaced

with the value in the store variable

If the evaluation of newvalueform alters what is found in the given place—such as

setting a different bitfield of the integer—then the change of the bitfield denoted by

bytespec will be to that altered integer, because the access step must be done after

the newvalueform evaluation. Nevertheless, the evaluations required for binding the

temporaries are done before the evaluation of the newvalueform, thereby preserving

the required lefttoright evaluation order.

The treatment of mask-field is similar to that of ldb.

CONTROL STRUCTURE 135

In a form such as:

(setf (getf placeform indform) newvalueform)

the place referred to by the placeform must always be both accessed and updated;note

that the update is to the generalized variable specified by placeform, not necessarily

to the particular list which is the property list in question.

Thus this call to setf should generate code to do the following:

. Bind the temporaries for placeform

. Evaluate indform and bind into a temporary

. Evaluate the newvalueform and bind into the store variable

. Do the access to placeform

. Do the store into placeform with a possibly new property list obtained by com

bining the results of the evaluations and the access

If the evaluation of newvalueform alters what is found in the given place—such

as setting a different named property in the list—then the change of the property

denoted by indform will be to that altered list, because the access step is done after

the newvalueform evaluation. Nevertheless, the evaluations required for binding the

temporaries are done before the evaluation of the newvalueform, thereby preserving

the required lefttoright evaluation order.

Note that the phrase “possibly new property list” treats the implementation of

property lists as a “black box”; it can mean that the former property list is somehow

destructively reused, or it can mean partial or full copying of it. A side effect may

or may not occur; therefore setf must proceed as if the resultant property list were a

different copy needing to be stored back into the generalized variable.

The Common Lisp facilities provided to deal with these semantic issues include:

. Builtin macros such as setf and push that follow the semantic rules.

. The define-modify-macro macro, which allows new generalizedvariable manipu

lating macros (of a certain restricted kind) to be defined easily. It takes care of the

semantic rules automatically.

. The defsetf macro, which allows new types of generalizedvariable references to

be defined easily. It takes care of the semantic rules automatically.

. The define-setf-method macro and the get-setf-method function, which provide

access to the internal mechanisms when it is necessary to define a complicated

new type of generalizedvariable reference or generalizedvariablemanipulating

macro.

136 COMMON LISP

Also important are the changes that allow lexical environments to be used in

appropriate ways in setf methods.

[Macro]define-modify-macro name lambdalist function [docstring]

This macro defines a readmodifywrite macro named name. An example of such

a macro is incf. The first subform of the macro will be a generalizedvariable

reference. The function is literally the function to apply to the old contents of the

generalizedvariable to get the new contents; it is not evaluated. lambdalist describes

the remaining arguments for the function; these arguments come from the remaining

subforms of the macro after the generalizedvariable reference. lambdalist may

contain &optional and &rest markers. (The &key marker is not permitted here; &rest

suffices for the purposes of define-modify-macro.) docstring is documentation for

the macro name being defined.

The expansion of a define-modify-macro is equivalent to the following, except that

it generates code that follows the semantic rules outlined above.

(defmacro name (reference . lambdalist)

docstring

`(setf ,reference

(function ,reference ,arg1 ,arg2 ...)))

where arg1, arg2, ..., are the parameters appearing in lambdalist; appropriate provi

sion is made for a &rest parameter.

As an example, incf could have been defined by:

(define-modify-macro incf (&optional (delta 1)) +)

An example of a possibly useful macro not predefined in Common Lisp is

(define-modify-macro unionf (other-set &rest keywords) union)

X3J13 voted in March 1988 〈96〉 to specify that define-modify-macrocreates macros

that take &environment arguments and perform the equivalent of correctly passing

such lexical environments to get-setf-method in order to correctly maintain lexical

references.

[Macro]defsetf accessfn {updatefn [docstring] |
lambdalist (storevariable)

[[{declaration}∗ | docstring]] { form}∗ }
This defines how to setf a generalizedvariable reference of the form (access-fn

CONTROL STRUCTURE 137

...). The value of a generalizedvariable reference can always be obtained simply

by evaluating it, so accessfn should be the name of a function or a macro.

The user of defsetf provides a description of how to store into the generalized

variable reference and return the value that was stored (because setf is defined to

return this value). The implementation of defsetf takes care of ensuring that subforms

of the reference are evaluated exactly once and in the proper lefttoright order. In

order to do this, defsetf requires that accessfn be a function or a macro that evaluates

its arguments, behaving like a function. Furthermore, a setf of a call on accessfn

will also evaluate all of accessfn’s arguments; it cannot treat any of them specially.

This means that defsetf cannot be used to describe how to store into a generalized

variable that is a byte, such as (ldb field reference). To handle situations that do

not fit the restrictions imposed by defsetf, use define-setf-method, which gives the

user additional control at the cost of increased complexity.

A defsetf declaration may take one of two forms. The simple form is

(defsetf accessfn updatefn [doc-string])

The updatefn must name a function (or macro) that takes one more argument than

accessfn takes. When setf is given a place that is a call on accessfn, it expands

into a call on updatefn that is given all the arguments to accessfn and also, as its

last argument, the new value (which must be returned by updatefn as its value). For

example, the effect of

(defsetf symbol-value set)

is built into the Common Lisp system. This causes the expansion

(setf (symbol-value foo) fu) → (set foo fu)

for example. Note that

(defsetf car rplaca)

would be incorrect because rplaca does not return its last argument.

The complex form of defsetf looks like

(defsetf accessfn lambdalist (storevariable) . body)

and resembles defmacro. The body must compute the expansion of a setf of a call on

accessfn.

The lambdalist describes the arguments of accessfn. &optional, &rest, and &key

markers are permitted in lambdalist. Optional arguments may have defaults and

“suppliedp” flags. The storevariable describes the value to be stored into the

generalizedvariable reference.

138 COMMON LISP

Rationale: The storevariable is enclosed in parentheses to provide for an extension to multiple

store variables that would receive multiple values from the second subform of setf. The rules

given below for coding setf methods discuss the proper handling of multiple store variables

to allow for the possibility that this extension may be incorporated into Common Lisp in the

future.

The body forms can be written as if the variables in the lambdalist were bound

to subforms of the call on accessfn and the storevariable were bound to the second

subform of setf. However, this is not actually the case. During the evaluation of the

body forms, these variables are bound to names of temporary variables, generated as

if by gensym or gentemp, that will be bound by the expansion of setf to the values of

those subforms. This binding permits the body forms to be written without regard

for orderofevaluation issues. defsetf arranges for the temporary variables to be

optimized out of the final result in cases where that is possible. In other words,

an attempt is made by defsetf to generate the best code possible in a particular

implementation.

Note that the code generated by the body forms must include provision for returning

the correct value (the value of storevariable). This is handled by the body forms

rather than by defsetf because in many cases this value can be returned at no extra

cost, by calling a function that simultaneously stores into the generalized variable

and returns the correct value.

An example of the use of the complex form of defsetf:

(defsetf subseq (sequence start &optional end) (new-sequence)

`(progn (replace ,sequence ,new-sequence

:start1 ,start :end1 ,end)

,new-sequence))

X3J13 voted in March 1988 〈78〉 to specify that the body of the expander function

defined by the complex form of defsetf is implicitly enclosed in a block construct

whose name is the same as the name of the accessfn. Therefore return-from may be

used to exit from the function.

X3J13 voted in March 1989 〈50〉 to clarify that, while defining forms normally

appear at top level, it is meaningful to place them in nontoplevel contexts; the

complex form of defsetf must define the expander function within the enclosing

lexical environment, not within the global environment.

The underlying theory by which setf and related macros arrange to conform to the

semantic rules given above is that from any generalizedvariable reference one may

derive its “setf method,” which describes how to store into that reference and which

subforms of it are evaluated.

CONTROL STRUCTURE 139

Compatibility note: To avoid confusion, it should be noted that the use of the word “method”

here in connection with setf has nothing to do with its use in Lisp Machine Lisp in connection

with messagepassing and the Lisp Machine Lisp “flavor system.”

And of course it also has nothing to do with the methods in the Common Lisp Object System

〈12〉.

Given knowledge of the subforms of the reference, it is possible to avoid evaluating

them multiple times or in the wrong order. A setf method for a given access form

can be expressed as five values:

. A list of temporary variables

. A list of value forms (subforms of the given form) to whose values the temporary

variables are to be bound

. A second list of temporary variables, called store variables

. A storing form

. An accessing form

The temporary variables will be bound to the values of the value forms as if by

let*; that is, the value forms will be evaluated in the order given and may refer to the

values of earlier value forms by using the corresponding variables.

The store variables are to be bound to the values of the newvalue form, that is, the

values to be stored into the generalized variable. In almost all cases only a single

value is to be stored, and there is only one store variable.

The storing form and the accessing form may contain references to the temporary

variables (and also, in the case of the storing form, to the store variables). The

accessing form returns the value of the generalized variable. The storing form

modifies the value of the generalized variable and guarantees to return the values of

the store variables as its values; these are the correct values for setf to return. (Again,

in most cases there is a single store variable and thus a single value to be returned.)

The value returned by the accessing form is, of course, affected by execution of the

storing form, but either of these forms may be evaluated any number of times and

therefore should be free of side effects (other than the storing action of the storing

form).

The temporary variables and the store variables are generated names, as if by

gensym or gentemp, so that there is never any problem of name clashes among them,

or between them and other variables in the program. This is necessary to make

the special forms that do more than one setf in parallel work properly; these are

140 COMMON LISP

psetf, shiftf, and rotatef. Computation of the setf method must always create new

variable names; it may not return the same ones every time.

Some examples of setf methods for particular forms:

. For a variable x:

()

()

(g0001)

(setq x g0001)

x

. For (car exp):

(g0002)

(exp)

(g0003)

(progn (rplaca g0002 g0003) g0003)

(car g0002)

. For (subseq seq s e):

(g0004 g0005 g0006)

(seq s e)

(g0007)

(progn (replace g0004 g0007 :start1 g0005 :end1 g0006)

g0007)

(subseq g0004 g0005 g0006)

[Macro]define-setf-method accessfn lambdalist

[[{declaration}∗ | docstring]] { form}∗

This defines how to setf a generalizedvariable reference that is of the form (access-

fn...). The value of a generalizedvariable reference can always be obtained simply

by evaluating it, so accessfn should be the name of a function or a macro.

The lambdalist describes the subforms of the generalizedvariable reference, as

with defmacro. The result of evaluating the forms in the body must be five values

representing the setf method, as described above. Note that define-setf-method

differs from the complex form of defsetf in that while the body is being executed the

variables in lambdalist are bound to parts of the generalizedvariablereference, not to

temporary variables that will be bound to the values of such parts. In addition, define-

setf-method does not have defsetf’s restriction that accessfn must be a function or

CONTROL STRUCTURE 141

a functionlike macro; an arbitrary defmacro destructuring pattern is permitted in

lambdalist.

By definition there are no good small examples of define-setf-method because the

easy cases can all be handled by defsetf. A typical use is to define the setf method

for ldb:

;;; SETF method for the form (LDB bytespec int).

;;; Recall that the int form must itself be suitable for SETF.

(define-setf-method ldb (bytespec int)

(multiple-value-bind (temps vals stores

store-form access-form)

(get-setf-method int) ;Get SETF method for int

(let ((btemp (gensym)) ;Temp var for byte specifier

(store (gensym)) ;Temp var for byte to store

(stemp (first stores))) ;Temp var for int to store

;; Return the SETF method for LDB as five values.

(values (cons btemp temps) ;Temporary variables

(cons bytespec vals) ;Value forms

(list store) ;Store variables

`(let ((,stemp (dpb ,store ,btemp ,access-form)))

,store-form

,store) ;Storing form

`(ldb ,btemp ,access-form) ;Accessing form

))))

X3J13 voted in March 1988 〈96〉 to specify that the &environment lambdalist

keyword may appear in the lambdalist in the same manner as for defmacro in order to

obtain the lexical environment of the call to the setf macro. The preceding example

should be modified to take advantage of this new feature. The setf method must

accept an &environment parameter, which will receive the lexical environment of the

call to setf; this environment must then be given to get-setf-method in order that

it may correctly use any locally bound setf method that might be applicable to the

place form that appears as the second argument to ldb in the call to setf.

142 COMMON LISP

;;; SETF method for the form (LDB bytespec int).

;;; Recall that the int form must itself be suitable for SETF.

;;; Note the use of an &environment parameter to receive the

;;; lexical environment of the call for use with GET-SETF-METHOD.

(define-setf-method ldb (bytespec int &environment env)

(multiple-value-bind (temps vals stores

store-form access-form)

(get-setf-method int env) ;Get SETF method for int

(let ((btemp (gensym)) ;Temp var for byte specifier

(store (gensym)) ;Temp var for byte to store

(stemp (first stores))) ;Temp var for int to store

;; Return the SETF method for LDB as five values.

(values (cons btemp temps) ;Temporary variables

(cons bytespec vals) ;Value forms

(list store) ;Store variables

`(let ((,stemp (dpb ,store ,btemp ,access-form)))

,store-form

,store) ;Storing form

`(ldb ,btemp ,access-form) ;Accessing form

))))

X3J13 voted in March 1988 〈78〉 to specify that the body of the expander function

defined by define-setf-method is implicitly enclosed in a block construct whose name

is the same as the name of the accessfn. Therefore return-from may be used to exit

from the function.

X3J13 voted in March 1989 〈50〉 to clarify that, while defining forms normally ap

pear at top level, it is meaningful to place them in nontoplevelcontexts; define-setf-

method must define the expander function within the enclosing lexical environment,

not within the global environment.

[Function]get-setf-method form
..

get-setf-method returns five values constituting the setf method for form. The

form must be a generalizedvariable reference. get-setf-method takes care of error

checking and macro expansion and guarantees to return exactly one store variable.

As an example, an extremely simplified version of setf, allowing no more and

no fewer than two subforms, containing no optimization to remove unnecessary

variables, and not allowing storing of multiple values, could be defined by:

...

CONTROL STRUCTURE 143

(defmacro setf (reference value)

(multiple-value-bind (vars vals stores store-form access-form)

(get-setf-method reference)

(declare (ignore access-form))

`(let* ,(mapcar #--´list

(append vars stores)

(append vals (list value)))

,store-form)))

X3J13 voted in March 1988 〈96〉 to add an optional environment argument to

get-setf-method. The revised definition and example are as follows.

[Function]get-setf-method form &optional env

get-setf-method returns five values constituting the setf method for form. The form

must be a generalizedvariable reference. The env must be an environment of the sort

obtained through the &environment lambdalist keyword; if env is nil or omitted, the

null lexical environment is assumed. get-setf-method takes care of error checking

and macro expansion and guarantees to return exactly one store variable.

As an example, an extremely simplified version of setf, allowing no more and

no fewer than two subforms, containing no optimization to remove unnecessary

variables, and not allowing storing of multiple values, could be defined by:

(defmacro setf (reference value &environment env)

(multiple-value-bind (vars vals stores store-form access-form)

(get-setf-method reference env) ;Note use of environment

(declare (ignore access-form))

`(let* ,(mapcar #--´list

(append vars stores)

(append vals (list value)))

,store-form)))

[Function]get-setf-method-multiple-value form
..

get-setf-method-multiple-value returns five values constituting the setf method for

form. The form must be a generalizedvariable reference. This is the same as get-

setf-method except that it does not check the number of store variables; use this in

cases that allow storing multiple values into a generalized variable. There are no such

cases in standard Common Lisp, but this function is provided to allow for possible

extensions.

144 COMMON LISP

X3J13 voted in March 1988 〈96〉 to add an optional environment argument to

get-setf-method. The revised definition is as follows.

[Function]get-setf-method-multiple-value form &optional env

get-setf-method-multiple-value returns five values constituting the setf method for

form. The form must be a generalizedvariable reference. The env must be an

environment of the sort obtained through the &environment lambdalist keyword; if

env is nil or omitted, the null lexical environment is assumed.

This is the same as get-setf-method except that it does not check the number of

store variables; use this in cases that allow storing multiple values into a generalized

variable. There are no such cases in standard Common Lisp, but this function is

provided to allow for possible extensions.

X3J13 voted in March 1988 〈96〉 to clarify that a setf method for a functional

name is applicable only when the global binding of that name is lexically visible. If

such a name has a local binding introduced by flet, labels, or macrolet, then global

definitions of setf methods for that name do not apply and are not visible. All of

the standard Common Lisp macros that modify a setf place (for example, incf, decf,

pop, and rotatef) obey this convention.

7.3. Function Invocation

The most primitive form for function invocation in Lisp of course has no name;

any list that has no other interpretation as a macro call or special form is taken to

be a function call. Other constructs are provided for less common but nevertheless

frequently useful situations.

[Function]apply function arg &rest more-args

This applies function to a list of arguments.

The function may be a compiledcode object, or a lambdaexpression, or a symbol;
..

in the latter case the global functional value of that symbol is used (but it is illegal

for the symbol to be the name of a macro or special form).

X3J13 voted in June 1988 〈90〉 to allow the function to be only of type symbol or

function; a lambdaexpression is no longer acceptable as a functional argument. One

must use the function special form or the abbreviation #--´ before a lambdaexpression

that appears as an explicit argument form.

The arguments for the function consist of the last argument to apply appended to

the end of a list of all the other arguments to apply but the function itself; it is as if all

CONTROL STRUCTURE 145

the arguments to apply except the function were given to list* to create the argument

list. For example:

(setq f ´+) (apply f ´(1 2)) ⇒ 3

(setq f #--´-) (apply f ´(1 2)) ⇒ -1

(apply #--´max 3 5 ´(2 7 3)) ⇒ 7

(apply ´cons ´((+ 2 3) 4)) ⇒
((+ 2 3) . 4) not (5 . 4)

(apply #--´+ ´()) ⇒ 0

Note that if the function takes keyword arguments, the keywords as well as the

corresponding values must appear in the argument list:

(apply #--´(lambda (&key a b) (list a b)) ´(:b 3)) ⇒ (nil 3)

This can be very useful in conjunction with the &allow-other-keys feature:

(defun foo (size &rest keys &key double &allow-other-keys)

(let ((v (apply #--´make-array size :allow-other-keys t keys)))

(if double (concatenate (type-of v) v v) v)))

(foo 4 :initial-contents ´(a b c d) :double t)

⇒ #--(a b c d a b c d)

[Function]funcall fn &rest arguments

(funcall fn a1 a2 ... an) applies the function fn to the arguments a1, a2, ..., an.

The fn may not be a special form or a macro; this would not be meaningful.

X3J13 voted in June 1988 〈90〉 to allow the fn to be only of type symbol or function;

a lambdaexpression is no longer acceptable as a functional argument. One must use

the function special form or the abbreviation #--´ before a lambdaexpression that

appears as an explicit argument form.

For example:

(cons 1 2) ⇒ (1 . 2)

(setq cons (symbol-function ´+))

(funcall cons 1 2) ⇒ 3

The difference between funcall and an ordinary function call is that the function is

obtained by ordinary Lisp evaluation rather than by the special interpretation of the

function position that normally occurs.

146 COMMON LISP

Compatibility note: The Common Lisp function funcall corresponds roughly to the Interlisp

primitive apply*.

[Constant]call-arguments-limit

The value of call-arguments-limit is a positive integer that is the upper exclusive

bound on the number of arguments that may be passed to a function. This bound

depends on the implementation but will not be smaller than 50. (Implementors

are encouraged to make this limit as large as practicable without sacrificing per

formance.) The value of call-arguments-limit must be at least as great as that of

lambda-parameters-limit. See also multiple-values-limit.

7.4. Simple Sequencing

Each of the constructs in this section simply evaluates all the argument forms in order.

They differ only in what results are returned.

[Special form]progn { form}∗

The progn construct takes a number of forms and evaluates them sequentially, in order,

from left to right. The values of all the forms but the last are discarded; whatever the

last form returns is returned by the progn form. One says that all the forms but the

last are evaluated for effect, because their execution is useful only for the side effects

caused, but the last form is executed for value.

progn is the primitive control structure construct for “compound statements,” such

as beginend blocks in Algollike languages. Many Lisp constructs are “implicit

progn” forms: as part of their syntax each allows many forms to be written that are to

be evaluated sequentially, discarding the results of all forms but the last and returning

the results of the last form.

If the last form of the progn returns multiple values, then those multiple values are

returned by the progn form. If there are no forms for the progn, then the result is nil.

These rules generally hold for implicit progn forms as well.

[Macro]prog1 first { form}∗

prog1 is similar to progn, but it returns the value of its first form. All the argument

forms are executed sequentially; the value of the first form is saved while all the

others are executed and is then returned.

prog1 is most commonly used to evaluate an expression with side effects and to

return a value that must be computed before the side effects happen. For example:

CONTROL STRUCTURE 147

(prog1 (car x) (rplaca x ´foo))

alters the car of x to be foo and returns the old car of x.

prog1 always returns a single value, even if the first form tries to return multiple

values. As a consequence, (prog1 x) and (progn x) may behave differently if x can

produce multiple values. See multiple-value-prog1. A point of style: although prog1

can be used to force exactly a single value to be returned, it is conventional to use the

function values for this purpose.

[Macro]prog2 first second { form}∗

prog2 is similar to prog1, but it returns the value of its second form. All the argument

forms are executed sequentially; the value of the second form is saved while all the

other forms are executed and is then returned. prog2 is provided mostly for historical

compatibility.

(prog2 a b c ... z) ≡ (progn a (prog1 b c ... z))

Occasionally it is desirable to perform one side effect, then a valueproducing oper

ation, then another side effect. In such a peculiar case, prog2 is fairly perspicuous.

For example:

(prog2 (open-a-file) (process-the-file) (close-the-file))

;value is that of process-the-file

prog2, like prog1, always returns a single value, even if the second form tries to

return multiple values. As a consequence of this, (prog2 x y) and (progn x y) may

behave differently if y can produce multiple values.

7.5. Establishing New Variable Bindings

During the invocation of a function represented by a lambdaexpression (or a closure

of a lambdaexpression,as produced by function), new bindings are established for the

variables that are the parameters of the lambdaexpression. These bindings initially

have values determined by the parameterbinding protocol discussed in section 5.2.2.

The following constructs may also be used to establish bindings of variables, both

ordinary and functional.

[Special form]let ({var | (var value)}∗) {declaration}∗ { form}∗

A let form can be used to execute a series of forms with specified variables bound to

specified values.

More precisely, the form

148 COMMON LISP

(let ((var1 value1)

(var2 value2)

...

(varm valuem))

declaration1

declaration2

...

declarationp

body1

body2

...

bodyn)

first evaluates the expressions value1, value2, and so on, in that order, saving the

resulting values. Then all of the variables varj are bound to the corresponding values

in parallel; each binding will be a lexical binding unless there is a special declaration

to the contrary. The expressions bodyk are then evaluated in order; the values of all

but the last are discarded (that is, the body of a let form is an implicit progn). The let

form returns what evaluating bodyn produces (if the body is empty, which is fairly

useless, let returns nil as its value). The bindings of the variables have lexical scope

and indefinite extent.

Instead of a list (varj valuej), one may write simply varj. In this case varj is

initialized to nil. As a matter of style, it is recommended that varj be written only

when that variable will be stored into (such as by setq) before its first use. If it is

important that the initial value be nil rather than some undefined value, then it is

clearer to write out (varj nil) if the initial value is intended to mean “false,” or (varj

´()) if the initial value is intended to be an empty list. Note that the code

(let (x)

(declare (integer x))

(setq x (gcd y z))

...)

is incorrect; although x is indeed set before it is used, and is set to a value of the

declared type integer, nevertheless x momentarily takes on the value nil in violation

of the type declaration.

Declarations may appear at the beginning of the body of a let. See declare.

See also destructuring-bind.

X3J13 voted in January 1989 〈182〉 to regularize the binding formats for do, do*,

let, let*, prog, prog*, and compiler-let. The new syntactic definition for let makes

the value optional:

CONTROL STRUCTURE 149

[Macro]let ({var | (var [value])}∗) {declaration}∗ { form}∗

This changes let to allow a list (var) to appear, meaning the same as simply var.

[Special form]let* ({var | (var value)}∗) {declaration}∗ { form}∗

let* is similar to let, but the bindings of variables are performed sequentially rather

than in parallel. This allows the expression for the value of a variable to refer to

variables previously bound in the let* form.

More precisely, the form

(let* ((var1 value1)

(var2 value2)

...

(varm valuem))

declaration1

declaration2

...

declarationp

body1

body2

...

bodyn)

first evaluates the expression value1, then binds the variable var1 to that value; then it

evaluates value2 and binds var2; and so on. The expressions bodyj are then evaluated

in order; the values of all but the last are discarded (that is, the body of a let* form is

an implicit progn). The let* form returns the results of evaluating bodyn (if the body

is empty, which is fairly useless, let* returns nil as its value). The bindings of the

variables have lexical scope and indefinite extent.

Instead of a list (varj valuej), one may write simply varj. In this case varj is

initialized to nil. As a matter of style, it is recommended that varj be written only

when that variable will be stored into (such as by setq) before its first use. If it is

important that the initial value be nil rather than some undefined value, then it is

clearer to write out (varj nil) if the initial value is intended to mean “false,” or (varj

´()) if the initial value is intended to be an empty list.

Declarations may appear at the beginning of the body of a let*. See declare.

X3J13 voted in January 1989 〈182〉 to regularize the binding formats for do, do*,

let, let*, prog, prog*, and compiler-let. The new syntactic definition for let* makes

the value optional:

150 COMMON LISP

[Macro]let* ({var | (var [value])}∗) {declaration}∗ { form}∗

This changes let* to allow a list (var) to appear, meaning the same as simply var.

...

[Special form]compiler-let ({var | (var value)}∗) { form}∗

When executed by the Lisp interpreter, compiler-let behaves exactly like let with

all the variable bindings implicitly declared special. When the compiler processes

this form, however, no code is compiled for the bindings; instead, the processing of

the body by the compiler (including, in particular, the expansion of any macro calls

within the body) is done with the special variables bound to the indicated values in

the execution context of the compiler. This is primarily useful for communication

among complicated macros.

Declarations may not appear at the beginning of the body of a compiler-let.

Rationale: Because of the unorthodox handling by compiler-let of its variable bindings, it

would be complicated and confusing to permit declarations that apparently referred to the

variables bound by compiler-let. Disallowing declarations eliminates the problem.

X3J13 voted in January 1989 〈182〉 to regularize the binding formats for do, do*,

let, let*, prog, prog*, and compiler-let. The new syntactic definition for compiler-let

makes the value optional:

..

[Macro]compiler-let ({var | (var [value])}∗) { form}∗

This changes compiler-let to allow a list (var) to appear, meaning the same as simply

var.

X3J13 voted in June 1989 〈25〉 to remove compiler-let from the language. Many

uses of compiler-let can be replaced with more portable code that uses macrolet or

symbol-macrolet.

[Special form]progv symbols values { form}∗

progv is a special form that allows binding one or more dynamic variables whose

names may be determined at run time. The sequence of forms (an implicit progn)

is evaluated with the dynamic variables whose names are in the list symbols bound

to corresponding values from the list values. (If too few values are supplied, the

remaining symbols are bound and then made to have no value; see makunbound. If too

many values are supplied, the excess values are ignored.) The results of the progv

form are those of the last form. The bindings of the dynamic variables are undone on

exit from the progv form. The lists of symbols and values are computed quantities;

CONTROL STRUCTURE 151

this is what makes progv different from, for example, let, where the variable names

are stated explicitly in the program text.

progv is particularly useful for writing interpreters for languages embedded in Lisp;

it provides a handle on the mechanism for binding dynamic variables.

[Special form]flet ({(name lambdalist

[[{declaration}∗ | docstring]] { form}∗)}∗)

{ form}∗
[Special form]labels ({(name lambdalist

[[{declaration}∗ | docstring]] { form}∗)}∗)
{ form}∗

[Special form]macrolet ({(name varlist

[[{declaration}∗ | docstring]] { form}∗)}∗)

{ form}∗

flet may be used to define locally named functions. Within the body of the flet

form, function names matching those defined by the flet refer to the locally defined

functions rather than to the global function definitions of the same name.

Any number of functions may be simultaneously defined. Each definition is similar

in format to a defun form: first a name, then a parameter list (which may contain

&optional, &rest, or &key parameters), then optional declarations and documentation

string, and finally a body.

(flet ((safesqrt (x) (sqrt (abs x))))

;; The safesqrt function is used in two places.

(safesqrt (apply #--´+ (map ´list #--´safesqrt longlist))))

The labels construct is identical in form to the flet construct. These constructs

differ in that the scope of the defined function names for flet encompasses only the

body, whereas for labels it encompasses the function definitions themselves. That

is, labels can be used to define mutually recursive functions, but flet cannot. This

distinction is useful. Using flet one can locally redefine a global function name,

and the new definition can refer to the global definition; the same construction using

labels would not have that effect.

(defun integer-power (n k) ;A highly "bummed" integer

(declare (integer n)) ; exponentiation routine

(declare (type (integer 0 *) k))

152 COMMON LISP

(labels ((expt0 (x k a)

(declare (integer x a) (type (integer 0 *) k))

(cond ((zerop k) a)

((evenp k) (expt1 (* x x) (floor k 2) a))

(t (expt0 (* x x) (floor k 2) (* x a)))))

(expt1 (x k a)

(declare (integer x a) (type (integer 1 *) k))

(cond ((evenp k) (expt1 (* x x) (floor k 2) a))

(t (expt0 (* x x) (floor k 2) (* x a))))))

(expt0 n k 1)))

macrolet is similar in form to flet but defines local macros, using the same format

used by defmacro. The names established by macrolet as names for macros are

lexically scoped.

I have observed that, while most Common Lisp users pronounce macrolet to rhyme

with “silhouette,” a small but vocal minority pronounce it to rhyme with “Chevrolet.”

A very few extremists furthermore adjust their pronunciation of flet similarly: they

say “flay.” Hey, hey! Très outré.

Macros often must be expanded at “compile time” (more generally, at a time

before the program itself is executed), and so the runtime values of variables are not

available to macros defined by macrolet.

The precise rule is that the macroexpansion functions defined by macrolet are
..

defined in the global environment; lexically scoped entities that would ordinarily be

lexically apparent are not visible within the expansion functions.

X3J13 voted in March 1989 〈50〉 to retract the previous sentence and specify

that the macroexpansion functions created by macrolet are defined in the lexical

environment in which the macrolet form appears, not in the null lexical environment.

Declarations, macrolet definitions, and symbol-macrolet definitions affect code within

the expansion functions in a macrolet, but the consequences are undefined if such

code attempts to refer to any local variable or function bindings that are visible in

that lexical environment.

However, lexically scoped entities are visible within the body of the macrolet form

and are visible to the code that is the expansion of a macro call. The following

example should make this clear:

CONTROL STRUCTURE 153

;;; Example of scoping in macrolet.

(defun foo (x flag)

(macrolet ((fudge (z)

;;The parameters x and flag are not accessible

;; at this point; a reference to flag would be to

;; the global variable of that name.

`(if flag

(* ,z ,z)

,z)))

;;The parameters x and flag are accessible here.

(+ x

(fudge x)

(fudge (+ x 1)))))

The body of the macrolet becomes

(+ x

(if flag

(* x x)

x))

(if flag

(* (+ x 1) (+ x 1))

(+ x 1)))

after macro expansion. The occurrences of x and flag legitimately refer to the

parameters of the function foo because those parameters are visible at the site of the

macro call which produced the expansion.

X3J13 voted in March 1988 〈78〉 to specify that the body of each function or

expander function defined by flet, labels, or macrolet is implicitly enclosed in a

block construct whose name is the same as the name of the function. Therefore

return-from may be used to exit from the function.

X3J13 voted in March 1989 〈89〉 to extend flet and labels to accept any function

name (a symbol or a list whose car is setf—see section 7.1) as a name for a function

to be locally defined. In this way one can create local definitions for setf expansion

functions. (X3J13 explicitly declined to extend macrolet in the same manner.)

X3J13 voted in March 1988 〈77〉 to change flet, labels, and macrolet to allow

declarations to appear before the body. The new descriptions are therefore as follows:

154 COMMON LISP

[Macro]flet ({(name lambdalist

[[{declaration}∗ | docstring]] { form}∗)}∗)

{declaration}∗ { form}∗
[Macro]labels ({(name lambdalist

[[{declaration}∗ | docstring]] { form}∗)}∗)
{declaration}∗ { form}∗

[Macro]macrolet ({(name varlist

[[{declaration}∗ | docstring]] { form}∗)}∗)

{declaration}∗ { form}∗

These are now syntactically more similar to such other binding forms as let.

For flet and labels, the bodies of the locally defined functions are part of the scope

of pervasive declarations appearing before the main body. (This is consistent with

the treatment of initialization forms in let.) For macrolet, however, the bodies of the

locally defined macro expander functions are not included in the scope of pervasive

declarations appearing before the main body. (This is consistent with the rule, stated

below, that the bodies of macro expander functions are in the global environment,

not the local lexical environment.) Here is an example:

(flet ((stretch (x) (* x *stretch-factor*))

(chop (x) (- x *chop-margin*)))

(declare (inline stretch chop)) ;Illegal in original Common Lisp

(if (> x *chop-margin*) (stretch (chop x)) (chop (stretch x))))

X3J13 voted to permit declarations of the sort noted above.

[Special form]symbol-macrolet ({(var expansion)}∗)
{declaration}∗ { form}∗

X3J13 voted in June 1988 〈12〉 to adopt the Common Lisp Object System. Part of this

proposal is a general mechanism, symbol-macrolet, for treating certain variable names

as if they were parameterless macro calls. This facility may be useful independent

of CLOS. X3J13 voted in March 1989 〈173〉 to modify the definition of symbol-

macrolet substantially and also voted 〈172〉 to allow declarations before the body of

symbol-macrolet but with peculiar treatment of special and type declarations.

The forms are executed as an implicit progn in a lexical environment that causes

every reference to any defined var to be replaced by the corresponding expansion.

It is as if the reference to the var were a parameterless macro call; the expansion is

evaluated or otherwise processed in place of the reference (in particular, the expansion

CONTROL STRUCTURE 155

form is itself subject to further expansion—this is one of the changes 〈173〉 from the

original definition in the CLOS proposal). Note, however, that the names of such

symbol macros occupy the name space of variables, not the name space of functions;

just as one may have a function (or macro, or special form) and a variable with the

same name without interference, so one may have an ordinary macro (or function, or

special form) and a symbol macro with the same name. The use of symbol-macrolet

can therefore be shadowed by let or other constructs that bind variables; symbol-

macrolet does not substitute for all occurrences of a var as a variable but only for

those occurrences that would be construed as references in the scope of a lexical

binding of var as a variable. For example:

(symbol-macrolet ((pollyanna ´goody))

(list pollyanna (let ((pollyanna ´two-shoes)) pollyanna)))

⇒ (goody two-shoes), not (goody goody)

One might think that ´goody simply replaces all occurrences of pollyanna, and so the

value of the let would be goody; but this is not so. A little reflection shows that under

this incorrect interpretation the body in expanded form would be

(list ´goody (let ((´goody ´two-shoes)) ´goody))

which is syntactically malformed. The correct expanded form is

(list ´goody (let ((pollyanna ´two-shoes)) pollyanna))

because the rebinding of pollyanna by the let form shadows the symbol macro

definition.

The expansion for each var is not evaluated at binding time but only after it has

replaced a reference to the var. The setf macro allows a symbol macro to be used

as a place, in which case its expansion is used; moreover, setq of a variable that is

really a symbol macro will be treated as if setf had been used. The values of the last

form are returned, or nil if there is no value.

See macroexpand and macroexpand-1; they will expand symbol macros as well as

ordinary macros.

Certain declarations before the body are handled in a peculiar manner; see sec

tion 9.1.

7.6. Conditionals

The traditional conditional construct in Lisp is cond. However, if is much simpler

and is directly comparable to conditional constructs in other programming languages,

so it is considered to be primitive in Common Lisp and is described first. Common

156 COMMON LISP

Lisp also provides the dispatching constructs case and typecase, which are often more

convenient than cond.

[Special form]if test then [else]

The if special form corresponds to the ifthenelse construct found in most algebraic

programming languages. First the form test is evaluated. If the result is not nil, then

the form then is selected; otherwise the form else is selected. Whichever form is

selected is then evaluated, and if returns whatever is returned by evaluation of the

selected form.

(if test then else) ≡ (cond (test then) (t else))

but if is considered more readable in some situations.

The else form may be omitted, in which case if the value of test is nil then nothing

is done and the value of the if form is nil. If the value of the if form is important

in this situation, then the and construct may be stylistically preferable, depending on

the context. If the value is not important, but only the effect, then the when construct

may be stylistically preferable.

[Macro]when test { form}∗

(when test form1 form2 ...) first evaluates test. If the result is nil, then no form is

evaluated, and nil is returned. Otherwise the forms constitute an implicit progn and

are evaluated sequentially from left to right, and the value of the last one is returned.

(when p a b c) ≡ (and p (progn a b c))

(when p a b c) ≡ (cond (p a b c))

(when p a b c) ≡ (if p (progn a b c) nil)

(when p a b c) ≡ (unless (not p) a b c)

As a matter of style, when is normally used to conditionally produce some side effects,

and the value of the when form is normally not used. If the value is relevant, then it

may be stylistically more appropriate to use and or if.

[Macro]unless test { form}∗

(unless test form1 form2 ...) first evaluates test. If the result is not nil, then

the forms are not evaluated, and nil is returned. Otherwise the forms constitute an

implicit progn and are evaluated sequentially from left to right, and the value of the

last one is returned.

CONTROL STRUCTURE 157

(unless p a b c) ≡ (cond ((not p) a b c))

(unless p a b c) ≡ (if p nil (progn a b c))

(unless p a b c) ≡ (when (not p) a b c)

As a matter of style, unless is normally used to conditionally produce some side

effects, and the value of the unless form is normally not used. If the value is relevant,

then it may be stylistically more appropriate to use if.

[Macro]cond {(test { form}∗)}∗

A cond form has a number (possibly zero) of clauses, which are lists of forms. Each

clause consists of a test followed by zero or more consequents. For example:

(cond (test1 consequent11 consequent12 ...)

(test2)

(test3 consequent31 ...)

...)

The first clause whose test evaluates to nonnil is selected; all other clauses are

ignored, and the consequents of the selected clause are evaluated in order (as an

implicit progn).

More specifically, cond processes its clauses in order from left to right. For each

clause, the test is evaluated. If the result is nil, cond advances to the next clause.

Otherwise, the cdr of the clause is treated as a list of forms, or consequents; these

forms are evaluated in order from left to right, as an implicit progn. After evaluating

the consequents, cond returns without inspecting any remaining clauses. The cond

special form returns the results of evaluating the last of the selected consequents; if

there were no consequents in the selected clause, then the single (and necessarily

nonnull) value of the test is returned. If cond runs out of clauses (every test produced

nil, and therefore no clause was selected), the value of the cond form is nil.

If it is desired to select the last clause unconditionally if all others fail, the standard

convention is to use t for the test. As a matter of style, it is desirable to write a last

clause (t nil) if the value of the cond form is to be used for something. Similarly, it is

in questionable taste to let the last clause of a cond be a “singleton clause”; an explicit

t should be provided. (Note moreover that (cond ... (x)) may behave differently

from (cond ... (t x)) if x might produce multiple values; the former always returns

a single value, whereas the latter returns whatever values x returns. However, as a

matter of style it is preferable to obtain this behavior by writing (cond ... (t (values

x))), using the values function explicitly to indicate the discarding of any excess

values.) For example:

158 COMMON LISP

(setq z (cond (a ´foo) (b ´bar))) ;Possibly confusing

(setq z (cond (a ´foo) (b ´bar) (t nil))) ;Better

(cond (a b) (c d) (e)) ;Possibly confusing

(cond (a b) (c d) (t e)) ;Better

(cond (a b) (c d) (t (values e))) ;Better (if one value

; needed)

(cond (a b) (c)) ;Possibly confusing

(cond (a b) (t c)) ;Better

(if a b c) ;Also better

A Lisp cond form may be compared to a continued ifthenelse as found in many

algebraic programming languages:

(cond (p ...) if p then ...

(q ...) roughly else if q then ...

(r ...) corresponds else if r then ...

... to ...

(t ...)) else ...

[Macro]case keyform {({({key}∗) | key} { form}∗)}∗

case is a conditional that chooses one of its clauses to execute by comparing a value

to various constants, which are typically keyword symbols, integers, or characters

(but may be any objects). Its form is as follows:

(case keyform

(keylist1 consequent11 consequent12 ...)

(keylist2 consequent21 ...)

(keylist3 consequent31 ...)

...)

Structurally case is much like cond, and it behaves like cond in selecting one clause and

then executing all consequents of that clause. However, case differs in the mechanism

of clause selection.

The first thing case does is to evaluate the form keyform to produce an object called

the key object. Then case considers each of the clauses in turn. If key is in the keylist

(that is, is eql to any item in the keylist) of a clause, the consequents of that clause are

evaluated as an implicit progn; case returns what was returned by the last consequent

(or nil if there are no consequents in that clause). If no clause is satisfied, case returns

nil.

The keys in the keylists are not evaluated; literal key values must appear in the

keylists. It is an error for the same key to appear in more than one clause; a

CONTROL STRUCTURE 159

consequence is that the order of the clauses does not affect the behavior of the case

construct.

Instead of a keylist, one may write one of the symbols t and otherwise. A clause

with such a symbol always succeeds and must be the last clause (this is an exception

to the orderindependence of clauses). See also ecase and ccase, each of which

provides an implicit otherwise clause to signal an error if no clause is satisfied.

If there is only one key for a clause, then that key may be written in place of a list

of that key, provided that no ambiguity results. Such a “singleton key” may not be

nil (which is confusable with (), a list of no keys), t, otherwise, or a cons.

Compatibility note: The Lisp Machine Lisp caseq construct uses eq for the comparison. In

Lisp Machine Lisp caseq therefore works for fixnums but not bignums. The MacLisp caseq

construct simply prohibits the use of bignums; indeed, it permits only fixnums and symbols as

clause keys. In the interest of hiding the fixnumbignum distinction, and for general language

consistency, case uses eql in Common Lisp.

The Interlisp selectq construct is similar to case.

[Macro]typecase keyform {(type { form}∗)}∗

typecase is a conditional that chooses one of its clauses by examining the type of an

object. Its form is as follows:

(typecase keyform

(type1 consequent11 consequent12 ...)

(type2 consequent21 ...)

(type3 consequent31 ...)

...)

Structurally typecase is much like cond or case, and it behaves like them in select

ing one clause and then executing all consequents of that clause. It differs in the

mechanism of clause selection.

The first thing typecase does is to evaluate the form keyform to produce an object

called the key object. Then typecase considers each of the clauses in turn. The

type that appears in each clause is a type specifier; it is not evaluated but is a literal

type specifier. The first clause for which the key is of that clause’s specified type

is selected, the consequents of this clause are evaluated as an implicit progn, and

typecase returns what was returned by the last consequent (or nil if there are no

consequents in that clause). If no clause is satisfied, typecase returns nil.

As for case, the symbol t or otherwise may be written for type to indicate that the

clause should always be selected. See also etypecase and ctypecase, each of which

provides an implicit otherwise clause to signal an error if no clause is satisfied.

160 COMMON LISP

It is permissible for more than one clause to specify a given type, particularly if one

is a subtype of another; the earliest applicable clause is chosen. Thus for typecase,

unlike case, the order of the clauses may affect the behavior of the construct. For

example:

(typecase an-object

(string ...) ;This clause handles strings

((array t) ...) ;This clause handles general arrays

((array bit) ...) ;This clause handles bit arrays

(array ...) ;This handles all other arrays

((or list number) ...) ;This handles lists and numbers

(t ...)) ;This handles all other objects

A Common Lisp compiler may choose to issue a warning if a clause cannot be

selected because it is completely shadowed by earlier clauses.

7.7. Blocks and Exits

The block and return-from constructs provide a structured lexical nonlocal exit

facility. At any point lexically within a block construct, a return-from with the same

name may be used to perform an immediate transfer of control that exits from the

block. In the most common cases this mechanism is more efficient than the dynamic

nonlocal exit facility provided by catch and throw, described in section 7.11.

[Special form]block name { form}∗

The block construct executes each form from left to right, returning whatever is

returned by the last form. If, however, a return or return-from form that specifies the

same name is executed during the execution of some form, then the results specified

by the return or return-from are immediately returned as the value of the block

construct, and execution proceeds as if the block had terminated normally. In this,

block differs from progn; the progn construct has nothing to do with return.

The name is not evaluated; it must be a symbol. The scope of the name is lexical;

only a return or return-from textually contained in some form can exit from the block.

The extent of the name is dynamic. Therefore it is only possible to exit from a given

runtime incarnation of a block once, either normally or by explicit return.

The defun form implicitly puts a block around the body of the function defined;

the block has the same name as the function. Therefore one may use return-from to

return prematurely from a function defined by defun.

The lexical scoping of the block name is fully general and has consequences that

may be surprising to users and implementors of other Lisp systems. For example,

CONTROL STRUCTURE 161

the return-from in the following example actually does work in Common Lisp as one

might expect:

(block loser

(catch ´stuff

(mapcar #--´(lambda (x) (if (numberp x)

(hairyfun x)

(return-from loser nil)))

items)))

Depending on the situation, a return in Common Lisp may not be simple. A return

can break up catchers if necessary to get to the block in question. It is possible for

a “closure” created by function for a lambdaexpression to refer to a block name as

long as the name is lexically apparent.

[Special form]return-from name [result]

return-from is used to return from a block or from such constructs as do and prog that

implicitly establish a block. The name is not evaluated and must be a symbol. A block

construct with the same name must lexically enclose the occurrence of return-from;

whatever the evaluation of result produces is immediately returned from the block.

(If the result form is omitted, it defaults to nil. As a matter of style, this form ought

to be used to indicate that the particular value returned doesn’t matter.)

The return-from form itself never returns and cannot have a value; it causes results

to be returned from a block construct. If the evaluation of result produces multiple

values, those multiple values are returned by the construct exited.

[Macro]return [result]

(return form) is identical in meaning to (return-from nil form); it returns from a

block named nil. Blocks established implicitly by iteration constructs such as do are

named nil, so that return will exit properly from such a construct.

7.8. Iteration

Common Lisp provides a number of iteration constructs. The loop construct provides

a trivial iteration facility; it is little more than a progn with a branch from the bottom

back to the top. The do and do* constructs provide a general iteration facility for

controlling the variation of several variables on each cycle. For specialized iterations

over the elements of a list or n consecutive integers, dolist and dotimes are provided.

162 COMMON LISP

The tagbody construct is the most general, permitting arbitrary go statements within

it. (The traditional prog construct is a synthesis of tagbody, block, and let.) Most of

the iteration constructs permit statically defined nonlocal exits (see return-from and

return).

7.8.1. Indefinite Iteration

The loop construct is the simplest iteration facility. It controls no variables, and

simply executes its body repeatedly.

[Macro]loop { form}∗

Each form is evaluated in turn from left to right. When the last form has been

evaluated, then the first form is evaluated again, and so on, in a neverending cycle.

The loop construct never returns a value. Its execution must be terminated explicitly,

using return or throw, for example.

loop, like most iteration constructs, establishes an implicit block named nil. Thus

return may be used to exit from a loop with specified results.

A loop construct has this meaning only if every form is nonatomic (a list). The
..

case where some form is atomic is reserved for future extensions.

Implementation note: There have been several proposals for a powerful iteration mechanism

to be called loop. One version is provided in Lisp Machine Lisp. Implementors are encouraged

to experiment with extensions to the loop syntax, but users should be advised that in all

likelihood some specific set of extensions to loop will be adopted in a future revision of

Common Lisp.

X3J13 voted in January 1989 〈115〉 to include just such an extension of loop. See

chapter 26.

7.8.2. General Iteration

In contrast to loop, do and do* provide a powerful and general mechanism for repeti

tively recalculating many variables.

CONTROL STRUCTURE 163

[Macro]do ({(var [init [step]])}∗)
(endtest {result}∗)
{declaration}∗ {tag | statement}∗

[Macro]do* ({(var [init [step]])}∗)
(endtest {result}∗)
{declaration}∗ {tag | statement}∗

The do special form provides a generalized iteration facility, with an arbitrary number

of “index variables.” These variables are bound within the iteration and stepped in

parallel in specified ways. They may be used both to generate successive values of

interest (such as successive integers) or to accumulate results. When an end condition

is met, the iteration terminates with a specified value.

In general, a do loop looks like this:

(do ((var1 init1 step1)

(var2 init2 step2)

...

(varn initn stepn))

(endtest . result)

{declaration}∗
. tagbody)

A do* loop looks exactly the same except that the name do is replaced by do*.

The first item in the form is a list of zero or more indexvariable specifiers. Each

indexvariable specifier is a list of the name of a variable var, an initial value init, and

a stepping form step. If init is omitted, it defaults to nil. If step is omitted, the var

is not changed by the do construct between repetitions (though code within the do is

free to alter the value of the variable by using setq).

An indexvariable specifier can also be just the name of a variable. In this case,

the variable has an initial value of nil and is not changed between repetitions. As a

matter of style, it is recommended that an unadorned variable name be written only

when that variable will be stored into (such as by setq) before its first use. If it is

important that the initial value be nil rather than some undefined value, then it is

clearer to write out (varj nil) if the initial value is intended to mean “false,” or (varj

´()) if the initial value is intended to be an empty list.

X3J13 voted in January 1989 〈182〉 to regularize the binding formats for do, do*,

let, let*, prog, prog*, and compiler-let. In the case of do and do* the first edition was

inconsistent; the formal syntax fails to reflect the fact that a simple variable name

may appear, as described in the preceding paragraph. The definitions should read

164 COMMON LISP

[Macro]do ({var | (var [init [step]])}∗)
(endtest {result}∗)
{declaration}∗ {tag | statement}∗

[Macro]do* ({var | (var [init [step]])}∗)
(endtest {result}∗)
{declaration}∗ {tag | statement}∗

for consistency with the reading of the first edition and the X3J13 vote.

Before the first iteration, all the init forms are evaluated, and each var is bound to

the value of its respective init. This is a binding, not an assignment; when the loop

terminates, the old values of those variables will be restored. For do, all of the init

forms are evaluated before any var is bound; hence all the init forms may refer to

the old bindings of all the variables (that is, to the values visible before beginning

execution of the do construct). For do*, the first init form is evaluated, then the first

var is bound to that value, then the second init form is evaluated, then the second var

is bound, and so on; in general, the initj form can refer to the new binding vark if

k < j, and otherwise to the old binding of vark.

The second element of the loop is a list of an endtesting predicate form endtest

and zero or more result forms. This resembles a cond clause. At the beginning of

each iteration, after processing the variables, the endtest is evaluated. If the result is

nil, execution proceeds with the body of the do (or do*) form. If the result is not nil,

the result forms are evaluated in order as an implicit progn, and then do returns. do

returns the results of evaluating the last result form. If there are no result forms, the

value of do is nil. Note that this is not quite analogous to the treatment of clauses in

a cond form, because a cond clause with no result forms returns the (nonnil) result

of the test.

At the beginning of each iteration other than the first, the index variables are

updated as follows. All the step forms are evaluated, from left to right, and the

resulting values are assigned to the respective index variables. Any variable that has

no associated step form is not assigned to. For do, all the step forms are evaluated

before any variable is updated; the assignment of values to variables is done in

parallel, as if by psetq. Because all of the step forms are evaluated before any of the

variables are altered, a step form when evaluated always has access to the old values

of all the index variables, even if other step forms precede it. For do*, the first step

form is evaluated, then the value is assigned to the first var, then the second step form

is evaluated, then the value is assigned to the second var, and so on; the assignment

of values to variables is done sequentially, as if by setq. For either do or do*, after

the variables have been updated, the endtest is evaluated as described above, and the

iteration continues.

CONTROL STRUCTURE 165

If the endtest of a do form is nil, the test will never succeed. Therefore this provides

an idiom for “do forever”: the body of the do is executed repeatedly, stepping variables

as usual. (The loop construct performs a “do forever” that steps no variables.) The

infinite loop can be terminated by the use of return, return-from, go to an outer level,

or throw. For example:

(do ((j 0 (+ j 1)))

(nil) ;Do forever

(format t "˜%Input ˜D:" j)

(let ((item (read)))

(if (null item) (return) ;Process items until nil seen

(format t "˜&Output ˜D: ˜S" j (process item)))))

The remainder of the do form constitutes an implicit tagbody. Tags may appear

within the body of a do loop for use by go statements appearing in the body (but such

go statements may not appear in the variable specifiers, the endtest, or the result

forms). When the end of a do body is reached, the next iteration cycle (beginning

with the evaluation of step forms) occurs.

An implicit block named nil surrounds the entire do form. A return statement may

be used at any point to exit the loop immediately.

declare forms may appear at the beginning of a do body. They apply to code in the

do body, to the bindings of the do variables, to the init forms, to the step forms, to the

endtest, and to the result forms.

Compatibility note: “Oldstyle” MacLisp do loops, that is, those of the form (do var init step

end-test . body), are not supported in Common Lisp. Such oldstyle loops are considered

obsolete and in any case are easily converted to a newstyle do with the insertion of three pairs

of parentheses. In practice the compiler can catch nearly all instances of oldstyle do loops

because they will not have a legal format anyway.

Here are some examples of the use of do:

(do ((i 0 (+ i 1)) ;Sets every null element of a-vector to zero

(n (length a-vector)))

((−− i n))

(when (null (aref a-vector i))

(setf (aref a-vector i) 0)))

The construction

166 COMMON LISP

(do ((x e (cdr x))

(oldx x x))

((null x))

body)

exploits parallel assignment to index variables. On the first iteration, the value of

oldx is whatever value x had before the do was entered. On succeeding iterations,

oldx contains the value that x had on the previous iteration.

Very often an iterative algorithm can be most clearly expressed entirely in the step

forms of a do, and the body is empty. For example,

(do ((x foo (cdr x))

(y bar (cdr y))

(z ´() (cons (f (car x) (car y)) z)))

((or (null x) (null y))

(nreverse z)))

does the same thing as (mapcar #--´f foo bar). Note that the step computation for z

exploits the fact that variables are stepped in parallel. Also, the body of the loop

is empty. Finally, the use of nreverse to put an accumulated do loop result into the

correct order is a standard idiom. Another example:

(defun list-reverse (list)

(do ((x list (cdr x))

(y ´() (cons (car x) y)))

((endp x) y)))

Note the use of endp rather than null or atom to test for the end of a list; this may

result in more robust code.

As an example of nested loops, suppose that env holds a list of conses. The car

of each cons is a list of symbols, and the cdr of each cons is a list of equal length

containing corresponding values. Such a data structure is similar to an association

list but is divided into “frames”; the overall structure resembles a rib cage. A lookup

function on such a data structure might be

(defun ribcage-lookup (sym ribcage)

(do ((r ribcage (cdr r)))

((null r) nil)

(do ((s (caar r) (cdr s))

(v (cdar r) (cdr v)))

((null s))

CONTROL STRUCTURE 167

(when (eq (car s) sym)

(return-from ribcage-lookup (car v))))))

(Notice the use of indentation in the above example to set off the bodies of the do

loops.)

A do loop may be explained in terms of the more primitive constructs block, return,

let, loop, tagbody, and psetq as follows:

(block nil

(let ((var1 init1)

(var2 init2)

...

(varn initn))

{declaration}∗
(loop (when endtest (return (progn . result)))

(tagbody . tagbody)

(psetq var1 step1

var2 step2

...

varn stepn))))

do* is exactly like do except that the bindings and steppings of the variables are

performed sequentially rather than in parallel. It is as if, in the above explanation,

let were replaced by let* and psetq were replaced by setq.

7.8.3. Simple Iteration Constructs

The constructs dolist and dotimes execute a body of code once for each value taken

by a single variable. They are expressible in terms of do, but capture very common

patterns of use.

Both dolist and dotimes perform a body of statements repeatedly. On each iteration

a specified variable is bound to an element of interest that the body may examine.

dolist examines successive elements of a list, and dotimes examines integers from 0

to n − 1 for some specified positive integer n.

The value of any of these constructs may be specified by an optional result form,

which if omitted defaults to the value nil.

The return statement may be used to return immediately from a dolist or dotimes

form, discarding any following iterations that might have been performed; in effect, a

block named nil surrounds the construct. The body of the loop is implicitly a tagbody

construct; it may contain tags to serve as the targets of go statements. Declarations

may appear before the body of the loop.

168 COMMON LISP

[Macro]dolist (var listform [resultform])

{declaration}∗ {tag | statement}∗

dolist provides straightforward iteration over the elements of a list. First dolist

evaluates the form listform, which should produce a list. It then executes the body

once for each element in the list, in order, with the variable var bound to the element.

Then resultform (a single form, not an implicit progn) is evaluated, and the result is

the value of the dolist form. (When the resultform is evaluated, the control variable

var is still bound and has the value nil.) If resultform is omitted, the result is nil.

(dolist (x ´(a b c d)) (prin1 x) (princ " ")) ⇒ nil

after printing “a b c d ” (note the trailing space)

An explicit return statement may be used to terminate the loop and return a

specified value.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

[Macro]dotimes (var countform [resultform])

{declaration}∗ {tag | statement}∗

dotimes provides straightforward iteration over a sequence of integers. The expres

sion (dotimes (var countform resultform) . progbody) evaluates the form count

form, which should produce an integer. It then performs progbody once for each

integer from zero (inclusive) to count (exclusive), in order, with the variable var

bound to the integer; if the value of countform is zero or negative, then the progbody

is performed zero times. Finally, resultform (a single form, not an implicit progn) is

evaluated, and the result is the value of the dotimes form. (When the resultform is

evaluated, the control variable var is still bound and has as its value the number of

times the body was executed.) If resultform is omitted, the result is nil.

An explicit return statement may be used to terminate the loop and return a

specified value.

Here is an example of the use of dotimes in processing strings:

;;; True if the specified subsequence of the string is a

;;; palindrome (reads the same forwards and backwards).

(defun palindromep (string &optional

(start 0)

(end (length string)))

CONTROL STRUCTURE 169

(dotimes (k (floor (- end start) 2) t)

(unless (char-equal (char string (+ start k))

(char string (- end k 1)))

(return nil))))

(palindromep "Able was I ere I saw Elba") ⇒ t

(palindromep "A man, a plan, a canal--Panama!") ⇒ nil

(remove-if-not #--´alpha-char-p ;Remove punctuation

"A man, a plan, a canal--Panama!")

⇒ "AmanaplanacanalPanama"

(palindromep

(remove-if-not #--´alpha-char-p

"A man, a plan, a canal--Panama!")) ⇒ t

(palindromep

(remove-if-not

#--´alpha-char-p

"Unremarkable was I ere I saw Elba Kramer, nu?")) ⇒ t

(palindromep

(remove-if-not

#--´alpha-char-p

"A man, a plan, a cat, a ham, a yak,

a yam, a hat, a canal--Panama!")) ⇒ t

(palindromep

(remove-if-not

#--´alpha-char-p

"Ja-da, ja-da, ja-da ja-da jing jing jing")) ⇒ nil

Altering the value of var in the body of the loop (by using setq, for example) will

have unpredictable, possibly implementationdependent results. A Common Lisp

compiler may choose to issue a warning if such a variable appears in a setq.

Compatibility note: The dotimes construct is the closest thing in Common Lisp to the Interlisp

rptq construct.

See also do-symbols, do-external-symbols, and do-all-symbols.

170 COMMON LISP

7.8.4. Mapping

Mapping is a type of iteration in which a function is successively applied to pieces

of one or more sequences. The result of the iteration is a sequence containing the

respective results of the function applications. There are several options for the way

in which the pieces of the list are chosen and for what is done with the results returned

by the applications of the function.

The function map may be used to map over any kind of sequence. The following

functions operate only on lists.

[Function]mapcar function list &rest more-lists

[Function]maplist function list &rest more-lists

[Function]mapc function list &rest more-lists

[Function]mapl function list &rest more-lists

[Function]mapcan function list &rest more-lists

[Function]mapcon function list &rest more-lists

For each of these mapping functions, the first argument is a function and the rest must

be lists. The function must take as many arguments as there are lists.

mapcar operates on successive elements of the lists. First the function is applied to

the car of each list, then to the cadr of each list, and so on. (Ideally all the lists are

the same length; if not, the iteration terminates when the shortest list runs out, and

excess elements in other lists are ignored.) The value returned by mapcar is a list of

the results of the successive calls to the function. For example:

(mapcar #--´abs ´(3 -4 2 -5 -6)) ⇒ (3 4 2 5 6)

(mapcar #--´cons ´(a b c) ´(1 2 3)) ⇒ ((a . 1) (b . 2) (c . 3))

maplist is like mapcar except that the function is applied to the lists and successive

cdr’s of those lists rather than to successive elements of the lists. For example:

(maplist #--´(lambda (x) (cons ´foo x))

´(a b c d))

⇒ ((foo a b c d) (foo b c d) (foo c d) (foo d))

(maplist #--´(lambda (x) (if (member (car x) (cdr x)) 0 1)))

´(a b a c d b c))

⇒ (0 0 1 0 1 1 1)

;An entry is 1 if the corresponding element of the input

; list was the last instance of that element in the input list.

mapl and mapc are like maplist and mapcar, respectively, except that they do not

accumulate the results of calling the function.

CONTROL STRUCTURE 171

Compatibility note: In all Lisp systems since Lisp 1.5, mapl has been called map. In the

chapter on sequences it is explained why this was a bad choice. Here the name map is used for

the far more useful generic sequence mapper, in closer accordance with the computer science

literature, especially the growing body of papers on functional programming.

Note that this remark, predating the design of the Common Lisp Object System, uses the

term “generic” in a generic sense and not necessarily in the technical sense used by CLOS (see

chapter 2).

These functions are used when the function is being called merely for its side

effects rather than for its returned values. The value returned by mapl or mapc is the

second argument, that is, the first sequence argument.

mapcan and mapcon are like mapcar and maplist, respectively, except that they combine

the results of the function using nconc instead of list. That is,

(mapcon f x1 ... xn)

≡ (apply #--´nconc (maplist f x1 ... xn))

and similarly for the relationship between mapcan and mapcar. Conceptually, these

functions allow the mapped function to return a variable number of items to be put

into the output list. This is particularly useful for effectively returning zero or one

item:

(mapcan #--´(lambda (x) (and (numberp x) (list x)))

´(a 1 b c 3 4 d 5))

⇒ (1 3 4 5)

In this case the function serves as a filter; this is a standard Lisp idiom using mapcan.

(The function remove-if-not might have been useful in this particular context, how

ever.) Remember that nconc is a destructive operation, and therefore so are mapcan

and mapcon; the lists returned by the function are altered in order to concatenate them.

Sometimes a do or a straightforward recursion is preferable to a mapping operation;

however, the mapping functions should be used wherever they naturally apply because

this increases the clarity of the code.

The functional argument to a mapping function must be acceptable to apply; it

cannot be a macro or the name of a special form. Of course, there is nothing wrong

with using a function that has &optional and &rest parameters as the functional

argument.

X3J13 voted in June 1988 〈90〉 to allow the function to be only of type symbol or

function; a lambdaexpression is no longer acceptable as a functional argument. One

must use the function special form or the abbreviation #--´ before a lambdaexpression

that appears as an explicit argument form.

172 COMMON LISP

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

7.8.5. The “Program Feature”

Lisp implementations since Lisp 1.5 have had what was originally called “the program

feature,” as if it were impossible to write programs without it! The prog construct

allows one to write in an Algollike or Fortranlike statementoriented style, using go

statements that can refer to tags in the body of the prog. Modern Lisp programming

style tends to use prog rather infrequently. The various iteration constructs, such as

do, have bodies with the characteristics of a prog. (However, the ability to use go

statements within iteration constructs is very seldom called upon in practice.)

Three distinct operations are performed by prog: it binds local variables, it permits

use of the return statement, and it permits use of the go statement. In Common Lisp,

these three operations have been separated into three distinct constructs: let, block,

and tagbody. These three constructs may be used independently as building blocks

for other types of constructs.

[Special form]tagbody {tag | statement}∗

The part of a tagbody after the variable list is called the body. An item in the body

may be a symbol or an integer, in which case it is called a tag, or an item in the body

may be a list, in which case it is called a statement.

Each element of the body is processed from left to right. A tag is ignored; a

statement is evaluated, and its results are discarded. If the end of the body is reached,

the tagbody returns nil.

If (go tag) is evaluated, control jumps to the part of the body labelled with the tag.

Compatibility note: The “computed go” feature of MacLisp is not supported. The syntax of

a computed go is idiosyncratic, and the feature is not supported by Lisp Machine Lisp, NIL

(New Implementation of Lisp), or Interlisp. The computed go has been infrequently used in

MacLisp anyway and is easily simulated with no loss of efficiency by using a case statement

each of whose clauses performs a (noncomputed) go.

The scope of the tags established by a tagbody is lexical, and the extent is dynamic.

Once a tagbody construct has been exited, it is no longer legal to go to a tag in its

body. It is permissible for a go to jump to a tagbody that is not the innermost tagbody

construct containing that go; the tags established by a tagbody will only shadow other

tags of like name.

The lexical scoping of the go targets named by tags is fully general and has

consequences that may be surprising to users and implementors of other Lisp systems.

CONTROL STRUCTURE 173

For example, the go in the following example actually does work in Common Lisp as

one might expect:

(tagbody

(catch ´stuff

(mapcar #--´(lambda (x) (if (numberp x)

(hairyfun x)

(go lose)))

items))

(return)

lose

(error "I lost big!"))

Depending on the situation, a go in Common Lisp does not necessarily correspond to

a simple machine “jump” instruction. A go can break up catchers if necessary to get to

the target. It is possible for a “closure” created by function for a lambdaexpression

to refer to a go target as long as the tag is lexically apparent. See chapter 3 for an

elaborate example of this.

There are some holes in this specification (and that of go) that leave some room

for interpretation. For example, there is no explicit prohibition against the same tag

appearing more than once in the same tagbody body. Every implementation I know

of will complain in the compiler, if not in the interpreter, if there is a go to such

a duplicated tag; but some implementors take the position that duplicate tags are

permitted provided there is no go to such a tag. (“If a tree falls in the forest, and

there is no one there to hear it, then no one needs to yell ‘Timber!’ ”) Also, some

implementations allow objects other than symbols, integers, and lists in the body and

typically ignore them. Consequently, some programmers use redundant tags such as

--- for formatting purposes, and strings as comments:

(defun dining-philosopher (j)

(tagbody ---

think (unless (hungry) (go think))

"Can´t eat without chopsticks."

(snatch (chopstick j))

(snatch (chopstick (mod (+ j 1) 5)))

174 COMMON LISP

eat (when (hungry)

(mapc #--´gobble-down

´(twice-cooked-pork kung-pao-chi-ding

wu-dip-har orange-flavor-beef

two-side-yellow-noodles twinkies))

(go eat))

"Can´t think with my neighbors´ stomachs rumbling."

(relinquish (chopstick j))

(relinquish (chopstick (mod (+ j 1) 5)))

(if (happy) (go think)

(become insurance-salesman))))

In certain implementations of Common Lisp they get away with it. Others abhor what

they view as an abuse of unintended ambiguity in the language specification. For

maximum portability, I advise users to steer clear of these issues. Similarly, it is best

to avoid using nil as a tag, even though it is a symbol, because a few implementations

treat nil as a list to be executed. To be extra careful, avoid calling from within a

tagbody a macro whose expansion might not be a nonnil list; wrap such a call in

(progn ...), or rewrite the macro to return (progn ...) if possible.

[Macro]prog ({var | (var [init])}∗) {declaration}∗ {tag | statement}∗
[Macro]prog* ({var | (var [init])}∗) {declaration}∗ {tag | statement}∗

The prog construct is a synthesis of let, block, and tagbody, allowing bound variables

and the use of return and go within a single construct. A typical prog construct looks

like this:

(prog (var1 var2 (var3 init3) var4 (var5 init5))

{declaration}∗
statement1

tag1

statement2

statement3

statement4

tag2

statement5

...

)

CONTROL STRUCTURE 175

The list after the keyword prog is a set of specifications for binding var1, var2, etc.,

which are temporary variables bound locally to the prog. This list is processed exactly

as the list in a let statement: first all the init forms are evaluated from left to right

(where nil is used for any omitted init form), and then the variables are all bound in

parallel to the respective results. Any declaration appearing in the prog is used as if

appearing at the top of the let body.

The body of the prog is executed as if it were a tagbody construct; the go statement

may be used to transfer control to a tag.

A prog implicitly establishes a block named nil around the entire prog construct,

so that return may be used at any time to exit from the prog construct.

Here is a fine example of what can be done with prog:

(defun king-of-confusion (w)

"Take a cons of two lists and make a list of conses.

Think of this function as being like a zipper."

(prog (x y z) ;Initialize x, y, z to nil

(setq y (car w) z (cdr w))

loop

(cond ((null y) (return x))

((null z) (go err)))

rejoin

(setq x (cons (cons (car y) (car z)) x))

(setq y (cdr y) z (cdr z))

(go loop)

err

(cerror "Will self-pair extraneous items"

"Mismatch - gleep! S" y)

(setq z y)

(go rejoin)))

which is accomplished somewhat more perspicuously by

(defun prince-of-clarity (w)

"Take a cons of two lists and make a list of conses.

Think of this function as being like a zipper."

(do ((y (car w) (cdr y))

(z (cdr w) (cdr z))

(x ´() (cons (cons (car y) (car z)) x)))

((null y) x)

(when (null z)

(cerror "Will self-pair extraneous items"

176 COMMON LISP

"Mismatch - gleep! S" y)

(setq z y))))

The prog construct may be explained in terms of the simpler constructs block, let,

and tagbody as follows:

(prog variablelist {declaration}∗ . body)

≡ (block nil (let variablelist {declaration}∗ (tagbody . body)))

The prog* special form is almost the same as prog. The only difference is that the

binding and initialization of the temporary variables is done sequentially, so that the

init form for each one can use the values of previous ones. Therefore prog* is to prog

as let* is to let. For example,

(prog* ((y z) (x (car y)))

(return x))

returns the car of the value of z.

I haven’t seen prog used very much in the last several years. Apparently splitting it

into functional constituents (let, block, tagbody) has been a success. Common Lisp

programmers now tend to use whichever specific construct is appropriate.

[Special form]go tag

The (go tag) special form is used to do a “go to” within a tagbody construct. The tag

must be a symbol or an integer; the tag is not evaluated. go transfers control to the

point in the body labelled by a tag eql to the one given. If there is no such tag in the

body, the bodies of lexically containing tagbody constructs (if any) are examined as

well. It is an error if there is no matching tag lexically visible to the point of the go.

The go form does not ever return a value.

As a matter of style, it is recommended that the user think twice before using a go.

Most purposes of go can be accomplished with one of the iteration primitives, nested

conditional forms, or return-from. If the use of go seems to be unavoidable, perhaps

the control structure implemented by go should be packaged as a macro definition.

7.9. Structure Traversal and Side Effects

X3J13 voted in January 1989 〈121〉 to restrict side effects during the course of a built

in operation that can execute usersupplied code while traversing a data structure.

Consider the following example:

CONTROL STRUCTURE 177

(let ((x ´(apples peaches pumpkin pie)))

(dolist (z x)

(when (eq z ´peaches)

(setf (cddr x) ´(mango kumquat)))

(format t " S " (car z))))

Depending on the details of the implementation of dolist, this bit of code could easily

print

apples peaches mango kumquat

(which is perhaps what was intended), but it might as easily print

apples peaches pumpkin pie

Here is a plausible implementation of dolist that produces the first result:

(defmacro dolist ((var listform &optional (resultform ´´nil))

&body body)

(let ((tailvar (gensym "DOLIST")))

`(do ((,tailvar ,listform (cdr ,tailvar)))

((null ,tailvar) ,resultform)

(let ((,var (car ,tailvar))) ,@body))

But here is a plausible implementation of dolist that produces the second result:

(defmacro dolist ((var listform &optional (resultform ´´nil))

&body body)

(let ((tailvar (gensym "DOLIST")))

`(do ((,tailvar ,listform))

((null ,tailvar) ,resultform)

(let ((,var (pop ,tailvar))) ,@body))

The X3J13 recognizes and legitimizes varying implementation practices: in gen

eral it is an error for code executed during a “structuretraversing” operation to

destructively modify the structure in a way that might affect the ongoing traversal

operation. The committee identified in particular the following special cases.

For list traversal operations, the cdr chain may not be destructively modified.

For array traversal operations, the array may not be adjusted (see adjust-array)

and its fill pointer, if any, may not be modified.

For hash table operations (such as with-hash-table-iterator and maphash), new

entries may not be added or deleted, except that the very entry being processed by

user code may be changed or deleted.

178 COMMON LISP

For package symbol operations (for example, with-package-iterator and do-

symbols), new symbols may not be interned in, nor symbols uninterned from, the

packages being traversed or any packages they use, except that the very symbol being

processed by user code may be uninterned.

X3J13 noted that this vote is intended to clarify restrictions on the use of structure

traversal operations that are not themselves inherently destructive; for example, it

applies to map and dolist. Destructive operators such as delete require even more

complicated restrictions and are addressed by a separate proposal.

The X3J13 vote did not specify a complete list of the operations to which these

restrictions apply. Table 71 shows what I believe to be a complete list of operations

that traverse structures and take user code as a body (in the case of macros) or as a

functional argument (in the case of functions).

In addition, note that user code should not modify list structure that might be

undergoing interpretation by the evaluator, whether explicitly invoked via eval or

implicitly invoked, for example as in the case of a hook function (a defstruct print

function, the value of *evalhook* or *applyhook*, etc.) that happens to be a closure

of interpreted code. Similarly, defstruct print functions and other hooks should not

perform side effects on data structures being printed or being processed by format, or

on a string given to make-string-input-stream. You get the idea; be sensible.

Note that an operation such as mapcar or dolist traverses not only cdr pointers

(in order to chase down the list) but also car pointers (in order to obtain the ele

ments themselves). The restriction against modification appears to apply to all these

pointers.

7.10. Multiple Values

Ordinarily the result of calling a Lisp function is a single Lisp object. Sometimes,

however, it is convenient for a function to compute several objects and return them.

Common Lisp provides a mechanism for handling multiple values directly. This

mechanism is cleaner and more efficient than the usual tricks involving returning a

list of results or stashing results in global variables.

7.10.1. Constructs for Handling Multiple Values

Normally multiple values are not used. Special forms are required both to produce

multiple values and to receive them. If the caller of a function does not request

multiple values, but the called function produces multiple values, then the first value

is given to the caller and all others are discarded; if the called function produces zero

values, then the caller gets nil as a value.

CONTROL STRUCTURE 179

Table 71: Structure Traversal Operations Subject to Side Effect Restrictions

adjoin maphash reduce

assoc mapl remove

assoc-if maplist remove-duplicates

assoc-if-not member remove-if

count member-if remove-if-not

count-if member-if-not search

count-if-not merge set-difference

delete mismatch set-exclusive-or

delete-duplicates nintersection some

delete-if notany sort

delete-if-not notevery stable-sort

do-all-symbols nset-difference sublis

do-external-symbols nset-exclusive-or subsetp

do-symbols nsublis subst

dolist nsubst subst-if

eval nsubst-if subst-if-not

every nsubst-if-not substitute

find nsubstitute substitute-if

find-if nsubstitute-if substitute-if-not

find-if-not nsubstitute-if-not tree-equal

intersection nunion union

certain loop clauses position with-hash-table-iterator

map position-if with-input-from-string

mapc position-if-not with-output-to-string

mapcan rassoc with-package-iterator

mapcar rassoc-if

mapcon rassoc-if-not

The primary primitive for producing multiple values is values, which takes any

number of arguments and returns that many values. If the last form in the body of a

function is a values with three arguments, then a call to that function will return three

values. Other special forms also produce multiple values, but they can be described

in terms of values. Some builtin Common Lisp functions, such as floor, return

multiple values; those that do are so documented.

The special forms and macros for receiving multiple values are as follows:

multiple-value-list

multiple-value-call

multiple-value-prog1

multiple-value-bind

180 COMMON LISP

multiple-value-setq

These specify a form to evaluate and an indication of where to put the values returned

by that form.

[Function]values &rest args

All of the arguments are returned, in order, as values. For example:

(defun polar (x y)

(values (sqrt (+ (* x x) (* y y))) (atan y x)))

(multiple-value-bind (r theta) (polar 3.0 4.0)

(vector r theta))

⇒ #--(5.0 0.9272952)

The expression (values) returns zero values. This is the standard idiom for return

ing no values from a function.

Sometimes it is desirable to indicate explicitly that a function will return exactly

one value. For example, the function

(defun foo (x y)

(floor (+ x y) y))

will return two values because floor returns two values. It may be that the second

value makes no sense, or that for efficiency reasons it is desired not to compute the

second value. The values function is the standard idiom for indicating that only one

value is to be returned, as shown in the following example.

(defun foo (x y)

(values (floor (+ x y) y)))

This works because values returns exactly one value for each of its argument forms;

as for any function call, if any argument form to values produces more than one value,

all but the first are discarded.

There is absolutely no way in Common Lisp for a caller to distinguish between

returning a single value in the ordinary manner and returning exactly one “multiple

value.” For example, the values returned by the expressions (+ 1 2) and (values

(+ 1 2)) are identical in every respect: the single value 3.

[Constant]multiple-values-limit

The value of multiple-values-limit is a positive integer that is the upper exclusive

bound on the number of values that may be returned from a function. This bound

CONTROL STRUCTURE 181

depends on the implementation but will not be smaller than 20. (Implementors are

encouraged to make this limit as large as practicable without sacrificing performance.)

See lambda-parameters-limit and call-arguments-limit.

[Function]values-list list

All of the elements of list are returned as multiple values. For example:

(values-list (list a b c)) ≡ (values a b c)

In general,

(values-list list) ≡ (apply #--´values list)

but values-list may be clearer or more efficient.

[Macro]multiple-value-list form

multiple-value-list evaluates form and returns a list of the multiple values it returned.

For example:

(multiple-value-list (floor -3 4)) ⇒ (-1 1)

multiple-value-list and values-list are therefore inverses of each other.

[Special form]multiple-value-call function { form}∗

multiple-value-call first evaluates function to obtain a function and then evaluates all

of the forms. All the values of the forms are gathered together (not just one value from

each) and are all given as arguments to the function. The result of multiple-value-call

is whatever is returned by the function. For example:

(+ (floor 5 3) (floor 19 4))

≡ (+ 1 4) ⇒ 5

(multiple-value-call #--´+ (floor 5 3) (floor 19 4))

≡ (+ 1 2 4 3) ⇒ 10

(multiple-value-list form) ≡ (multiple-value-call #--´list form)

[Special form]multiple-value-prog1 form { form}∗

multiple-value-prog1 evaluates the first form and saves all the values produced by

that form. It then evaluates the other forms from left to right, discarding their values.

182 COMMON LISP

The values produced by the first form are returned by multiple-value-prog1. See

prog1, which always returns a single value.

[Macro]multiple-value-bind ({var}∗) valuesform

{declaration}∗ { form}∗

The valuesform is evaluated, and each of the variables var is bound to the respective

value returned by that form. If there are more variables than values returned, extra

values of nil are given to the remaining variables. If there are more values than

variables, the excess values are simply discarded. The variables are bound to the

values over the execution of the forms, which make up an implicit progn. For example:

(multiple-value-bind (x) (floor 5 3) (list x)) ⇒ (1)

(multiple-value-bind (x y) (floor 5 3) (list x y)) ⇒ (1 2)

(multiple-value-bind (x y z) (floor 5 3) (list x y z))

⇒ (1 2 nil)

[Macro]multiple-value-setq variables form

The variables must be a list of variables. The form is evaluated, and the variables are

set (not bound) to the values returned by that form. If there are more variables than

values returned, extra values of nil are assigned to the remaining variables. If there

are more values than variables, the excess values are simply discarded.

Compatibility note: In Lisp Machine Lisp this is called multiple-value. The added clarity

of the name multiple-value-setq in Common Lisp was deemed worth the incompatibility with

Lisp Machine Lisp.

CONTROL STRUCTURE 183

multiple-value-setq always returns a single value, which is the first value returned

by form, or nil if form produces zero values.

X3J13 voted in March 1989 〈173〉 to specify that if any var refers not to an ordinary

variable but to a binding made by symbol-macrolet, then that var is handled as if setq

were used to assign the appropriate value to it.

[Macro]nth-value n form

X3J13 voted in January 1989 〈123〉 to add a new macro named nth-value. The

argument forms n and form are both evaluated. The value of n must be a non

negative integer, and the form may produce any number of values. The integer n is

used as a zerobased index into the list of values. Value n of the form is returned as

the single value of the nth-value form; nil is returned if the form produces no more

than n values.

As an example, mod could be defined as

(defun mod (number divisor)

(nth-value 1 (floor number divisor)))

Value number 1 is the second value returned by floor, the first value being value

number 0.

One could define nth-value simply as

(defmacro nth-value (n form)

`(nth ,n (multiple-value-list ,form)))

but the clever implementor will doubtless find an implementation technique for nth-

value that avoids constructing an intermediate list of all the values of the form.

7.10.2. Rules Governing the Passing of Multiple Values

It is often the case that the value of a special form or macro call is defined to be the

value of one of its subforms. For example, the value of a cond is the value of the last

form in the selected clause.

In most such cases, if the subform produces multiple values, then the original form

will also produce all of those values. This passing back of multiple values of course

has no effect unless eventually one of the special forms for receiving multiple values

is reached.

To be explicit, multiple values can result from a special form under precisely these

circumstances:

184 COMMON LISP

Evaluation and application

. eval returns multiple values if the form given it to evaluate produces multiple

values.

. apply, funcall, and multiple-value-call pass back multiple values from the func

tion applied or called.

Implicit progn contexts

. The special form progn passes back multiple values resulting from evaluation of

the last subform. Other situations referred to as “implicit progn,” where several

forms are evaluated and the results of all but the last form are discarded, also

pass back multiple values from the last form. These situations include the body

of a lambdaexpression, in particular those constructed by defun, defmacro, and

deftype. Also included are bodies of the constructs eval-when, progv, let, let*,

when, unless, block, multiple-value-bind, and catch, as well as clauses in such

conditional constructs as case, typecase, ecase, etypecase, ccase, and ctypecase.

X3J13 has voted to add many new constructs to the language that contain implicit

progn contexts. I won’t attempt to list them all here. Of particular interest, however, is

locally, which may be regarded as simply a version of progn that permits declarations

before its body. This provides a useful building block for constructing macros that

permit declarations (but not documentation strings) before their bodies and pass back

any multiple values produced by the last subform of a body. (If a body can contain

a documentation string, most likely lambda is the correct building block to use.)

Conditional constructs

. if passes back multiple values from whichever subform is selected (the then form

or the else form).

. and and or pass back multiple values from the last subform but not from subforms

other than the last.

. cond passes back multiple values from the last subform of the implicit progn of the

selected clause. If, however, the clause selected is a singleton clause, then only

a single value (the nonnil predicate value) is returned. This is true even if the

singleton clause is the last clause of the cond. It is not permitted to treat a final

clause (x) as being the same as (t x) for this reason; the latter passes back multiple

values from the form x.

Returning from a block

CONTROL STRUCTURE 185

. The block construct passes back multiple values from its last subform when it exits

normally. If return-from (or return) is used to terminate the block prematurely,

then return-from passes back multiple values from its subform as the values of the

terminated block. Other constructs that create implicit blocks, such as do, dolist,

dotimes, prog, and prog*, also pass back multiple values specified by return-from

(or return).

. do passes back multiple values from the last form of the exit clause, exactly as if

the exit clause were a cond clause. Similarly, dolist and dotimes pass back multiple

values from the resultform if that is executed. These situations are all examples of

implicit uses of return-from.

Throwing out of a catch

. The catch construct returns multiple values if the result form in a throw exiting

from such a catch produces multiple values.

Miscellaneous situations

. multiple-value-prog1 passes back multiple values from its first subform. However,

prog1 always returns a single value.

. unwind-protect returns multiple values if the form it protects returns multiple

values.

. the returns multiple values if the form it contains returns multiple values.

Among special forms that never pass back multiple values are prog1, prog2, setq,

and multiple-value-setq. The conventionalway to force only one value to be returned

from a form x is to write (values x).

The most important rule about multiple values is: No matter how many values a

form produces, if the form is an argument form in a function call, then exactly

one value (the first one) is used.

For example, if you write (cons (floor x)), then cons will always receive exactly

one argument (which is of course an error), even though floor returns two values.

To pass both values from floor to cons, one must write something like (multiple-

value-call #--´cons (floor x)). In an ordinary function call, each argument form

produces exactly one argument; if such a form returns zero values, nil is used for

the argument, and if more than one value, all but the first are discarded. Similarly,

conditional constructs such as if that test the value of a form will use exactly one

value, the first one, from that form and discard the rest; such constructs will use nil

as the test value if zero values are returned.

186 COMMON LISP

7.11. Dynamic NonLocal Exits

Common Lisp provides a facility for exiting from a complex process in a nonlocal,

dynamically scoped manner. There are two classes of special forms for this purpose,

called catch forms and throw forms, or simply catches and throws. A catch form

evaluates some subforms in such a way that, if a throw form is executed during such

evaluation, the evaluation is aborted at that point and the catch form immediately

returns a value specified by the throw. Unlike block and return (section 7.7), which

allow for exiting a block form from any point lexically within the body of the block,

the catch/throw mechanism works even if the throw form is not textually within the

body of the catch form. The throw need only occur within the extent (time span) of

the evaluation of the body of the catch. This is analogous to the distinction between

dynamically bound (special) variables and lexically bound (local) variables.

[Special form]catch tag { form}∗

The catch special form serves as a target for transfer of control by throw. The form tag

is evaluated first to produce an object that names the catch; it may be any Lisp object.

A catcher is then established with the object as the tag. The forms are evaluated as

an implicit progn, and the results of the last form are returned, except that if during

the evaluation of the forms a throw should be executed such that the tag of the throw

matches (is eq to) the tag of the catch and the catcher is the most recent outstanding

catcher with that tag, then the evaluation of the forms is aborted and the results

specified by the throw are immediately returned from the catch expression. The

catcher established by the catch expression is disestablished just before the results

are returned.

The tag is used to match throws with catches. (catch ´foo form) will catch a

(throw ´foo form) but not a (throw ´bar form). It is an error if throw is done when

there is no suitable catch ready to catch it.

Catch tags are compared using eq, not eql; therefore numbers and characters should

not be used as catch tags.

Compatibility note: The name catch comes from MacLisp, but the syntax of catch in Common

Lisp is different. The MacLisp syntax was (catch form tag), where the tag was not evaluated.

[Special form]unwind-protect protectedform {cleanupform}∗

Sometimes it is necessary to evaluate a form and make sure that certain side effects

take place after the form is evaluated; a typical example is

CONTROL STRUCTURE 187

(progn (start-motor)

(drill-hole)

(stop-motor))

The nonlocal exit facility of Common Lisp creates a situation in which the above

code won’t work, however: if drill-hole should do a throw to a catch that is outside

of the progn form (perhaps because the drill bit broke), then (stop-motor) will never

be evaluated (and the motor will presumably be left running). This is particularly

likely if drill-hole causes a Lisp error and the user tells the errorhandler to give up

and abort the computation. (A possibly more practical example might be

(prog2 (open-a-file)

(process-file)

(close-the-file))

where it is desired always to close the file when the computation is terminated for

whatever reason. This case is so important that Common Lisp provides the special

form with-open-file for this purpose.)

In order to allow the example holedrilling program to work, it can be rewritten

using unwind-protect as follows:

;; Stop the motor no matter what (even if it failed to start).

(unwind-protect

(progn (start-motor)

(drill-hole))

(stop-motor))

If drill-hole does a throw that attempts to quit out of the unwind-protect, then

(stop-motor) will be executed.

This example assumes that it is correct to call stop-motor even if the motor has

not yet been started. Remember that an error or interrupt may cause an exit even

before any initialization forms have been executed. Any state restoration code should

operate correctly no matter where in the protected code an exit occurred. For example,

the following code is not correct:

(unwind-protect

(progn (incf *access-count*)

(perform-access))

(decf *access-count*))

188 COMMON LISP

If an exit occurs before completion of the incf operation the decf operation will be

executed anyway, resulting in an incorrect value for *access-count*. The correct way

to code this is as follows:

(let ((old-count *access-count*))

(unwind-protect

(progn (incf *access-count*)

(perform-access))

(setq *access-count* old-count)))

As a general rule, unwind-protect guarantees to execute the cleanupforms before

exiting, whether it terminates normally or is aborted by a throw of some kind. (If, how

ever, an exit occurs during execution of the cleanupforms, no special action is taken.

The cleanupforms of an unwind-protect are not protected by that unwind-protect,

though they may be protected if that unwind-protect occurs within the protected form

of another unwind-protect.) unwind-protect returns whatever results from evaluation

of the protectedform and discards all the results from the cleanupforms.

It should be emphasized that unwind-protect protects against all attempts to exit

from the protected form, including not only “dynamic exit” facilities such as throw

but also “lexical exit” facilities such as go and return-from. Consider this situation:

(tagbody

(let ((x 3))

(unwind-protect

(if (numberp x) (go out))

(print x)))

out

...)

When the go is executed, the call to print is executed first, and then the transfer of

control to the tag out is completed.

X3J13 voted in March 1989 〈74〉 to clarify the interaction of unwind-protect with

constructs that perform exits.

Let an exit be a point out of which control can be transferred. For a throw the exit

is the matching catch; for a return-from the exit is the corresponding block. For a go

the exit is the statement within the tagbody (the one to which the target tag belongs)

which is being executed at the time the go is performed.

The extent of an exit is dynamic; it is not indefinite. The extent of an exit begins

when the corresponding form (catch, block, or tagbody statement) is entered. When

the extent of an exit has ended, it is no longer legal to return from it.

CONTROL STRUCTURE 189

Note that the extent of an exit is not the same thing as the scope or extent of the

designator by which the exit is identified. For example, a block name has lexical

scope but the extent of its exit is dynamic. The extent of a catch tag could differ

from the extent of the exit associated with the catch (which is exactly what is at issue

here). The difference matters when there are transfers of control from the cleanup

clauses of an unwind-protect.

When a transfer of control out of an exit is initiated by throw, return-from, or go, a

variety of events occur before the transfer of control is complete:

. The cleanup clauses of any intervening unwind-protect clauses are evaluated.

. Intervening dynamic bindings of special variables and catch tags are undone.

. Intervening exits are abandoned, that is, their extent ends and it is no longer legal

to attempt to transfer control from them.

. The extent of the exit being invoked ends.

. Control is finally passed to the target.

The first edition left the order of these events in some doubt. The implementation

note for throw hinted that the first two processes are interwoven, but it was unclear

whether it is permissible for an implementation to abandon all intervening exits before

processing any intervening unwind-protect cleanup clauses.

The clarification adopted by X3J13 is as follows. Intervening exits are abandoned

as soon as the transfer of control is initiated; in the case of a throw, this occurs at the

beginning of the “second pass” mentioned in the implementation note. It is an error

to attempt a transfer of control to an exit whose dynamic extent has ended.

Next the evaluation of unwind-protect cleanup clauses and the undoing of dynamic

bindings and catch tags are performed together, in the order corresponding to the

reverse of the order in which they were established. The effect of this is that the

cleanup clauses of an unwind-protect will see the same dynamic bindings of variables

and catch tags as were visible when the unwind-protect was entered. (However, some

of those catch tags may not be useable because they correspond to abandoned exit

points.)

Finally control is transferred to the originally invoked exit and simultaneously that

exit is abandoned.

The effect of this specification is that once a program has attempted to transfer

control to a particular exit, an unwind-protect cleanup form cannot step in and decide

to transfer control to a more recent (nested) exit, blithely forgetting the original exit

request. However, a cleanup form may restate the request to transfer to the same exit

that started the cleanup process.

190 COMMON LISP

Here is an example based on a nautical metaphor. The function gently moves an

oar in the water with low force, but if an oar gets stuck, the caller will catch a crab.

The function row takes a boat, an oarstroking function, a stream, and a count; an oar

is constructed for the boat and stream and the oarstroking function is called :count

times. The function life rows a particular boat. Merriment follows, except that if

the oarsman is winded he must stop to catch his breath.

(defun gently (oar)

(stroke oar :force 0.5)

(when (stuck oar)

(throw ´crab nil)))

(defun row (boat stroke-fn stream &key count)

(let ((oar (make-oar boat stream)))

(loop repeat count do (funcall stroke-fn oar))))

(defun life ()

(catch ´crab

(catch ´breath

(unwind-protect

(row *your-boat* #--´gently *query-io* :count 3))

(when (winded) (throw ´breath nil)))

(loop repeat 4 (set-mode :merry))

(dream))))

Suppose that the oar gets stuck, causing gently to call throw with the tag crab. The

program is then committed to exiting from the outer catch (the one with the tag

crab). As control breaks out of the unwind-protect form, the winded test is executed.

Suppose it is true; then another call to throw occurs, this time with the tag breath. The

inner catch (the one with the tag breath) has been abandoned as a result of the first

throw operation (still in progress). The clarification voted by X3J13 specifies that the

program is in error for attempting to transfer control to an abandoned exit point. To

put it in terms of the example: once you have begun to catch a crab, you cannot rely

on being able to catch your breath.

Implementations may support longer extents for exits than is required by this

specification, but portable programs may not rely on such extended extents.

(This specification is somewhat controversial. An alternative proposal was that

the abandoning of exits should be lumped in with the evaluation of unwind-protect

cleanup clauses and the undoing of dynamic bindings and catch tags, performing all

in reverse order of establishment. X3J13 agreed that this approach is theoretically

cleaner and more elegant but also more stringent and of little additional practical use.

CONTROL STRUCTURE 191

There was some concern that a more stringent specification might be a great added

burden to some implementors and would achieve only a small gain for users.)

[Special form]throw tag result

The throw special form transfers control to a matching catch construct. The tag

is evaluated first to produce an object called the throw tag; then the result form is

evaluated, and its results are saved (if the result form produces multiple values, then

all the values are saved). The most recent outstanding catch whose tag matches the

throw tag is exited; the saved results are returned as the value(s) of the catch. A catch

matches only if the catch tag is eq to the throw tag.

In the process, dynamic variable bindings are undone back to the point of the

catch, and any intervening unwind-protect cleanup code is executed. The result

form is evaluated before the unwinding process commences, and whatever results it

produces are returned from the catch.

If there is no outstanding catcher whose tag matches the throw tag, no unwinding

of the stack is performed, and an error is signalled. When the error is signalled, the

outstanding catchers and the dynamic variable bindings are those in force at the point

of the throw.

Implementation note: These requirements imply that throwing should typically make two

passes over the control stack. In the first pass it simply searches for a matching catch. In this

search every catch must be considered, but every unwind-protect should be ignored. On the

second pass the stack is actually unwound, one frame at a time, undoing dynamic bindings and

outstanding unwind-protect constructs in reverse order of creation until the matching catch is

reached.

Compatibility note: The name throw comes from MacLisp, but the syntax of throw in Common

Lisp is different. The MacLisp syntax was (throw form tag), where the tag was not evaluated.

8

Macros

The Common Lisp macro facility allows the user to define arbitrary functions that

convert certain Lisp forms into different forms before evaluating or compiling them.

This is done at the expression level, not at the characterstring level as in most other

languages. Macros are important in the writing of good code: they make it possible

to write code that is clear and elegant at the user level but that is converted to a more

complex or more efficient internal form for execution.

When eval is given a list whose car is a symbol, it looks for local definitions

of that symbol (by flet, labels, and macrolet); if that fails, it looks for a global

definition. If the definition is a macro definition, then the original list is said to be

a macro call. Associated with the definition will be a function of two arguments,

called the expansion function. This function is called with the entire macro call as its

first argument (the second argument is a lexical environment); it must return some

new Lisp form, called the expansion of the macro call. (Actually, a more general

mechanism is involved; see macroexpand.) This expansion is then evaluated in place

of the original form.

When a function is being compiled, any macros it contains are expanded at compi

lation time. This means that a macro definition must be seen by the compiler before

the first use of the macro.

More generally, an implementation of Common Lisp has great latitude in deciding

exactly when to expand macro calls within a program. For example, it is acceptable

for the defun special form to expand all macro calls within its body at the time the

defun form is executed and record the fully expanded body as the body of the function

being defined. (An implementation might even choose always to compile functions

defined by defun, even when operating in an “interpretive” mode.)

Macros should be written so as to depend as little as possible on the execution

environment to produce a correct expansion. To ensure consistent behavior, it is

best to ensure that all macro definitions are available, whether to the interpreter or

compiler, before any code containing calls to those macros is introduced.

192

MACROS 193

In Common Lisp, macros are not functions. In particular, macros cannot be used

as functional arguments to such functions as apply, funcall, or map; in such situations,

the list representing the “original macro call” does not exist, and cannot exist, because

in some sense the arguments have already been evaluated.

8.1. Macro Definition

The function macro-function determines whether a given symbol is the name of a

macro. The defmacro construct provides a convenient way to define new macros.

[Function]macro-function symbol
...

The argument must be a symbol. If the symbol has a global function definition

that is a macro definition, then the expansion function (a function of two arguments,

the macrocall form and an environment) is returned. If the symbol has no global

function definition, or has a definition as an ordinary function or as a special form

but not as a macro, then nil is returned. The function macroexpand is the best way to

invoke the expansion function.

It is possible for both macro-function and special-form-p to be true of a symbol.

This is possible because an implementation is permitted to implement any macro

also as a special form for speed. On the other hand, the macro definition must be

available for use by programs that understand only the standard special forms listed

in table 51.

macro-function cannot be used to determine whether a symbol names a locally

defined macro established by macrolet; macro-function can examine only global

definitions.

setf may be used with macro-function to install a macro as a symbol’s global

function definition:

(setf (macro-function symbol) fn)

The value installed must be a function that accepts two arguments, an entire macro

call and an environment, and computes the expansion for that call. Performing this

operation causes the symbol to have only that macro definition as its global function

definition; any previous definition, whether as a macro or as a function, is lost. It is

an error to attempt to redefine the name of a special form.

X3J13 voted in March 1988 〈118〉 to add an optional environment argument to

macro-function.

194 COMMON LISP

[Function]macro-function symbol &optional env

The first argument must be a symbol. If the symbol has a function definition that

is a macro definition, whether a local one established in the environment env by

macrolet or a global one established as if by defmacro, then the expansion function (a

function of two arguments, the macrocall form and an environment) is returned. If

the symbol has no function definition, or has a definition as an ordinary function or

as a special form but not as a macro, then nil is returned. The function macroexpand

or macroexpand-1 is the best way to invoke the expansion function.

It is possible for both macro-function and special-form-p to be true of a symbol.

This is possible because an implementation is permitted to implement any macro

also as a special form for speed. On the other hand, the macro definition must be

available for use by programs that understand only the standard special forms listed

in table 51.

setf may be used with macro-function to install a macro as a symbol’s global

function definition:

(setf (macro-function symbol) fn)

The value installed must be a function that accepts two arguments, an entire macro

call and an environment, and computes the expansion for that call. Performing this

operation causes the symbol to have only that macro definition as its global function

definition; any previous definition, whether as a macro or as a function, is lost. One

cannot use setf to establish a local macro definition; it is an error to supply a second

argument to macro-function when using it with setf. It is an error to attempt to

redefine the name of a special form.

See also compiler-macro-function.

[Macro]defmacro name lambdalist [[{declaration}∗ | docstring]] { form}∗

defmacro is a macrodefining macro that arranges to decompose the macrocall form

in an elegant and useful way. defmacro has essentially the same syntax as defun:

name is the symbol whose macro definition we are creating, lambdalist is similar

in form to a lambdalist, and the forms constitute the body of the expander function.

The defmacro construct arranges to install this expander function, as the global macro

definition of name.

The expander function is effectively defined in the global environment; lexically
..

scoped entities established outside the defmacro form that would ordinarily be lexically

apparent are not visible within the body of the expansion function.

X3J13 voted in March 1989 〈50〉 to clarify that, while defining forms normally

appear at top level, it is meaningful to place them in nontoplevel contexts. Fur

MACROS 195

thermore, defmacro should define the expander function within the enclosing lexical

environment, not within the global environment.

X3J13 voted in March 1988 〈78〉 to specify that the body of the expander function

defined by defmacro is implicitly enclosed in a block construct whose name is the

same as the name of the defined macro. Therefore return-from may be used to exit

from the function.

The name is returned as the value of the defmacro form.

If we view the macro call as a list containing a function name and some argument

forms, in effect the expander function and the list of (unevaluated) argument forms is

given to apply. The parameter specifiers are processed as for any lambdaexpression,

using the macrocall argument forms as the arguments. Then the body forms are

evaluated as an implicit progn, and the value of the last form is returned as the

expansion of the macro call.

If the optional documentation string docstring is present (if not followed by a

declaration, it may be present only if at least one form is also specified, as it is

otherwise taken to be a form), then it is attached to the name as a documentation

string of type function; see documentation.

Like the lambdalist in a defun, a defmacro lambdalist may contain the lambdalist
..

keywords &optional, &rest, &key, &allow-other-keys, and &aux. For &optional and &key

parameters, initialization forms and suppliedp parameters may be specified, just as

for defun. Three additional markers are allowed in defmacro variable lists only.

These three markers are now allowed in other constructs as well.

&body This is identical in function to &rest, but it informs certain output

formatting and editing functions that the remainder of the form is

treated as a body and should be indented accordingly. (Only one

of &body or &rest may be used.)

&whole This is followed by a single variable that is bound to the entire

macrocall form; this is the value that the macro definition function

receives as its single argument. &whole and the following variable

should appear first in the lambdalist, before any other parameter

or lambdalist keyword.

&environment This is followed by a single variable that is bound to an environment

representing the lexical environment in which the macro call is to

be interpreted. This environment may not be the complete lexical

environment; it should be used only with the function macroexpand

for the sake of any local macro definitions that the macrolet con

struct may have established within that lexical environment. This

is useful primarily in the rare cases where a macro definition must

196 COMMON LISP

explicitly expand any macros in a subform of the macro call before

computing its own expansion.

See lambda-list-keywords.

Notice of correction. In the first edition, the symbol &environment at the left margin

above was inadvertently omitted.

X3J13 voted in March 1989 〈117〉 to specify that macro environment objects

received with the &environment argument of a macro function have only dynamic

extent. The consequences are undefined if such objects are referred to outside the

dynamic extent of that particular invocation of the macro function. This allows imple

mentations to use somewhat more efficient techniques for representing environment

objects.

X3J13 voted in March 1989 〈51〉 to clarify the permitted uses of &body, &whole, and

&environment:

. &body may appear at any level of a defmacro lambdalist.

. &whole may appear at any level of a defmacro lambdalist. At inner levels a &whole

variable is bound to that part of the argument that matches the sublambdalist

in which &whole appears. No matter where &whole is used, other parameters or

lambdalist keywords may follow it.

. &environment may occur only at the outermost level of a defmacro lambdalist, and

it may occur at most once, but it may occur anywhere within that lambdalist, even

before an occurrence of &whole.

defmacro, unlike any other Common Lisp construct that has a lambdalist as part

of its syntax, provides an additional facility known as destructuring.

See destructuring-bind, which provides the destructuring facility separately.

Anywhere in the lambdalist where a parameter name may appear, and where

ordinary lambdalist syntax (as described in section 5.2.2) does not otherwise allow

a list, a lambdalist may appear in place of the parameter name. When this is done,

then the argument form that would match the parameter is treated as a (possibly

dotted) list, to be used as an argument forms list for satisfying the parameters in

the embedded lambdalist. As an example, one could write the macro definition for

dolist in this manner:

(defmacro dolist ((var listform &optional resultform)

&rest body)

...)

More examples of embedded lambdalists in defmacro are shown below.

Another destructuring rule is that defmacro allows any lambdalist (whether top

level or embedded) to be dotted, ending in a parameter name. This situation is treated

MACROS 197

exactly as if the parameter name that ends the list had appeared preceded by &rest.

For example, the definition skeleton for dolist shown above could instead have been

written

(defmacro dolist ((var listform &optional resultform)

. body)

...)

If the compiler encounters a defmacro, the new macro is added to the compilation

environment, and a compiled form of the expansion function is also added to the

output file so that the new macro will be operative at run time. If this is not the

desired effect, the defmacro form can be wrapped in an eval-when construct.

It is permissible to use defmacro to redefine a macro (for example, to install a

corrected version of an incorrect definition), or to redefine a function as a macro. It is

an error to attempt to redefine the name of a special form (see table 51) as a macro.

See macrolet, which establishes macro definitions over a restricted lexical scope.

See also define-compiler-macro.

Suppose, for the sake of example, that it were desirable to implement a conditional

construct analogous to the Fortran arithmetic IF statement. (This of course requires

a certain stretching of the imagination and suspension of disbelief.) The construct

should accept four forms: a testvalue, a negform, a zeroform, and a posform. One

of the last three forms is chosen to be executed according to whether the value of

the testform is positive, negative, or zero. Using defmacro, a definition for such a

construct might look like this:

(defmacro arithmetic-if (test neg-form zero-form pos-form)

(let ((var (gensym)))

`(let ((,var ,test))

(cond ((< ,var 0) ,neg-form)

((−− ,var 0) ,zero-form)

(t ,pos-form)))))

Note the use of the backquote facility in this definition (see section 22.1.3). Also note

the use of gensym to generate a new variable name. This is necessary to avoid conflict

with any variables that might be referred to in negform, zeroform, or posform.

If the form is executed by the interpreter, it will cause the function definition of

the symbol arithmetic-if to be a macro associated with which is a twoargument

expansion function roughly equivalent to

(lambda (calling-form environment)

(declare (ignore environment))

(let ((var (gensym)))

198 COMMON LISP

(list ´let

(list (list ´var (cadr calling-form)))

(list ´cond

(list (list ´< var ´0) (caddr calling-form))

(list (list ´−− var ´0) (cadddr calling-form))

(list ´t (fifth calling-form))))))

The lambdaexpression is produced by the defmacro declaration. The calls to list

are the (hypothetical) result of the backquote (`) macro character and its associated

commas. The precise macro expansion function may depend on the implementation,

for example providing some degree of explicit error checking on the number of

argument forms in the macro call.

Now, if eval encounters

(arithmetic-if (- x 4.0)

(- x)

(error "Strange zero")

x)

this will be expanded into something like

(let ((g407 (- x 4.0)))

(cond ((< g407 0) (- x))

((−− g407 0) (error "Strange zero"))

(t x)))

and eval tries again on this new form. (It should be clear now that the backquote

facility is very useful in writing macros, since the form to be returned is normally a

complex list structure, typically consisting of a mostly constant template with a few

evaluated forms here and there. The backquote template provides a “picture” of the

resulting code, with places to be filled in indicated by preceding commas.)

To expand on this example, stretching credibility to its limit, we might allow the

posform and zeroform to be omitted, allowing their values to default to nil, in much

the same way that the else form of a Common Lisp if construct may be omitted:

(defmacro arithmetic-if (test neg-form

&optional zero-form pos-form)

(let ((var (gensym)))

`(let ((,var ,test))

(cond ((< ,var 0) ,neg-form)

((−− ,var 0) ,zero-form)

(t ,pos-form)))))

MACROS 199

Then one could write

(arithmetic-if (- x 4.0) (print x))

which would be expanded into something like

(let ((g408 (- x 4.0)))

(cond ((< g408 0) (print x))

((−− g408 0) nil)

(t nil)))

The resulting code is correct but rather sillylooking. One might rewrite the macro

definition to produce better code when posform and possibly zeroform are omitted,

or one might simply rely on the Common Lisp implementation to provide a compiler

smart enough to improve the code itself.

Destructuring is a very powerful facility that allows the defmacro lambdalist to

express the structure of a complicated macrocall syntax. If no lambdalist keywords

appear, then the defmacro lambdalist is simply a list, nested to some extent, containing

parameter names at the leaves. The macrocall form must have the same list structure.

For example, consider this macro definition:

(defmacro halibut ((mouth eye1 eye2)

((fin1 length1) (fin2 length2))

tail)

...)

Now consider this macro call:

(halibut (m (car eyes) (cdr eyes))

((f1 (count-scales f1)) (f2 (count-scales f2)))

my-favorite-tail)

This would cause the expansion function to receive the following values for its

parameters:

200 COMMON LISP

Parameter Value

mouth m

eye1 (car eyes)

eye2 (cdr eyes)

fin1 f1

length1 (count-scales f1)

fin2 f2

length2 (count-scales f2)

tail my-favorite-tail

The following macro call would be in error because there would be no argument form

to match the parameter length1:

(halibut (m (car eyes) (cdr eyes))

((f1) (f2 (count-scales f2)))

my-favorite-tail)

The following macro call would be in error because a symbol appears in the call

where the structure of the lambdalist requires a list.

(halibut my-favorite-head

((f1 (count-scales f1)) (f2 (count-scales f2)))

my-favorite-tail)

The fact that the value of the variable my-favorite-head might happen to be a list is

irrelevant here. It is the macro call itself whose structure must match that of the

defmacro lambdalist.

The use of lambdalist keywords adds even greater flexibility. For example,

suppose it is convenient within the expansion function for halibut to be able to

refer to the list whose components are called mouth, eye1, and eye2 as head. One may

write this:

(defmacro halibut ((&whole head mouth eye1 eye2)

((fin1 length1) (fin2 length2))

tail)

Now consider the same valid macro call as before:

(halibut (m (car eyes) (cdr eyes))

((f1 (count-scales f1)) (f2 (count-scales f2)))

my-favorite-tail)

This would cause the expansion function to receive the same values for its parameters

and also a value for the parameter head:

MACROS 201

Parameter Value

head (m (car eyes) (cdr eyes))

The stipulation that an embedded lambdalist is permitted only where ordinary

lambdalist syntax would permit a parameter name but not a list is made to prevent

ambiguity. For example, one may not write

(defmacro loser (x &optional (a b &rest c) &rest z)

...)

because ordinary lambdalist syntax does permit a list following &optional; the list (a

b &rest c) would be interpreted as describing an optional parameter named a whose

default value is that of the form b, with a suppliedp parameter named &rest (not

legal), and an extraneous symbol c in the list (also not legal). An almost correct way

to express this is

(defmacro loser (x &optional ((a b &rest c)) &rest z)

...)

The extra set of parentheses removes the ambiguity. However, the definition is now

incorrect because a macro call such as (loser (car pool)) would not provide any

argument form for the lambdalist (a b &rest c), and so the default value against

which to match the lambdalist would be nil because no explicit default value was

specified. This is in error because nil is an empty list; it does not have forms to

satisfy the parameters a and b. The fully correct definition would be either

(defmacro loser (x &optional ((a b &rest c) ´(nil nil)) &rest z)

...)

or

(defmacro loser (x &optional ((&optional a b &rest c)) &rest z)

...)

These differ slightly: the first requires that if the macro call specifies a explicitly then

it must also specify b explicitly, whereas the second does not have this requirement.

For example,

(loser (car pool) ((+ x 1)))

would be a valid call for the second definition but not for the first.

202 COMMON LISP

8.2. Macro Expansion

The macroexpand function is the conventional means for expanding a macro call. A

hook is provided for a user function to gain control during the expansion process.

[Function]macroexpand form &optional env

[Function]macroexpand-1 form &optional env

If form is a macro call, then macroexpand-1 will expand the macro call once and return

two values: the expansion and t. If form is not a macro call, then the two values form

and nil are returned.

A form is considered to be a macro call only if it is a cons whose car is a symbol that

names a macro. The environment env is similar to that used within the evaluator (see

evalhook); it defaults to a null environment. Any local macro definitions established

within env by macrolet will be considered. If only form is given as an argument, then

the environment is effectively null, and only global macro definitions (as established

by defmacro) will be considered.

Macro expansion is carried out as follows. Once macroexpand-1 has determined that

a symbol names a macro, it obtains the expansion function for that macro. The value

of the variable *macroexpand-hook* is then called as a function of three arguments: the

expansion function, the form, and the environment env. The value returned from this

call is taken to be the expansion of the macro call. The initial value of *macroexpand-

hook* is funcall, and the net effect is to invoke the expansion function, giving it form

and env as its two arguments.

X3J13 voted in June 1988 〈90〉 to specify that the value of *macroexpand-hook*

is first coerced to a function before being called as the expansion interface hook.

Therefore its value may be a symbol, a lambdaexpression, or any object of type

function.

X3J13 voted in March 1989 〈117〉 to specify that macro environment objects

received by a *macroexpand-hook* function have only dynamic extent. The conse

quences are undefined if such objects are referred to outside the dynamic extent of

that particular invocation of the hook function. This allows implementations to use

somewhat more efficient techniques for representing environment objects.

(The purpose of *macroexpand-hook* is to facilitate various techniques for improving
...

interpretation speed by caching macro expansions.)

X3J13 voted in June 1989 〈116〉 to clarify that, while *macroexpand-hook* may be

useful for debugging purposes, despite the original design intent there is currently no

correct portable way to use it for caching macro expansions.

. Caching by displacement (performing a side effect on the macrocall form) won’t

work because the same (eq) macrocall form may appear in distinct lexical contexts.

MACROS 203

In addition, the macrocall form may be a readonly constant (see quote and also

section 25.1).

. Caching by table lookup won’t work because such a table would have to be keyed

by both the macrocall form and the environment, but X3J13 voted in March 1989

〈117〉 to permit macro environments to have only dynamic extent.

. Caching by storing macrocall forms and expansions within the environment object

itself would work, but there are no portable primitives that would allow users to

do this.

X3J13 also noted that, although there seems to be no correct portable way to use

macroexpand-hook to cache macro expansions, there is no requirement that an im

plementation call the macro expansion function more than once for a given form and

lexical environment.

X3J13 voted in March 1989 〈173〉 to specify that macroexpand-1 will also expand

symbol macros defined by symbol-macrolet; therefore a form may also be a macro

call if it is a symbol. The vote did not address the interaction of this feature with

the *macroexpand-hook* function. An obvious implementation choice is that the hook

function is indeed called and given a special expansion function that, when applied

to the form (a symbol) and env, will produce the expansion, just as for an ordinary

macro; but this is only my suggestion.

The evaluator expands macro calls as if through the use of macroexpand-1; the point

is that eval also uses *macroexpand-hook*.

macroexpand is similar to macroexpand-1, but repeatedly expands form until it is no

longer a macro call. (In effect, macroexpand simply calls macroexpand-1 repeatedly

until the second value returned is nil.) A second value of t or nil is returned as for

macroexpand-1, indicating whether the original form was a macro call.

[Variable]*macroexpand-hook*

The value of *macroexpand-hook* is used as the expansion interface hook by

macroexpand-1.

8.3. Destructuring

X3J13 voted in March 1989 〈64〉 to make the destructuring feature of defmacro

available as a separate facility.

204 COMMON LISP

[Macro]destructuring-bind lambdalist expression {declaration}∗ { form}∗

This macro binds the variables specified in lambdalist to the corresponding values

in the tree structure resulting from evaluating the expression, then executes the forms

as an implicit progn.

A destructuring-bind lambdalist may contain the lambdalist keywords &optional,

&rest, &key, &allow-other-keys, and &aux; &body and &whole may also be used as they

are in defmacro, but &environment may not be used. Nested and dotted lambdalists

are also permitted as for defmacro. The idea is that a destructuring-bind lambdalist

has the same format as inner levels of a defmacro lambdalist.

If the result of evaluating the expression does not match the destructuring pattern,

an error should be signaled.

8.4. Compiler Macros

X3J13 voted in June 1989 〈49〉 to add a facility for defining compiler macros that

take effect only when compiling code, not when interpreting it.

The purpose of this facility is to permit selective sourcecode transformations only

when the compiler is processing the code. When the compiler is about to compile a

nonatomic form, it first calls compiler-macroexpand-1 repeatedly until there is no more

expansion (there might not be any to begin with). Then it continues its remaining

processing, which may include calling macroexpand-1 and so on.

The compiler is required to expand compiler macros. It is unspecified whether the

interpreter does so. The intention is that only the compiler will do so, but the range of

possible “compiledonly” implementation strategies precludes any firm specification.

[Macro]define-compiler-macro name lambdalist

{declaration | docstring}∗ { form}∗

This is just like defmacro except the definition is not stored in the symbol function

cell of name and is not seen by macroexpand-1. It is, however, seen by compiler-

macroexpand-1. As with defmacro, the lambdalist may include &environment and

&whole and may include destructuring. The definition is global. (There is no provision

for defining local compiler macros in the way that macrolet defines local macros.)

A toplevel call to define-compiler-macro in a file being compiled by compile-file

has an effect on the compilation environment similar to that of a call to defmacro,

except it is noticed as a compiler macro (see section 25.1).

Note that compiler macro definitions do not appear in information returned by

function-information; they are global, and their interaction with other lexical and

MACROS 205

global definitions can be reconstructed by compiler-macro-function. It is up to code

walking programs to decide whether to invoke compiler macro expansion.

X3J13 voted in March 1988 〈78〉 to specify that the body of the expander function

defined by defmacro is implicitly enclosed in a block construct whose name is the same

as the name of the defined macro; presumably this applies also to define-compiler-

macro. Therefore return-from may be used to exit from the function.

[Function]compiler-macro-function name &optional env

The name must be a symbol. If it has been defined as a compiler macro, then

compiler-macro-function returns the macro expansion function; otherwise it returns

nil. The lexical environment env may override any global definition for name by

defining a local function or local macro (such as by flet, labels, or macrolet) in

which case nil is returned.

setf may be used with compiler-macro-function to install a function as the expan

sion function for the compiler macro name, in the same manner as for macro-function.

Storing the value nil removes any existing compiler macro definition. As with macro-

function, a nonnil stored value must be a function of two arguments, the entire macro

call and the environment. The second argument to compiler-macro-function must be

omitted when it is used with setf.

[Function]compiler-macroexpand form &optional env

[Function]compiler-macroexpand-1 form &optional env

These are just like macroexpand and macroexpand-1 except that the expander function

is obtained as if by a call to compiler-macro-function on the car of the form rather

than by a call to macro-function. Note that compiler-macroexpand performs repeated

expansion but compiler-macroexpand-1 performs at most one expansion. Two values

are returned, the expansion (or the original form) and a value that is true if any

expansion occurred and nil otherwise.

There are three cases where no expansion happens:

. There is no compiler macro definition for the car of form.

. There is such a definition but there is also a notinline declaration, either globally

or in the lexical environment env.

. A global compiler macro definition is shadowed by a local function or macro

definition (such as by flet, labels, or macrolet).

Note that if there is no expansion, the original form is returned as the first value, and

nil as the second value.

206 COMMON LISP

Any macro expansion performed by the function compiler-macroexpand or by the

function compiler-macroexpand-1 is carried out by calling the function that is the value

of *macroexpand-hook*.

A compiler macro may decline to provide any expansion merely by returning the

original form. This is useful when using the facility to put “compiler optimizers” on

various function names. For example, here is a compiler macro that “optimizes” (one

would hope) the zeroargument and oneargument cases of a function called plus:

(define-compiler-macro plus (&whole form &rest args)

(case (length args)

(0 0)

(1 (car args))

(t form)))

8.5. Environments

X3J13 voted in June 1989 〈174〉 to add some facilities for obtaining information from

environment objects of the kind received as arguments by macro expansion functions,

macroexpand-hook functions, and *evalhook* functions. There is a minimal set of ac

cessors (variable-information, function-information, and declaration-information)

and a constructor (augment-environment) for environments.

All of the standard declaration specifiers, with the exception of special, can be

defined fairly easily using define-declaration. It also seems to be able to handle

most extended declarations.

The function parse-macro is provided so that users don’t have to write their own code

to destructure macro arguments. This function is not entirely necessary since X3J13

voted in March 1989 〈64〉 to add destructuring-bind to the language. However, parse-

macro is worth having anyway, since any programanalyzing program is going to need

to define it, and the implementation isn’t completely trivial even with destructuring-

bind to build upon.

The function enclose allows expander functions to be defined in a nonnull lexical

environment, as required by the vote of X3J13 in March 1989 〈50〉. It also provides

a mechanism by which a program processing the body of an (eval-when (:compile-

toplevel) ...) form can execute it in the enclosing environment (see issue 〈73〉).
In all of these functions the argument named env is an environment object. (It

is not required that implementations provide a distinguished representation for such

objects.) Optional env arguments default to nil, which represents the local null lexical

environment (containing only global definitions and proclamations that are present

in the runtime environment). All of these functions should signal an error of type

MACROS 207

type-error if the value of an environment argument is not a syntactic environment

object.

The accessor functions variable-information, function-information, and

declaration-information retrieve information about declarations that are in effect in

the environment. Since implementations are permitted to ignore declarations (except

for special declarations and optimize safety declarations if they ever compile unsafe

code), these accessors are required only to return information about declarations that

were explicitly added to the environment using augment-environment. They might

also return information about declarations recognized and added to the environment

by the interpreter or the compiler, but that is at the discretion of the implementor.

Implementations are also permitted to canonicalize declarations, so the information

returned by the accessors might not be identical to the information that was passed

to augment-environment.

[Function]variable-information variable &optional env

This function returns information about the interpretation of the symbol variable

when it appears as a variable within the lexical environment env. Three values are

returned.

The first value indicates the type of definition or binding for variable in env:

nil There is no apparent definition or binding for variable.

:special The variable refers to a special variable, either declared or

proclaimed.

:lexical The variable refers to a lexical variable.

:symbol-macro The variable refers to a symbol-macrolet binding.

:constant Either the variable refers to a named constant defined by

defconstant or the variable is a keyword symbol.

The second value indicates whether there is a local binding of the name. If the

name is locally bound, the second value is true; otherwise, the second value is nil.

The third value is an alist containing information about declarations that apply to

the apparent binding of the variable. The keys in the alist are symbols that name

declaration specifiers, and the format of the corresponding value in the cdr of each

pair depends on the particular declaration name involved. The standard declaration

names that might appear as keys in this alist are:

dynamic-extent A nonnil value indicates that the variable has been declared

dynamic-extent. If the value is nil, the pair might be omitted.

208 COMMON LISP

ignore A nonnil value indicates that the variable has been declared

ignore. If the value is nil, the pair might be omitted.

type The value is a type specifier associated with the variable by a

type declaration or an abbreviated declaration such as (fixnum

variable). If no explicit association exists, either by proclaim

or declare, then the type specifier is t. It is permissible for

implementations to use a type specifier that is equivalent to or

a supertype of the one appearing in the original declaration. If

the value is t, the pair might be omitted.

If an implementation supports additional declaration specifiers that apply to variable

bindings, those declaration names might also appear in the alist. However, the

corresponding key must not be a symbol that is external in any package defined in

the standard or that is otherwise accessible in the common-lisp-user package.

The alist might contain multiple entries for a given key. The consequences of

destructively modifying the list structure of this alist or its elements (except for

values that appear in the alist as a result of define-declaration) are undefined.

Note that the global binding might differ from the local one and can be retrieved

by calling variable-information with a null lexical environment.

[Function]function-information function &optional env

This function returns information about the interpretation of the functionname func

tion when it appears in a functional position within lexical environment env. Three

values are returned.

The first value indicates the type of definition or binding of the functionname

which is apparent in env:

nil There is no apparent definition for function.

:function The function refers to a function.

:macro The function refers to a macro.

:special-form The function refers to a special form.

Some functionnames can refer to both a global macro and a global special form. In

such a case the macro takes precedence and :macro is returned as the first value.

The second value specifies whether the definition is local or global. If local, the

second value is true; it is nil when the definition is global.

The third value is an alist containing information about declarations that apply to

the apparent binding of the function. The keys in the alist are symbols that name

declaration specifiers, and the format of the corresponding values in the cdr of each

MACROS 209

pair depends on the particular declaration name involved. The standard declaration

names that might appear as keys in this alist are:

dynamic-extent A nonnil value indicates that the function has been declared

dynamic-extent. If the value is nil, the pair might be omitted.

inline The value is one of the symbols inline, notinline, or nil to

indicate whether the functionname has been declared inline,

declared notinline, or neither, respectively. If the value is nil,

the pair might be omitted.

ftype The value is the type specifier associated with the function

name in the environment, or the symbol function if there is no

functional type declaration or proclamation associated with the

functionname. This value might not include all the apparent

ftype declarations for the functionname. It is permissible for

implementations to use a type specifier that is equivalent to or

a supertype of the one that appeared in the original declaration.

If the value is function, the pair might be omitted.

If an implementation supports additional declaration specifiers that apply to function

bindings, those declaration names might also appear in the alist. However, the

corresponding key must not be a symbol that is external in any package defined in

the standard or that is otherwise accessible in the common-lisp-user package.

The alist might contain multiple entries for a given key. In this case the value

associated with the first entry has precedence. The consequences of destructively

modifying the list structure of this alist or its elements (except for values that appear

in the alist as a result of define-declaration) are undefined.

Note that the global binding might differ from the local one and can be retrieved

by calling function-information with a null lexical environment.

[Function]declaration-information decl-name &optional env

This function returns information about declarations named by the symbol decl

name that are in force in the environment env. Only declarations that do not apply to

function or variable bindings can be accessed with this function. The format of the

information that is returned depends on the declname involved.

It is required that this function recognize optimize and declaration as declnames.

The values returned for these two cases are as follows:

optimize A single value is returned, a list whose entries are of the form

(quality value), where quality is one of the standard optimiza

tion qualities (speed, safety, compilation-speed, space, debug) or

210 COMMON LISP

some implementationspecific optimization quality, and value

is an integer in the range 0 to 3 (inclusive). The returned list

always contains an entry for each of the standard qualities and

for each of the implementationspecific qualities. In the ab

sence of any previous declarations, the associated values are

implementationdependent. The list might contain multiple en

tries for a quality, in which case the first such entry specifies

the current value. The consequences of destructively modifying

this list or its elements are undefined.

declaration A single value is returned, a list of the declaration names that

have been proclaimed as valid through the use of the declaration

proclamation. The consequences of destructively modifying

this list or its elements are undefined.

If an implementation is extended to recognize additional declaration specifiers in

declare or proclaim, it is required that either the declaration-information function

should recognize those declarations also or the implementation should provide a

similar accessor that is specialized for that declaration specifier. If declaration-

information is used to return the information, the corresponding declname must not

be a symbol that is external in any package defined in the standard or that is otherwise

accessible in the common-lisp-user package.

[Function]augment-environment env &key :variable :symbol-macro :function

:macro :declare

This function returns a new environment containing the information present in env

augmented with the information provided by the keyword arguments. It is intended

to be used by program analyzers that perform a code walk.

The arguments are supplied as follows.

:variable

The argument is a list of symbols that will be visible as bound variables in the new

environment. Whether each binding is to be interpreted as special or lexical depends

on special declarations recorded in the environment or provided in the :declare

argument.

:symbol-macro

The argument is a list of symbol macro definitions, each of the form (name defini

tion); that is, the argument is in the same format as the cadr of a symbol-macrolet

special form. The new environment will have local symbolmacro bindings of each

MACROS 211

symbol to the corresponding expansion, so that macroexpand will be able to expand

them properly. A type declaration in the :declare argument that refers to a name in

this list implicitly modifies the definition associated with the name. The effect is to

wrap a the form mentioning the type around the definition.

:function

The argument is a list of functionnames that will be visible as local function bindings

in the new environment.

:macro

The argument is a list of local macro definitions, each of the form (name definition).

Note that the argument is not in the same format as the cadr of a macrolet special form.

Each definition must be a function of two arguments (a form and an environment). The

new environment will have local macro bindings of each name to the corresponding

expander function, which will be returned by macro-function and used by macroexpand.

:declare

The argument is a list of declaration specifiers. Information about these declara

tions can be retrieved from the resulting environment using variable-information,

function-information, and declaration-information.

The consequences of subsequently destructively modifying the list structure of any

of the arguments to this function are undefined.

An error is signaled if any of the symbols naming a symbol macro in the :symbol-

macro argument is also included in the :variable argument. An error is signaled if

any symbol naming a symbol macro in the :symbol-macro argument is also included

in a special declaration specifier in the :declare argument. An error is signaled if

any symbol naming a macro in the :macro argument is also included in the :function

argument. The condition type of each of these errors is program-error.

The extent of the returned environment is the same as the extent of the argument

environment env. The result might share structure with env but env is not modified.

While an environment argument received by an *evalhook* function is permitted

to be used as the environment argument to augment-environment, the consequences

are undefined if an attempt is made to use the result of augment-environment as

the environment argument for evalhook. The environment returned by augment-

environment can be used only for syntactic analysis, that is, as an argument to the

functions defined in this section and functions such as macroexpand.

212 COMMON LISP

[Macro]define-declaration declname lambdalist { form}∗

This macro defines a handler for the named declaration. It is the mechanism by

which augment-environment is extended to support additional declaration specifiers.

The function defined by this macro will be called with two arguments, a declaration

specifier whose car is declname and the env argument to augment-environment. This

function must return two values. The first value must be one of the following

keywords:

:variable The declaration applies to variable bindings.

:function The declaration applies to function bindings.

:declare The declaration does not apply to bindings.

If the first value is :variable or :function then the second value must be a list,

the elements of which are lists of the form (binding-name key value). If the corre

sponding information function (either variable-information or function-information)

is applied to the bindingname and the augmented environment, the alist returned by

the information function as its third value will contain the value under the specified

key.

If the first value is :declare, the second value must be a cons of the form

(key . value). The function declaration-information will return value when ap

plied to the key and the augmented environment.

define-declaration causes declname to be proclaimed to be a declaration; it is

as if its expansion included a call (proclaim ´(declaration decl-name)). As is the

case with standard declaration specifiers, the evaluator and compiler are permitted,

but not required, to add information about declaration specifiers defined with define-

declaration to the macro expansion and *evalhook* environments.

The consequences are undefined if declname is a symbol that can appear as the

car of any standard declaration specifier.

The consequences are also undefined if the return value from a declaration handler

defined with define-declaration includes a key name that is used by the corresponding

accessor to return information about any standard declaration specifier. (For example,

if the first return value from the handler is :variable, the second return value may not

use the symbols dynamic-extent, ignore, or type as key names.)

The define-declaration macro does not have any special compiletime side effects

(see section 25.1).

[Function]parse-macro name lambda-list body &optional env

This function is used to process a macro definition in the same way as defmacro and

macrolet. It returns a lambdaexpression that accepts two arguments, a form and an

MACROS 213

environment. The name, lambdalist, and body arguments correspond to the parts of

a defmacro or macrolet definition.

The lambdalist argument may include &environment and &whole and may include

destructuring. The name argument is used to enclose the body in an implicit block

and might also be used for implementationdependent purposes (such as including

the name of the macro in error messages if the form does not match the lambdalist).

[Function]enclose lambda-expression &optional env

This function returns an object of type function that is equivalent to what would

be obtained by evaluating `(function ,lambda-expression) in a syntactic environ

ment env. The lambdaexpression is permitted to reference only the parts of the

environment argument env that are relevant only to syntactic processing, specifically

declarations and the definitions of macros and symbol macros. The consequences are

undefined if the lambdaexpression contains any references to variable or function

bindings that are lexically visible in env, any go to a tag that is lexically visible in

env, or any return-from mentioning a block name that is lexically visible in env.

9

Declarations

Declarations allow you to specify extra information about your program to the Lisp

system. With one exception, declarations are completely optional and correct decla

rations do not affect the meaning of a correct program. The exception is that special

declarations do affect the interpretation of variable bindings and references and so

must be specified where appropriate. All other declarations are of an advisory nature,

and may be used by the Lisp system to aid the programmer by performing extra error

checking or producing more efficient compiled code. Declarations are also a good

way to add documentation to a program.

Note that it is considered an error for a program to violate a declaration (such as a

type declaration), but an implementation is not required to detect such errors (though

such detection, where feasible, is to be encouraged).

9.1. Declaration Syntax

The declare construct is used for embedding declarations within executable code.

Global declarations and declarations that are computed by a program are established

by the proclaim construct.

X3J13 voted in June 1989 〈144〉 to introduce the new macro declaim, which

is guaranteed to be recognized appropriately by the compiler and is often more

convenient than proclaim for establishing global declarations.

[Special form]declare {declspec}∗

A declare form is known as a declaration. Declarations may occur only at the

beginning of the bodies of certain special forms; that is, a declaration may occur only

as a statement of such a special form, and all statements preceding it (if any) must also

be declare forms (or possibly documentation strings, in some cases). Declarations

may occur in lambdaexpressions and in the forms listed here.

214

DECLARATIONS 215

define-setf-method labels

defmacro let

defsetf let*

deftype locally

defun macrolet

do multiple-value-bind

do* prog

do-all-symbols prog*

do-external-symbols with-input-from-string

do-symbols with-open-file

dolist with-open-stream

dotimes with-output-to-string

flet

Notice of correction. In the first edition, the above list failed to mention the forms

define-setf-method, with-input-from-string, with-open-file, with-open-stream, and

with-output-to-string, even though their individual descriptions in the first edition

specified that declarations may appear in those forms.

X3J13 voted in June 1989 〈31〉 to add with-condition-restarts and also 〈40〉 to

add print-unreadable-object and with-standard-io-syntax. The X3J13 vote left it

unclear whether these macros permit declarations to appear at the heads of their

bodies. I believe that was the intent, but this is only my interpretation.

X3J13 voted in June 1988 〈12〉 to adopt the Common Lisp Object System, which

includes the following additional forms in which declarations may occur:

defgeneric generic-function

define-method-combination generic-labels

defmethod with-added-methods

generic-flet

Furthermore X3J13 voted in January 1989 〈172〉 to allow declarations to occur before

the bodies of these forms:

symbol-macrolet with-slots

with-accessors

There are certain aspects peculiar to symbol-macrolet (and therefore also to with-

accessors and with-slots, which expand into uses of symbol-macrolet). An error

is signaled if a name defined by symbol-macrolet is declared special, and a type

declaration of a name defined by symbol-macrolet is equivalent in effect to wrapping

a the form mentioning that type around the expansion of the defined symbol.

216 COMMON LISP

It is an error to attempt to evaluate a declaration. Those special forms that permit

declarations to appear perform explicit checks for their presence.

Compatibility note: In MacLisp, declare is a special form that does nothing but return the

symbol declare as its result. The MacLisp interpreter knows nothing about declarations but

just blindly evaluates them, effectively ignoring them. The MacLisp compiler recognizes

declarations but processes them simply by evaluating the subforms of the declaration in the

compilation context. In Common Lisp it is important that both the interpreter and compiler

recognize declarations (especially special declarations) and treat them consistently, and so the

rules about the structure and use of declarations have been made considerably more stringent.

The odd tricks played in MacLisp by writing arbitrary forms to be evaluated within a declare

form are better done in both MacLisp and Common Lisp by using eval-when.

It is permissible for a macro call to expand into a declaration and be recognized

as such, provided that the macro call appears where a declaration may legitimately

appear. (However, a macro call may not appear in place of a declspec.)

X3J13 voted in March 1988 〈45〉 to eliminate the recognition of a declaration

resulting from the expansion of a macro call. This feature proved to be seldom

used and awkward to implement in interpreters, compilers, and other codeanalyzing

programs.

Under this change, a declaration is recognized only as such if it appears explicitly,

as a list whose car is the symbol declare, in the body of a relevant special form.

(Note, however, that it is still possible for a macro to expand into a call to the

proclaim function.)

Each declspec is a list whose car is a symbol specifying the kind of declaration

to be made. Declarations may be divided into two classes: those that concern the

bindings of variables, and those that do not. (The special declaration is the sole

exception: it effectively falls into both classes, as explained below.) Those that

concern variable bindings apply only to the bindings made by the form at the head

of whose body they appear. For example, in

(defun foo (x)

(declare (type float x)) ...

(let ((x ´a)) ...)

...)

the type declaration applies only to the outer binding of x, and not to the binding

made in the let.

Compatibility note: This represents a difference from MacLisp, in which type declarations

are pervasive.

DECLARATIONS 217

Declarations that do not concern themselves with variable bindings are pervasive,

affecting all code in the body of the special form. As an example of a pervasive

declaration,

(defun foo (x y) (declare (notinline floor)) ...)

advises that everywhere within the body of foo the function floor should not be

opencoded but called as an outofline subroutine.

Some special forms contain pieces of code that, properly speaking, are not part of

the body of the special form. Examples of this are initialization forms that provide

values for bound variables, and the result forms of iteration constructs. In all cases

such additional code is within the scope of any pervasive declarations appearing

before the body of the special form. Nonpervasive declarations have no effect on

such code, except (of course) in those situations where the code is defined to be

within the scope of the variables affected by such nonpervasive declarations. For

example:

(defun few (x &optional (y *print-circle*))

(declare (special *print-circle*))

...)

The reference to *print-circle* in the first line of this example is special because of

the declaration in the second line.

(defun nonsense (k x z)

(foo z x) ;First call to foo

(let ((j (foo k x)) ;Second call to foo

(x (* k k)))

(declare (inline foo) (special x z))

(foo x j z))) ;Third call to foo

In this rather nonsensical example, the inline declaration applies to the second and

third calls to foo, but not to the first one. The special declaration of x causes the let

form to make a special binding for x and causes the reference to x in the body of the

let to be a special reference. The reference to x in the second call to foo is also a

special reference. The reference to x in the first call to foo is a local reference, not a

special one. The special declaration of z causes the reference to z in the call to foo to

be a special reference; it will not refer to the parameter to nonsense named z, because

that parameter binding has not been declared to be special. (The special declaration

of z does not appear in the body of the defun, but in an inner construct, and therefore

does not affect the binding of the parameter.)

218 COMMON LISP

X3J13 voted in January 1989 〈42〉 to replace the rules concerning the scope of

declarations occurring at the head of a special form or lambdaexpression:

. The scope of a declaration always includes the body forms, as well as any “stepper”

or “result” forms (which are logically part of the body), of the special form or

lambdaexpression.

. If the declaration applies to a name binding, then the scope of the declaration also

includes the scope of the name binding.

Note that the distinction between pervasive and nonpervasive declarations is elim

inated. An important change from the first edition is that “initialization” forms are

specifically not included as part of the body under the first rule; on the other hand,

in many cases initialization forms may fall within the scope of certain declarations

under the second rule.

X3J13 also voted in January 1989 〈46〉 to change the interpretation of type decla

rations (see section 9.2).

These changes affect the interpretation of some of the examples from the first

edition.

(defun foo (x)

(declare (type float x)) ...

(let ((x ´a)) ...)

...)

Under the interpretation approved by X3J13, the type declaration applies to both

bindings of x. More accurately, the type declaration is considered to apply to variable

references rather than bindings, and the type declaration refers to every reference in

the body of foo to a variable named x, no matter to what binding it may refer.

(defun foo (x y) (declare (notinline floor)) ...)

This example of the use of notinline stands unchanged, but the following slight

extension of it would change:

(defun foo (x &optional (y (floor x)))

(declare (notinline floor)) ...)

Under first edition rules, the notinline declaration would be considered to apply to

the call to floor in the initialization form for y. Under the interpretation approved by

X3J13, the notinline would not apply to that particular call to floor. Instead the user

must write something like

DECLARATIONS 219

(defun foo (x &optional (y (locally (declare (notinline floor))

(floor x))))

(declare (notinline floor)) ...)

or perhaps

(locally (declare (notinline floor))

(defun foo (x &optional (y (floor x))) ...))

Similarly, the special declaration in

(defun few (x &optional (y *print-circle*))

(declare (special *print-circle*))

...)

is not considered to apply to the reference in the initialization form for y in few. As

for the nonsense example,

(defun nonsense (k x z)

(foo z x) ;First call to foo

(let ((j (foo k x)) ;Second call to foo

(x (* k k)))

(declare (inline foo) (special x z))

(foo x j z))) ;Third call to foo

under the interpretation approved by X3J13, the inline declaration is no longer

considered to apply to the second call to foo, because it is in an initialization form,

which is no longer considered in the scope of the declaration. Similarly, the reference

to x in that second call to foo is no longer taken to be a special reference, but a local

reference to the second parameter of nonsense.

...

[Macro]locally {declaration}∗ { form}∗

This macro may be used to make local pervasive declarations where desired. It does

not bind any variables and therefore cannot be used meaningfully for declarations of

variable bindings. (Note that the special declaration may be used with locally to

pervasively affect references to, rather than bindings of, variables.) For example:

(locally (declare (inline floor) (notinline car cdr))

(declare (optimize space))

(floor (car x) (cdr y)))

X3J13 voted in January 1989 〈156〉 to specify that locally executes the forms as

an implicit progn and returns the value(s) of the last form.

220 COMMON LISP

X3J13 voted in March 1989 〈113〉 to make locally be a special form rather than a

macro. It still has the same syntax.

[Special form]locally {declaration}∗ { form}∗

This change was made to accommodate the new compilation model for toplevel

forms in a file (see section 25.1). When a locally form appears at top level, the forms

in its body are processed as toplevel forms. This means that one may, for example,

meaningfully use locally to wrap declarations around a defun or defmacro form:

(locally

(declare (optimize (safety 3) (space 3) (debug 3) (speed 1)))

(defun foo (x &optional (y (abs x)) (z (sqrt y)))

(bar x y z)))

Without assurance that this works one must write something cumbersome such as

(defun foo (x &optional (y (locally

(declare (optimize (safety 3)

(space 3)

(debug 3)

(speed 1)))

(abs x)))

(z (locally

(declare (optimize (safety 3)

(space 3)

(debug 3)

(speed 1)))

(sqrt y))))

(locally

(declare (optimize (safety 3) (space 3) (debug 3) (speed 1)))

(bar x y z)))

DECLARATIONS 221

[Function]proclaim decl-spec

The function proclaim takes a declspec as its argument and puts it into effect globally.

(Such a global declaration is called a proclamation.) Because proclaim is a function,

its argument is always evaluated. This allows a program to compute a declaration

and then put it into effect by calling proclaim.

Any variable names mentioned are assumed to refer to the dynamic values of the

variable. For example, the proclamation

(proclaim ´(type float tolerance))

once executed, specifies that the dynamic value of tolerance should always be a

floatingpoint number. Similarly, any functionnames mentioned are assumed to

refer to the global function definition.

A proclamation constitutes a universal declaration, always in force unless locally

shadowed. For example,

(proclaim ´(inline floor))

advises that floor should normally be opencoded inline by the compiler (but in the

situation

(defun foo (x y) (declare (notinline floor)) ...)

it will be compiled outofline anyway in the body of foo, because of the shadowing

local declaration to that effect).

X3J13 voted in January 1989 〈164〉 to clarify that such shadowing does not occur

in the case of type declarations. If there is a local type declaration for a special

variable and there is also a global proclamation for that same variable, then the value

of the variable within the scope of the local declaration must be a member of the

intersection of the two declared types. This is consistent with the treatment of nested

local type declarations on which X3J13 also voted in January 1989 〈46〉.
As a special case (so to speak), proclaim treats a special declspec as applying to

all bindings as well as to all references of the mentioned variables.

Notice of correction. In the first edition, this sentence referred to a “special

declarationform.” That was incorrect; proclaim accepts only a declspec, not a

declarationform.

For example, after

(proclaim ´(special x))

in a function definition such as

(defun example (x) ...)

222 COMMON LISP

the parameter x will be bound as a special (dynamic) variable rather than as a lexical

(static) variable. This facility should be used with caution. The usual way to define

a globally special variable is with defvar or defparameter.

X3J13 voted in June 1989 〈144〉 to clarify that the compiler is not required to treat

calls to proclaim any differently from the way it treats any other function call. If a

toplevel call to proclaim is to take effect at compile time, it should be surrounded

by an appropriate eval-when form. Better yet, the new macro declaim may be used

instead.

[Macro]declaim {declspec}∗

This macro is syntactically like declare and semantically like proclaim. It is an

executable form and may be used anywhere proclaim may be called. However, each

declspec is not evaluated.

If a call to this macro appears at top level in a file being processed by the file

compiler, the proclamations are also made at compile time. As with other defining

macros, it is unspecified whether or not the compiletime side effects of a declaim

persist after the file has been compiled (see section 25.1).

9.2. Declaration Specifiers

Here is a list of valid declaration specifiers for use in declare. A construct is said to

be “affected” by a declaration if it occurs within the scope of a declaration.

special

(special var1 var2 ...) specifies that all of the variables named are to be consid

ered special. This specifier affects variable bindings but also pervasively affects

references. All variable bindings affected are made to be dynamic bindings, and

affected variable references refer to the current dynamic binding rather than to the

current local binding. For example:

(defun hack (thing *mod*) ;The binding of the parameter

(declare (special *mod*)) ; *mod* is visible to hack1,

(hack1 (car thing))) ; but not that of thing

(defun hack1 (arg)

(declare (special *mod*)) ;Declare references to *mod*

; within hack1 to be special

(if (atom arg) *mod*

(cons (hack1 (car arg)) (hack1 (cdr arg)))))

DECLARATIONS 223

Note that it is conventional, though not required, to give special variables names that

begin and end with an asterisk.

A special declaration does not affect bindings pervasively. Inner bindings of a

variable implicitly shadow a special declaration and must be explicitly redeclared to

be special. (However, a special proclamation does pervasively affect bindings; this

exception is made for reasons of convenience and compatibility with MacLisp.) For

example:

(proclaim ´(special x)) ;x is always special

(defun example (x y)

(declare (special y))

(let ((y 3) (x (* x 2)))

(print (+ y (locally (declare (special y)) y)))

(let ((y 4)) (declare (special y)) (foo x))))

In the contorted code above, the outermost and innermost bindings of y are special and

therefore dynamically scoped, but the middle binding is lexically scoped. The two

arguments to + are different, one being the value, which is 3, of the lexically bound

variable y, and the other being the value of the special variable named y (a binding

of which happens, coincidentally, to lexically surround it at an outer level). All the

bindings of x and references to x are special, however, because of the proclamation

that x is always special.

As a matter of style, use of special proclamations should be avoided. The defvar

and defparameter macros are the conventional means for proclaiming special variables

in a program.

type

(type type var1 var2 ...) affects only variable bindings and specifies that the vari

ables mentioned will take on values only of the specified type. In particular, values

assigned to the variables by setq, as well as the initial values of the variables, must

be of the specified type.

X3J13 voted in January 1989 〈46〉 to alter the interpretation of type declarations.

They are not to be construed to affect “only variable bindings.” The new rule for a

declaration of a variable to have a specified type is threefold:

. It is an error if, during the execution of any reference to that variable within the

scope of the declaration, the value of the variable is not of the declared type.

. It is an error if, during the execution of a setq of that variable within the scope of

the declaration, the new value for the variable is not of the declared type.

224 COMMON LISP

. It is an error if, at any moment that execution enters the scope of the declaration,

the value of the variable is not of the declared type.

One may think of a type declaration (declare (type face bodoni)) as implicitly

changing every reference to bodoni within the scope of the declaration to (the face

bodoni); changing every expression exp assigned to bodoni within the scope of the

declaration to (the face exp); and implicitly executing (the face bodoni) every time

execution enters the scope of the declaration.

These new rules make type declarations much more useful. Under first edition

rules, a type declaration was useless if not associated with a variable binding; decla

rations such as in

(locally

(declare (type (byte 8) x y))

(+ x y))

at best had no effect and at worst were erroneous, depending on one’s interpretation

of the first edition. Under the interpretation approved by X3J13, such declarations

have “the obvious natural interpretation.”

X3J13 noted that if nested type declarations refer to the same variable, then all of

them have effect; the value of the variable must be a member of the intersection of

the declared types.

Nested type declarations could occur as a result of either macro expansion or

carefully crafted code. There are three cases. First, the inner type might be a subtype

of the outer one:

(defun compare (apples oranges)

(declare (type number apples oranges))

(cond ((typep apples ´fixnum)

;; The programmer happens to know that, thanks to

;; constraints imposed by the caller, if APPLES

;; is a fixnum, then ORANGES will be also, and

;; therefore wishes to avoid the unnecessary cost

;; of checking ORANGES. Nevertheless the compiler

;; should be informed to allow it to optimize code.

(locally (declare (type fixnum apples oranges)))

;; Maybe the compiler could have figured

;; out by flow analysis that APPLES must

;; be a fixnum here, but it doesn´t hurt

;; to say it explicitly.

(< apples oranges)))

DECLARATIONS 225

((or (complex apples)

(complex oranges))

(error "Not yet implemented. Sorry."))

...))

This is the case most likely to arise in code written completely by hand.

Second, the outer type might be a subtype of the inner one. In this case the inner

declaration has no additional practical effect, but it is harmless. This is likely to occur

if code declares a variable to be of a very specific type and then passes it to a macro

that then declares it to be of a less specific type.

Third, the inner and outer declarations might be for types that overlap, neither being

a subtype of the other. This is likely to occur only as a result of macro expansion.

For example, user code might declare a variable to be of type integer, and a macro

might later declare it to be of type (or fixnum package); in this case a compiler could

intersect the two types to determine that in this instance the variable may hold only

fixnums.

The reader should note that the following code fragment is, perhaps astonishingly,

not in error under the interpretation approved by X3J13:

(let ((james .007)

(maxwell 86))

(flet ((spy-swap ()

(rotatef james maxwell)))

(locally (declare (integer maxwell))

(spy-swap)

(view-movie "The Sound of Music")

(spy-swap)

maxwell)))

⇒ 86 (after a couple of hours of Julie Andrews)

The variable maxwell is declared to be an integer over the scope of the type declaration,

not over its extent. Indeed maxwell takes on the noninteger value .007 while the Trapp

family make their escape, but because no reference to maxwell within the scope of the

declaration ever produces a noninteger value, the code is correct.

Now the assignment to maxwell during the first call to spy-swap, and the reference to

maxwell during the second call, do involve noninteger values, but they occur within

the body of spy-swap, which is not in the scope of the type declaration! One could

put the declaration in a different place so as to include spy-swap in the scope:

226 COMMON LISP

(let ((james .007)

(maxwell 86))

(locally (declare (integer maxwell))

(flet ((spy-swap ()

(rotatef james maxwell)))

(spy-swap) ;Bug!

(view-movie "The Sound of Music")

(spy-swap)

maxwell)))

and then the code is indeed in error.

X3J13 also voted in January 1989 〈91〉 to alter the meaning of the function type

specifier when used in type declarations (see section 4.5).

type

(type var1 var2 ...) is an abbreviation for (type type var1 var2 ...), provided

that type is one of the symbols appearing in table 41.

Observe that this covers the particularly common case of declaring numeric vari

ables:

(declare (single-float mass dx dy dz)

(double-float acceleration sum))

In many implementations there is also some advantage to declaring variables to have

certain specialized vector types such as base-string.

ftype

(ftype type function-name-1 function-name-2 ...) specifies that the named func

tions will be of the functional type type, an example of which follows. For example:

(declare (ftype (function (integer list) t) nth)

(ftype (function (number) float) sin cos))

Note that rules of lexical scoping are observed; if one of the functions mentioned has

a lexically apparent local definition (as made by flet or labels), then the declaration

applies to that local definition and not to the global function definition.

X3J13 voted in March 1989 〈89〉 to extend ftype declaration specifiers to accept

any functionname (a symbol or a list whose car is setf—see section 7.1). Thus one

may write

(declaim (ftype (function (list) t) (setf cadr)))

DECLARATIONS 227

to indicate the type of the setf expansion function for cadr.

X3J13 voted in January 1989 〈91〉 to alter the meaning of the function type specifier

when used in ftype declarations (see section 4.5).

function..

(function name arglist result-type1 result-type2 ...) is entirely equivalent to

(ftype (function arglist result-type1 result-type2 ...) name)

but may be more convenient for some purposes. For example:

(declare (function nth (integer list) t)

(function sin (number) float)

(function cos (number) float))

The syntax mildly resembles that of defun: a functionname, then an argument list,

then a specification of results.

Note that rules of lexical scoping are observed; if one of the functions mentioned has

a lexically apparent local definition (as made by flet or labels), then the declaration

applies to that local definition and not to the global function definition.

X3J13 voted in January 1989 〈44〉 to remove this interpretation of the function

declaration specifier from the language. Instead, a declaration specifier

(function var1 var2 ...)

is to be treated simply as an abbreviation for

(type function var1 var2 ...)

just as for all other symbols appearing in table 41.

X3J13 noted that although function appears in table 41, the first edition also

discussed it explicitly, with a different meaning, without noting whether the differ

ing interpretation was to replace or augment the interpretation regarding table 41.

Unfortunately there is an ambiguous case: the declaration

(declare (function foo nil string))

can be construed to abbreviate either

(declare (ftype (function () string) foo))

or

228 COMMON LISP

(declare (type function foo nil string))

The latter could perhaps be rejected on semantic grounds: it would be an error to

declare nil, a constant, to be of type function. In any case, X3J13 determined that

the ice was too thin here; the possibility of confusion is not worth the convenience

of an abbreviation for ftype declarations. The change also makes the language more

consistent.

inline

(inline function1 function2 ...) specifies that it is desirable for the compiler to

opencode calls to the specified functions; that is, the code for a specified function

should be integrated into the calling routine, appearing inline in place of a procedure

call. This may achieve extra speed at the expense of debuggability (calls to functions

compiled inline cannot be traced, for example). This declaration is pervasive.

Remember that a compiler is free to ignore this declaration.

Note that rules of lexical scoping are observed; if one of the functions mentioned

has a lexically apparent local definition (as established by flet or labels), then the

declaration applies to that local definition and not to the global function definition.

X3J13 voted in October 1988 〈145〉 to clarify that during compilation the inline

declaration specifier serves two distinct purposes: it indicates not only that affected

calls to the specified functions should be expanded inline, but also that affected

definitions of the specified functions must be recorded for possible use in performing

such expansions.

Looking at it the other way, the compiler is not required to save function definitions

against the possibility of future expansions unless the functions have already been

proclaimed to be inline. If a function is proclaimed (or declaimed) inline before

some call to that function but the current definition of that function was established

before the proclamation was processed, it is implementationdependent whether that

call will be expanded inline. (Of course, it is implementationdependent anyway,

because a compiler is always free to ignore inline declaration specifiers. However,

the intent of the committee is clear: for best results, the user is advised to put any

inline proclamation of a function before any definition of or call to that function.)

Consider these examples:

(defun huey (x) (+ x 100)) ;Compiler need not remember this

(declaim (inline huey dewey))

(defun dewey (y) (huey (sqrt y))) ;Call to huey unlikely to be expanded

(defun louie (z) (dewey (/ z))) ;Call to dewey likely to be expanded

DECLARATIONS 229

X3J13 voted in March 1989 〈89〉 to extend inline declaration specifiers to accept

any functionname (a symbol or a list whose car is setf—see section 7.1). Thus

one may write (declare (inline (setf cadr))) to indicate that the setf expansion

function for cadr should be compiled inline.

notinline

(notinline function1 function2 ...) specifies that it is undesirable to compile the

specified functions inline. This declaration is pervasive. A compiler is not free to

ignore this declaration.

Note that rules of lexical scoping are observed; if one of the functions mentioned has

a lexically apparent local definition (as made by flet or labels), then the declaration

applies to that local definition and not to the global function definition.

X3J13 voted in March 1989 〈89〉 to extend notinline declaration specifiers to

accept any functionname (a symbol or a list whose car is setf—see section 7.1).

Thus one may write (declare (notinline (setf cadr))) to indicate that the setf

expansion function for cadr should not be compiled inline.

X3J13 voted in January 1989 〈4〉 to clarify that the proper way to define a func

tion gnards that is not inline by default, but for which a local declaration (declare

(inline gnards)) has half a chance of actually compiling gnards inline, is as follows:

(declaim (inline gnards))

(defun gnards ...)

(declaim (notinline gnards))

The point is that the first declamation informs the compiler that the definition of gnards

may be needed later for inline expansion, and the second declamation prevents any

expansions unless and until it is overridden.

While an implementation is never required to perform inline expansion, many

implementations that do support such expansion will not process inline requests

successfully unless definitions are written with these proclamations in the manner

shown above.

ignore

(ignore var1 var2 ... varn) affects only variable bindings and specifies that the

bindings of the specified variables are never used. It is desirable for a compiler to

issue a warning if a variable so declared is ever referred to or is also declared special,

or if a variable is lexical, never referred to, and not declared to be ignored.

230 COMMON LISP

optimize

(optimize (quality1 value1) (quality2 value2)...) advises the compiler that each

quality should be given attention according to the specified corresponding value. A

quality is a symbol; standard qualities include speed (of the object code), space (both

code size and runtime space), safety (runtime error checking), and compilation-

speed (speed of the compilation process).

X3J13 voted in October 1988 〈124〉 to add the standard quality debug (ease of

debugging).

Other qualities may be recognized by particular implementations. A value should

be a nonnegative integer, normally in the range 0 to 3. The value 0 means that the

quality is totally unimportant, and 3 that the quality is extremely important; 1 and 2

are intermediate values, with 1 the “normal” or “usual” value. One may abbreviate

(quality 3) to simply quality. This declaration is pervasive. For example:

(defun often-used-subroutine (x y)

(declare (optimize (safety 2)))

(error-check x y)

(hairy-setup x)

(do ((i 0 (+ i 1))

(z x (cdr z)))

((null z) i)

;; This inner loop really needs to burn.

(declare (optimize speed))

(declare (fixnum i))

)))

declaration

(declaration name1 name2 ...) advises the compiler that each namej is a valid but

nonstandard declaration name. The purpose of this is to tell one compiler not to issue

warnings for declarations meant for another compiler or other program processor.

This kind of declaration may be used only as a proclamation. For example:
..

(proclaim ´(declaration author

target-language

target-machine))

(proclaim ´(target-language ada))

(proclaim ´(target-machine IBM-650))

...

DECLARATIONS 231

(defun strangep (x)

(declare (author "Harry Tweeker"))

(member x ´(strange weird odd peculiar)))

X3J13 voted in June 1989 〈144〉 to introduce the new macro declaim, which

is guaranteed to be recognized appropriately by the compiler and is often more

convenient than proclaim for establishing global declarations.

The declaration declaration specifier may be used with declaim as well as proclaim.

The preceding examples would be better written using declaim, to ensure that the

compiler will process them properly.

(declaim (declaration author

target-language

target-machine))

(declaim (target-language ada)

(target-machine IBM-650))

(defun strangep (x)

(declare (author "Harry Tweeker"))

(member x ´(strange weird odd peculiar)))

X3J13 voted in March 1989 〈69〉 to introduce a new declaration specifier dynamic-

extent for variables, and voted in June 1989 〈70〉 to extend it to handle functionnames

as well.

dynamic-extent

(dynamic-extent item1 item2 ... itemn) declares that certain variables or function

names refer to data objects whose extents may be regarded as dynamic; that is, the

declaration may be construed as a guarantee on the part of the programmer that the

program will behave correctly even if the data objects have only dynamic extent

rather than the usual indefinite extent.

Each item may be either a variable name or (function f) where f is a functionname

(see section 7.1). (Of course, (function f) may be abbreviated in the usual way as

#--´f.)

It is permissible for an implementation simply to ignore this declaration. In

implementations that do not ignore it, the compiler (or interpreter) is free to make

whatever optimizations are appropriate given this information; the most common

optimization is to stackallocate the initial value of the object. The data types that

can be optimized in this manner may vary from implementation to implementation.

232 COMMON LISP

The meaning of this declaration can be stated more precisely. We say that object x

is an otherwise inaccessible part of y if and only if making y inaccessible would make

x inaccessible. (Note that every object is an otherwise inaccessible part of itself.)

Now suppose that construct c contains a dynamic-extent declaration for variable (or

function) v (which need not be bound by c). Consider the values w1, . . . ,wn taken

on by v during the course of some execution of c. The declaration asserts that if

some object x is an otherwise inaccessible part of wj whenever wj becomes the value

of v, then just after execution of c terminates x will be either inaccessible or still an

otherwise inaccessible part of the value of v. If this assertion is ever violated, the

consequences are undefined.

In some implementations, it is possible to allocate data structures in a way that

will make them easier to reclaim than by generalpurpose garbage collection (for

example, on the stack or in some temporary area). The dynamic-extent declaration

is designed to give the implementation the information necessary to exploit such

techniques.

For example, in the code fragment

(let ((x (list ´a1 ´b1 ´c1))

(y (cons ´a2 (cons ´b2 (cons ´c2 ´d2)))))

(declare (dynamic-extent x y))

...)

it is not difficult to prove that the otherwise inaccessible parts of x include the three

conses constructed by list, and that the otherwise inaccessible parts of y include

three other conses manufactured by the three calls to cons. Given the presence of the

dynamic-extent declaration, a compiler would be justified in stackallocating these

six conses and reclaiming their storage on exit from the let form.

Since stack allocation of the initial value entails knowing at the object’s creation

time that the object can be stackallocated, it is not generally useful to declare dynamic-

extent for variables that have no lexically apparent initial value. For example,

(defun f ()

(let ((x (list 1 2 3)))

(declare (dynamic-extent x))

...))

would permit a compiler to stackallocate the list in x. However,

(defun g (x) (declare (dynamic-extent x)) ...)

(defun f () (g (list 1 2 3)))

DECLARATIONS 233

could not typically permit a similar optimization in f because of the possibility of

later redefinition of g. Only an implementation careful enough to recompile f if the

definition of g were to change incompatibly could stackallocate the list argument to

g in f.

Other interesting cases are

(declaim (inline g))

(defun g (x) (declare (dynamic-extent x)) ...)

(defun f () (g (list 1 2 3)))

and

(defun f ()

(flet ((g (x) (declare (dynamic-extent x)) ...))

(g (list 1 2 3))))

In each case some compilers might realize the optimization is possible and others

might not.

An interesting variant of this is the socalled stackallocated rest list, which can

be achieved (in implementations supporting the optimization) by

(defun f (&rest x)

(declare (dynamic-extent x))

...)

Note here that although the initial value of x is not explicitly present, nevertheless in

the usual implementation strategy the function f is responsible for assembling the list

for x from the passed arguments, so the f function can be optimized by a compiler to

construct a stackallocated list instead of a heapallocated list.

Some Common Lisp functions take other functions as arguments; frequently the

argument function is a socalled downward funarg, that is, a functional argument that

is passed only downward and whose extent may therefore be dynamic.

(flet ((gd (x) (atan (sinh x))))

(declare (dynamic-extent #--´gd)) ;mapcar won’t hang on to gd

(mapcar #--´gd my-list-of-numbers))

The following three examples are in error, since in each case the value of x is used

outside of its extent.

234 COMMON LISP

(length (let ((x (list 1 2 3)))

(declare (dynamic-extent x))

x)) ;Wrong

The preceding code is obviously incorrect, because the cons cells making up the list

in x might be deallocated (thanks to the declaration) before length is called.

(length (list (let ((x (list 1 2 3)))

(declare (dynamic-extent x))

x))) ;Wrong

In this second case it is less obvious that the code is incorrect, because one might

argue that the cons cells making up the list in x have no effect on the result to be

computed by length. Nevertheless the code briefly violates the assertion implied by

the declaration and is therefore incorrect. (It is not difficult to imagine a perfectly

sensible implementation of a garbage collector that might become confused by a

cons cell containing a dangling pointer to a list that was once stackallocated but then

deallocated.)

(progn (let ((x (list 1 2 3)))

(declare (dynamic-extent x))

x) ;Wrong

(print "Six dollars is your change have a nice day NEXT!"))

In this third case it is even less obvious that the code is incorrect, because the value

of x returned from the let construct is discarded right away by the progn. Indeed it

is, but “right away” isn’t fast enough. The code briefly violates the assertion implied

by the declaration and is therefore incorrect. (If the code is being interpreted, the

interpreter might hang on to the value returned by the let for some time before it is

eventually discarded.)

Here is one last example, one that has little practical import but is theoretically

quite instructive.

(dotimes (j 10)

(declare (dynamic-extent j))

(setq foo 3) ;Correct

(setq foo j)) ;Erroneous—but why? (see text)

Since j is an integer by the definition of dotimes, but eq and eql are not necessarily

equivalent for integers, what are the otherwise inaccessible parts of j, which this

DECLARATIONS 235

declaration requires the body of the dotimes not to “save”? If the value of j is 3, and

the body does (setq foo 3), is that an error? The answer is no, but the interesting

thing is that it depends on the implementationdependent behavior of eq on numbers.

In an implementation where eq and eql are equivalent for 3, then 3 is not an otherwise

inaccessible part because (eq j (+ 2 1)) is true, and therefore there is another way to

access the object besides going through j. On the other hand, in an implementation

where eq and eql are not equivalent for 3, then the particular 3 that is the value of j is an

otherwise inaccessible part, but any other 3 is not. Thus (setq foo 3) is valid but (setq

foo j) is erroneous. Since (setq foo j) is erroneous in some implementations, it is

erroneous in all portable programs,but some other implementations may not be able to

detect the error. (If this conclusion seems strange, it may help to replace 3 everywhere

in the preceding argument with some obvious bignum such as 375374638837424898243

and to replace 10 with some even larger bignum.)

The dynamic-extent declaration should be used with great care. It makes possible

great performance improvements in some situations, but if the user misdeclares

something and consequently the implementation returns a pointer into the stack (or

stores it in the heap), an undefined situation may result and the integrity of the Lisp

storage mechanism may be compromised. Debugging these situations may be tricky.

Users who have asked for this feature have indicated a willingness to deal with such

problems; nevertheless, I do not encourage casual users to use this declaration.

An implementation is free to support other (implementationdependent) declara

tion specifiers as well. On the other hand, a Common Lisp compiler is free to ignore

entire classes of declaration specifiers (for example, implementationdependent dec

laration specifiers not supported by that compiler’s implementation), except for the

declaration declaration specifier. Compiler implementors are encouraged, however,

to program the compiler to issue by default a warning if the compiler finds a decla

ration specifier of a kind it never uses. Such a warning is required in any case if a

declaration specifier is not one of those defined above and has not been declared in a

declaration declaration.

9.3. Type Declaration for Forms

Frequently it is useful to declare that the value produced by the evaluation of some

form will be of a particular type. Using declare one can declare the type of the value

held by a bound variable, but there is no easy way to declare the type of the value of

an unnamed form. For this purpose the the special form is defined; (the type form)

means that the value of form is declared to be of type type.

236 COMMON LISP

[Special form]the valuetype form

The form is evaluated; whatever it produces is returned by the the form. In addition,

it is an error if what is produced by the form does not conform to the data type

specified by valuetype (which is not evaluated). (A given implementation may or

may not actually check for this error. Implementations are encouraged to make an

explicit error check when running interpretively.) In effect, this declares that the user

undertakes to guarantee that the values of the form will always be of the specified

type. For example:

(the string (copy-seq x)) ;The result will be a string

(the integer (+ x 3)) ;The result of + will be an integer

(+ (the integer x) 3) ;The value of x will be an integer

(the (complex rational) (* z 3))

(the (unsigned-byte 8) (logand x mask))

The values type specifier may be used to indicate the types of multiple values:

(the (values integer integer) (floor x y))

(the (values string t)

(gethash the-key the-string-table))

X3J13 voted in June 1989 〈177〉 to clarify that valuetype may be any valid type

specifier whatsoever. The point is that a type specifier need not be one suitable for

discrimination but only for declaration.

In the case that the form produces exactly one value and valuetype is not a values

type specifier, one may describe a the form as being entirely equivalent to

(let ((#--1−−#--:temp form)) (declare (type valuetype #--1#--)) #--1#--)

A more elaborate expression could be written to describe the case where valuetype

is a values type specifier.

Compatibility note: This construct is borrowed from the Interlisp DECL package; Interlisp,

however, allows an implicit progn after the type specifier rather than just a single form. The

MacLisp fixnum-identity and flonum-identity constructs can be expressed as (the fixnum x)

and (the single-float x).

10

Symbols

A Lisp symbol is a data object that has three uservisible components:

. The property list is a list that effectively provides each symbol with many modifi

able named components.

. The print name must be a string, which is the sequence of characters used to

identify the symbol. Symbols are of great use because a symbol can be located

once its name is given (typed, say, on a keyboard). One may ordinarily not alter a

symbol’s print name.

X3J13 voted in March 1989 〈11〉 to specify it is an error to alter a print name.

. The package cell must refer to a package object. A package is a data structure used

to locate a symbol once given the symbol’s name. A symbol is uniquely identified

by its name only when considered relative to a package. A symbol may appear in

many packages, but it can be owned by at most one package. The package cell

points to the owner, if any. Package cells are discussed along with packages in

chapter 11.

A symbol may actually have other components for use by the implementation.

One of the more important uses of symbols is as names for program variables; it

is frequently desirable for the implementor to use certain components of a symbol

to implement the semantics of variables. See symbol-value and symbol-function.

However, there are several possible implementation strategies, and so such possible

components are not described here.

10.1. The Property List

Since its inception, Lisp has associated with each symbol a kind of tabular data

structure called a property list (plist for short). A property list contains zero or more

entries; each entry associates with a key (called the indicator), which is typically a

237

238 COMMON LISP

symbol, an arbitrary Lisp object (called the value or, sometimes, the property). There

are no duplications among the indicators; a property list may only have one property

at a time with a given name. In this way, given a symbol and an indicator (another

symbol), an associated value can be retrieved.

A property list is very similar in purpose to an association list. The difference

is that a property list is an object with a unique identity; the operations for adding

and removing propertylist entries are destructive operations that alter the property

list rather than making a new one. Association lists, on the other hand, are normally

augmented nondestructively (without side effects) by adding new entries to the front

(see acons and pairlis).

A property list is implemented as a memory cell containing a list with an even

number (possibly zero) of elements. (Usually this memory cell is the propertylist

cell of a symbol, but any memory cell acceptable to setf can be used if getf and remf

are used.) Each pair of elements in the list constitutes an entry; the first item is the

indicator, and the second is the value. Because propertylist functions are given the

symbol and not the list itself, modifications to the property list can be recorded by

storing back into the propertylist cell of the symbol.

When a symbol is created, its property list is initially empty. Properties are created

by using get within a setf form.

Common Lisp does not use a symbol’s property list as extensively as earlier Lisp

implementations did. Lessused data, such as compiler, debugging, and documenta

tion information, is kept on property lists in Common Lisp.

Compatibility note: In older Lisp implementations, the print name, value, and function

definition of a symbol were kept on its property list. The value cell was introduced into

MacLisp and Interlisp to speed up access to variables; similarly for the printname cell and

function cell (MacLisp does not use a function cell). Recent Lisp implementations such as

Spice Lisp, Lisp Machine Lisp, and NIL have introduced all of these cells plus the package

cell. None of the MacLisp system property names (expr, fexpr, macro, array, subr, lsubr, fsubr,

and in former times value and pname) exist in Common Lisp.

In Common Lisp, the notion of “disembodied property list” introduced in MacLisp is

eliminated. It tended to be used for rather kludgy things, and in Lisp Machine Lisp is often

associated with the use of locatives (to make it “off by one” for searching alternating keyword

lists). In Common Lisp special setflike propertylist functions are introduced: getf and remf.

[Function]get symbol indicator &optional default

get searches the property list of symbol for an indicator eq to indicator. The first

argument must be a symbol. If one is found, then the corresponding value is returned;

otherwise default is returned.

If default is not specified, then nil is used for default.

SYMBOLS 239

Note that there is no way to distinguish an absent property from one whose value

is default.

(get x y) ≡ (getf (symbol-plist x) y)

Suppose that the property list of foo is (bar t baz 3 hunoz "Huh?"). Then, for exam

ple:

(get ´foo ´baz) ⇒ 3

(get ´foo ´hunoz) ⇒ "Huh?"

(get ´foo ´zoo) ⇒ nil

Compatibility note: In MacLisp, the first argument to get could be a list, in which case the

cdr of the list was treated as a socalled “disembodied property list.” The first argument to get

could also be any other object, in which case get would always return nil. In Common Lisp,

it is an error to give anything but a symbol as the first argument to get.

What Common Lisp calls get, Interlisp calls getprop.

What MacLisp and Interlisp call putprop is accomplished in Common Lisp by using get

with setf.

setf may be used with get to create a new propertyvalue pair, possibly replacing

an old pair with the same property name. For example:

(get ´clyde ´species) ⇒ nil

(setf (get ´clyde ´species) ´elephant) ⇒ elephant

and now (get ´clyde ´species) ⇒ elephant

The default argument may be specified to get in this context; it is ignored by setf but

may be useful in such macros as push that are related to setf:

(push item (get sym ´token-stack ´(initial-item)))

means approximately the same as

(setf (get sym ´token-stack ´(initial-item))

(cons item (get sym ´token-stack ´(initial-item))))

which in turn would be treated as simply

(setf (get sym ´token-stack)

(cons item (get sym ´token-stack ´(initial-item))))

X3J13 voted in March 1989 〈153〉 to clarify the permissible side effects of certain

operations; (setf (get symbol indicator) newvalue) is required to behave exactly

the same as (setf (getf (symbol-plist symbol) indicator) newvalue).

240 COMMON LISP

[Function]remprop symbol indicator

This removes from symbol the property with an indicator eq to indicator. The

property indicator and the corresponding value are removed by destructively splicing

the property list. It returns nil if no such property was found, or nonnil if a property

was found.

(remprop x y) ≡ (remf (symbol-plist x) y)

For example, if the property list of foo is initially

(color blue height 6.3 near-to bar)

then the call

(remprop ´foo ´height)

returns a nonnil value after altering foo’s property list to be

(color blue near-to bar)

X3J13 voted in March 1989 〈153〉 to clarify the permissible side effects of certain

operations; (remprop symbol indicator) is required to behave exactly the same as

(remf (symbol-plist symbol) indicator).

[Function]symbol-plist symbol

This returns the list that contains the property pairs of symbol; the contents of the

propertylist cell are extracted and returned.

Note that using get on the result of symbol-plist does not work. One must give the

symbol itself to get or else use the function getf.

setf may be used with symbol-plist to destructively replace the entire property list

of a symbol. This is a relatively dangerous operation, as it may destroy important

information that the implementation may happen to store in property lists. Also, care

must be taken that the new property list is in fact a list of even length.

Compatibility note: In MacLisp, this function is called plist; in Interlisp, it is called

getproplist.

[Function]getf place indicator &optional default

getf searches the property list stored in place for an indicator eq to indicator. If

one is found, then the corresponding value is returned; otherwise default is returned.

SYMBOLS 241

If default is not specified, then nil is used for default. Note that there is no way

to distinguish an absent property from one whose value is default. Often place is

computed from a generalized variable acceptable to setf.

setf may be used with getf, in which case the place must indeed be acceptable as

a place to setf. The effect is to add a new propertyvalue pair, or update an existing

pair, in the property list kept in the place. The default argument may be specified to

getf in this context; it is ignored by setf but may be useful in such macros as push

that are related to setf. See the description of get for an example of this.

X3J13 voted in March 1989 〈153〉 to clarify the permissible side effects of certain

operations; setf used with getf is permitted to perform a setf on the place or on any

part, car or cdr, of the toplevel list structure held by that place.

X3J13 voted in March 1988 〈146〉 to clarify order of evaluation (see section 7.2).

Compatibility note: The Interlisp function listget is similar to getf. The Interlisp function

listput is similar to using getf with setf.

[Macro]remf place indicator

This removes from the property list stored in place the property with an indicator

eq to indicator. The property indicator and the corresponding value are removed

by destructively splicing the property list. remf returns nil if no such property was

found, or some nonnil value if a property was found. The form place may be any

generalized variable acceptable to setf. See remprop.

X3J13 voted in March 1989 〈153〉 to clarify the permissible side effects of certain

operations; remf is permitted to perform a setf on the place or on any part, car or

cdr, of the toplevel list structure held by that place.

X3J13 voted in March 1988 〈146〉 to clarify order of evaluation (see section 7.2).

[Function]get-properties place indicator-list

get-properties is like getf, except that the second argument is a list of indicators.

get-properties searches the property list stored in place for any of the indicators in

indicatorlist until it finds the first property in the property list whose indicator is one

of the elements of indicatorlist. Normally place is computed from a generalized

variable acceptable to setf.

get-properties returns three values. If any property was found, then the first

two values are the indicator and value for the first property whose indicator was in

indicatorlist, and the third is that tail of the property list whose car was the indicator

(and whose cadr is therefore the value). If no property was found, all three values

242 COMMON LISP

are nil. Thus the third value serves as a flag indicating success or failure and also

allows the search to be restarted, if desired, after the property was found.

10.2. The Print Name

Every symbol has an associated string called the print name. This string is used as

the external representation of the symbol: if the characters in the string are typed in

to read (with suitable escape conventions for certain characters), it is interpreted as a

reference to that symbol (if it is interned); and if the symbol is printed, print types out

the print name. For more information, see the sections on the reader (section 22.1.1)

and printer (section 22.1.6).

[Function]symbol-name sym

This returns the print name of the symbol sym. For example:

(symbol-name ´xyz) ⇒ "XYZ"

It is an extremely bad idea to modify a string being used as the print name of a

symbol. Such a modification may tremendously confuse the function read and the

package system.

X3J13 voted in March 1989 〈11〉 to specify that it is an error to modify a string

being used as the print name of a symbol.

10.3. Creating Symbols

Symbols can be used in two rather different ways. An interned symbol is one that

is indexed by its print name in a catalogue called a package. A request to locate a

symbol with that print name results in the same (eq) symbol. Every time input is read

with the function read, and that print name appears, it is read as the same symbol.

This property of symbols makes them appropriate to use as names for things and as

hooks on which to hang permanent data objects (using the property list, for example).

Interned symbols are normally created automatically; the first time something

(such as the function read) asks the package system for a symbol with a given print

name, that symbol is automatically created. The function used to ask for an interned

symbol is intern, or one of the functions related to intern.

Although interned symbols are the most commonly used, they will not be discussed

further here. For more information, see chapter 11.

An uninterned symbol is a symbol used simply as a data object, with no special

cataloguing (it belongs to no particular package). An uninterned symbol is printed

SYMBOLS 243

as #--: followed by its print name. The following are some functions for creating

uninterned symbols.

[Function]make-symbol print-name

(make-symbol print-name) creates a new uninterned symbol, whose print name is the

string printname. The value and function bindings will be unbound and the property

list will be empty.

The string actually installed in the symbol’s printname component may be the

given string printname or may be a copy of it, at the implementation’s discretion.

The user should not assume that (symbol-name (make-symbol x)) is eq to x, but also

should not alter a string once it has been given as an argument to make-symbol.

Implementation note: An implementation might choose, for example, to copy the string to

some readonly area, in the expectation that it will never be altered.

[Function]copy-symbol sym &optional copy-props

This returns a new uninterned symbol with the same print name as sym.

X3J13 voted in March 1989 〈39〉 that the print name of the new symbol is required

to be the same only in the sense of string−−; in other words, an implementation is

permitted (but not required) to make a copy of the print name. User programs should

not assume that the print names of the old and new symbols will be eq, although they

may happen to be eq in some implementations.

If copyprops is nonnil, then the initial value and function definition of the new

symbol will be the same as those of sym, and the property list of the new symbol will

be a copy of sym’s.

X3J13 voted in March 1989 〈38〉 to clarify that only the toplevel conses of the

property list are copied; it is as if (copy-list (symbol-plist sym)) were used as the

property list of the new symbol.

If copyprops is nil (the default), then the new symbol will be unbound and

undefined, and its property list will be empty.

[Function]gensym &optional x

gensym invents a print name and creates a new symbol with that print name. It returns

the new, uninterned symbol.

The invented print name consists of a prefix (which defaults to G), followed by the

decimal representation of a number.

The number is increased by 1 every time gensym is called.
..................................

...

244 COMMON LISP

If the argument x is present and is an integer, then x must be nonnegative, and the

internal counter is set to x for future use;otherwise the internal counter is incremented.

If x is a string, then that string is made the default prefix for this and future calls to

gensym. After handling the argument, gensym creates a symbol as it would with no

argument. For example:

(gensym) ⇒ G7

(gensym "FOO-") ⇒ FOO-8

(gensym 32) ⇒ FOO-32

(gensym) ⇒ FOO-33

(gensym "GARBAGE-") ⇒ GARBAGE-34

gensym is usually used to create a symbol that should not normally be seen by the

user and whose print name is unimportant except to allow easy distinction by eye

between two such symbols. The optional argument is rarely supplied. The name

comes from “generate symbol,” and the symbols produced by it are often called

“gensyms.”

Compatibility note: In earlier versions of Lisp, such as MacLisp and Interlisp, the print

name of a gensym was of fixed length, consisting of a single letter and a fixedlength decimal

representation with leading zeros if necessary, for example, G0007. This convention was

motivated by an implementation consideration, namely that the name should fit into a single

machine word, allowing a quick and clever implementation. Such considerations are less

relevant in Common Lisp. The consistent use of mnemonic prefixes can make it easier for the

programmer, when debugging, to determine what code generated a particular symbol. The

elimination of the fixedlength decimal representation prevents the same name from being used

twice unless the counter is explicitly reset.

If it is desirable for the generated symbols to be interned, and yet guaranteed to be

symbols distinct from all others, then the function gentemp may be more appropriate

to use.

X3J13 voted in March 1989 〈94〉 to alter the specification of gensym so that supply

ing an optional argument (whether a string or a number) does not alter the internal

state maintained by gensym. Instead, the internal counter is made explicitly available

as a variable named *gensym-counter*.

If a string argument is given to gensym, that string is used as the prefix; otherwise

“G” is used. If a number is provided, its decimal representation is used, but the

internal counter is unaffected. X3J13 deprecates the use of a number as an argument.

SYMBOLS 245

[Variable]*gensym-counter*

X3J13 voted in March 1989 〈94〉 to add *gensym-counter*, which holds the state of

the gensym counter; that is, gensym uses the decimal representation of its value as part

of the generated name and then increments its value.

The initial value of this variable is implementationdependent but will be a non

negative integer.

The user may assign to or bind this variable at any time, but its value must always

be a nonnegative integer.

[Function]gentemp &optional prefix package

gentemp, like gensym, creates and returns a new symbol. gentemp differs from gensym

in that it interns the symbol (see intern) in the package (which defaults to the current

package; see *package*). gentemp guarantees the symbol will be a new one not already

existing in the package. It does this by using a counter as gensym does, but if the

generated symbol is not really new, then the process is repeated until a new one is

created. There is no provision for resetting the gentemp counter. Also, the prefix for

gentemp is not remembered from one call to the next; if prefix is omitted, the default

prefix T is used.

[Function]symbol-package sym

Given a symbol sym, symbol-package returns the contents of the package cell of that

symbol. This will be a package object or nil.

[Function]keywordp object

The argument may be any Lisp object. The predicate keywordp is true if the argument

is a symbol and that symbol is a keyword (that is, belongs to the keyword package).

Keywords are those symbols that are written with a leading colon. Every keyword is

a constant, in the sense that it always evaluates to itself. See constantp.

11

Packages

One problem with earlier Lisp systems is the use of a single name space for all sym

bols. In large Lisp systems, with modules written by many different programmers,

accidental name collisions become a serious problem. Common Lisp addresses this

problem through the package system, derived from an earlier package system devel

oped for Lisp Machine Lisp [55]. In addition to preventing namespace conflicts, the

package system makes the modular structure of large Lisp systems more explicit.

A package is a data structure that establishes a mapping from print names (strings)

to symbols. The package thus replaces the “oblist” or “obarray” machinery of earlier

Lisp systems. At any given time one package is current, and this package is used

by the Lisp reader in translating strings into symbols. The current package is, by

definition, the one that is the value of the global variable *package*. It is possible to

refer to symbols in packages other than the current one through the use of package

qualifiers in the printed representation of the symbol. For example, foo:bar, when

seen by the reader, refers to the symbol whose name is bar in the package whose

name is foo. (Actually, this is true only if bar is an external symbol of foo, that is,

a symbol that is supposed to be visible outside of foo. A reference to an internal

symbol requires the intentionally clumsier syntax foo::bar.)

The stringtosymbol mappings available in a given package are divided into two

classes, external and internal. We refer to the symbols accessible via these mappings

as being external and internal symbols of the package in question, though really it

is the mappings that are different and not the symbols themselves. Within a given

package, a name refers to one symbol or to none; if it does refer to a symbol, then it

is either external or internal in that package, but not both.

External symbols are part of the package’s public interface to other packages.

External symbols are supposed to be chosen with some care and are advertised to

users of the package. Internal symbols are for internal use only, and these symbols are

normally hidden from other packages. Most symbols are created as internal symbols;

they become external only if they appear explicitly in an export command for the

246

PACKAGES 247

package.

A symbol may appear in many packages. It will always have the same name

wherever it appears, but it may be external in some packages and internal in others.

On the other hand, the same name (string) may refer to different symbols in different

packages.

Normally, a symbol that appears in one or more packages will be owned by one

particular package, called the home package of the symbol; that package is said to

own the symbol. Every symbol has a component called the package cell that contains

a pointer to its home package. A symbol that is owned by some package is said to be

interned. Some symbols are not owned by any package; such a symbol is said to be

uninterned, and its package cell contains nil.

Packages may be built up in layers. From the point of view of a package’s user,

the package is a single collection of mappings from strings into internal and external

symbols. However, some of these mappings may be established within the package

itself, while other mappings are inherited from other packages via the use-package

construct. (The mechanisms responsible for this inheritance are described below.)

In what follows, we will refer to a symbol as being accessible in a package if it can

be referred to without a package qualifier when that package is current, regardless of

whether the mapping occurs within that package or via inheritance. We will refer to

a symbol as being present in a package if the mapping is in the package itself and is

not inherited from somewhere else. Thus a symbol present in a package is accessible,

but an accessible symbol is not necessarily present.

A symbol is said to be interned in a package if it is accessible in that package

and also is owned (by either that package or some other package). Normally all

the symbols accessible in a package will in fact be owned by some package, but

the terminology is useful when discussing the pathological case of an accessible but

unowned (uninterned) symbol.

As a verb, to intern a symbol in a package means to cause the symbol to be interned

in the package if it was not already; this process is performed by the function intern.

If the symbol was previously unowned, then the package it is being interned in

becomes its owner (home package); but if the symbol was previously owned by

another package, that other package continues to own the symbol.

To unintern a symbol from the package means to cause it to be not present in the

package and, additionally, to cause the symbol to be uninterned if the package was

the home package (owner) of the symbol. This process is performed by the function

unintern.

248 COMMON LISP

11.1. Consistency Rules

Packagerelated bugs can be very subtle and confusing: things are not what they

appear to be. The Common Lisp package system is designed with a number of safety

features to prevent most of the common bugs that would otherwise occur in normal

use. This may seem overprotective, but experience with earlier package systems has

shown that such safety features are needed.

In dealing with the package system, it is useful to keep in mind the following

consistency rules, which remain in force as long as the value of *package* is not

changed by the user:

. Readread consistency: Reading the same print name always results in the same

(eq) symbol.

. Printread consistency: An interned symbol always prints as a sequence of char

acters that, when read back in, yields the same (eq) symbol.

. Printprint consistency: If two interned symbols are not eq, then their printed

representations will be different sequences of characters.

These consistency rules remain true in spite of any amount of implicit interning

caused by typing in Lisp forms, loading files, etc. This has the important implication

that, as long as the current package is not changed, results are reproducible regardless

of the order of loading files or the exact history of what symbols were typed in when.

The rules can only be violated by explicit action: changing the value of *package*,

forcing some action by continuing from an error, or calling one of the “dangerous”

functions unintern, unexport, shadow, shadowing-import, or unuse-package.

11.2. Package Names

Each package has a name (a string) and perhaps some nicknames. These are assigned

when the package is created, though they can be changed later. A package’s name

should be something long and selfexplanatory, like editor; there might be a nickname

that is shorter and easier to type, such as ed.

There is a single name space for packages. The function find-package translates a

package name or nickname into the associated package. The function package-name

returns the name of a package. The function package-nicknames returns a list of all

nicknames for a package. The function rename-package removes a package’s current

name and nicknames and replaces them with new ones specified by the user. Package

renaming is occasionally useful when, for development purposes, it is desirable to

load two versions of a package into the same Lisp. One can load the first version,

rename it, and then load the other version, without getting a lot of name conflicts.

PACKAGES 249

When the Lisp reader sees a qualified symbol, it handles the packagename part in

the same way as the symbol part with respect to capitalization. Lowercase characters

in the package name are converted to corresponding uppercase characters unless

preceded by the escape character \ or surrounded by | characters. The lookup done

by the find-package function is casesensitive, like that done for symbols. Note that

|Foo|:|Bar| refers to a symbol whose name is Bar in a package whose name is Foo. By

contrast, |Foo:Bar| refers to a sevencharacter symbol that has a colon in its name (as

well as two uppercase letters and four lowercase letters) and is interned in the current

package. Following the convention used in this book for symbols, we show ordinary

package names using lowercase letters, even though the name string is internally

represented with uppercase letters.

Most of the functions that require a packagename argument from the user accept

either a symbol or a string. If a symbol is supplied, its print name will be used;

the print name will already have undergone caseconversion by the usual rules. If a

string is supplied, it must be so capitalized as to match exactly the string that names

the package.

X3J13 voted in January 1989 〈127〉 to clarify that one may use either a package

object or a package name (symbol or string) in any of the following situations:

. the :use argument to make-package

. the first argument to package-use-list, package-used-by-list, package-name,

package-nicknames, in-package, find-package, rename-package, or delete-package,

. the second argument to intern, find-symbol, unintern, export, unexport, import,

shadowing-import, or shadow

. the first argument, or a member of the list that is the first argument, to use-package

or unuse-package

. the value of the package given to do-symbols, do-external-symbols, or do-all-

symbols

. a member of the packagelist given to with-package-iterator

Note that the first argument to make-package must still be a package name and not an

actual package; it makes no sense to create an already existing package. Similarly,

package nicknames must always be expressed as package names and not as package

objects. If find-package is given a package object instead of a name, it simply returns

that package.

250 COMMON LISP

11.3. Translating Strings to Symbols

The value of the special variable *package* must always be a package object (not a

name). Whatever package object is currently the value of *package* is referred to as

the current package.

When the Lisp reader has, by parsing, obtained a string of characters thought to

name a symbol, that name is looked up in the current package. This lookup may

involve looking in other packages whose external symbols are inherited by the current

package. If the name is found, the corresponding symbol is returned. If the name is

not found (that is, there is no symbol of that name accessible in the current package),

a new symbol is created for it and is placed in the current package as an internal

symbol. Moreover, the current package becomes the owner (home package) of the

symbol, and so the symbol becomes interned in the current package. If the name is

later read again while this same package is current, the same symbol will then be

found and returned.

Often it is desirable to refer to an external symbol in some package other than

the current one. This is done through the use of a qualified name, consisting of a

package name, then a colon, then the name of the symbol. This causes the symbol’s

name to be looked up in the specified package, rather than in the current one. For

example, editor:buffer refers to the external symbol named buffer accessible in the

package named editor, regardless of whether there is a symbol named buffer in the

current package. If there is no package named editor, or if no symbol named buffer

is accessible in editor, or if buffer is an internal symbol in editor, the Lisp reader

will signal a correctable error to ask the user for instructions.

On rare occasions, a user may need to refer to an internal symbol of some package

other than the current one. It is illegal to do this with the colon qualifier, since

accessing an internal symbol of some other package is usually a mistake. However,

this operation is legal if a doubled colon :: is used as the separator in place of the

usual single colon. If editor::buffer is seen, the effect is exactly the same as reading

buffer with *package* temporarily rebound to the package whose name is editor.

This specialpurpose qualifier should be used with caution.

The package named keyword contains all keyword symbols used by the Lisp system

itself and by userwritten code. Such symbols must be easily accessible from any

package, and name conflicts are not an issue because these symbols are used only

as labels and never to carry packagespecific values or properties. Because keyword

symbols are used so frequently, Common Lisp provides a special reader syntax for

them. Any symbol preceded by a colon but no package name (for example :foo)

is added to (or looked up in) the keyword package as an external symbol. The

keyword package is also treated specially in that whenever a symbol is added to the

keyword package the symbol is always made external; the symbol is also automatically

PACKAGES 251

declared to be a constant (see defconstant) and made to have itself as its value. This

is why every keyword evaluates to itself. As a matter of style, keywords should

always be accessed using the leadingcolon convention; the user should never import

or inherit keywords into any other package. It is an error to try to apply use-package

to the keyword package.

Each symbol contains a package cell that is used to record the home package of

the symbol, or nil if the symbol is uninterned. This cell may be accessed by using

the function symbol-package. When an interned symbol is printed, if it is a symbol

in the keyword package, then it is printed with a preceding colon; otherwise, if it is

accessible (directly or by inheritance) in the current package, it is printed without

any qualification; otherwise, it is printed with the name of the home package as the

qualifier, using : as the separator if the symbol is external and :: if not.

A symbol whose package slot contains nil (that is, has no home package) is printed

preceded by #--:. It is possible, by the use of import and unintern, to create a symbol

that has no recorded home package but that in fact is accessible in some package.

The system does not check for this pathological case, and such symbols will always

be printed preceded by #--:.

In summary, the following four uses of symbol qualifier syntax are defined.

foo:bar

When read, looks up BAR among the external symbols of the package named FOO.

Printed when symbol bar is external in its home package foo and is not accessible in

the current package.

foo::bar

When read, interns BAR as if FOO were the current package. Printed when symbol bar

is internal in its home package foo and is not accessible in the current package.

:bar

When read, interns BAR as an external symbol in the keyword package and makes it

evaluate to itself. Printed when the home package of symbol bar is keyword.

#--:bar

When read, creates a new uninterned symbol named BAR. Printed when the symbol

bar is uninterned (has no home package), even in the pathological case that bar is

uninterned but nevertheless somehow accessible in the current package.

All other uses of colons within names of symbols are not defined by Common Lisp

but are reserved for implementationdependent use; this includes names that end in a

colon, contain two or more colons, or consist of just a colon.

252 COMMON LISP

11.4. Exporting and Importing Symbols

Symbols from one package may be made accessible in another package in two ways.

First, any individual symbol may be added to a package by use of the function

import. The form (import ´editor:buffer) takes the external symbol named buffer

in the editor package (this symbol was located when the form was read by the Lisp

reader) and adds it to the current package as an internal symbol. The symbol is then

present in the current package. The imported symbol is not automatically exported

from the current package, but if it is already present and external, then the fact that

it is external is not changed. After the call to import it is possible to refer to buffer

in the importing package without any qualifier. The status of buffer in the package

named editor is unchanged, and editor remains the home package for this symbol.

Once imported, a symbol is present in the importing package and can be removed

only by calling unintern.

If the symbol is already present in the importing package, import has no effect. If a

distinct symbol with the name buffer is accessible in the importing package (directly

or by inheritance), then a correctable error is signaled, as described in section 11.5,

because import avoids letting one symbol shadow another.

A symbol is said to be shadowed by another symbol in some package if the first

symbol would be accessible by inheritance if not for the presence of the second

symbol. To import a symbol without the possibility of getting an error because

of shadowing, use the function shadowing-import. This inserts the symbol into the

specified package as an internal symbol, regardless of whether another symbol of the

same name will be shadowed by this action. If a different symbol of the same name is

already present in the package, that symbol will first be uninterned from the package

(see unintern). The new symbol is added to the package’s shadowingsymbols list.

shadowing-import should be used with caution. It changes the state of the package

system in such a way that the consistency rules do not hold across the change.

The second mechanism is provided by the function use-package. This causes a

package to inherit all of the external symbols of some other package. These symbols

become accessible as internal symbols of the using package. That is, they can be

referred to without a qualifier while this package is current, but they are not passed

along to any other package that uses this package. Note that use-package, unlike

import, does not cause any new symbols to be present in the current package but

only makes them accessible by inheritance. use-package checks carefully for name

conflicts between the newly imported symbols and those already accessible in the

importing package. This is described in detail in section 11.5.

Typically a user, working by default in the user package, will load a number of

packages into Lisp to provide an augmented working environment, and then call

use-package on each of these packages to allow easy access to their external symbols.

PACKAGES 253

unuse-package undoes the effects of a previous use-package. The external symbols

of the used package are no longer inherited. However, any symbols that have been

imported into the using package continue to be present in that package.

There is no way to inherit the internal symbols of another package; to refer to an

internal symbol, the user must either make that symbol’s home package current, use

a qualifier, or import that symbol into the current package.

The distinction between external and internal symbols is a primary means of hiding

names so that one program does not tread on the namespace of another.

When intern or some other function wants to look up a symbol in a given package,

it first looks for the symbol among the external and internal symbols of the package

itself; then it looks through the external symbols of the used packages in some

unspecified order. The order does not matter; according to the rules for handling

name conflicts (see below), if conflicting symbols appear in two or more packages

inherited by package X, a symbol of this name must also appear in X itself as a

shadowing symbol. Of course, implementations are free to choose other, more

efficient ways of implementing this search, as long as the uservisible behavior is

equivalent to what is described here.

The function export takes a symbol that is accessible in some specified package

(directly or by inheritance) and makes it an external symbol of that package. If the

symbol is already accessible as an external symbol in the package, export has no

effect. If the symbol is directly present in the package as an internal symbol, it is

simply changed to external status. If it is accessible as an internal symbol via use-

package, the symbol is first imported into the package, then exported. (The symbol

is then present in the specified package whether or not the package continues to use

the package through which the symbol was originally inherited.) If the symbol is not

accessible at all in the specified package, a correctable error is signaled that, upon

continuing, asks the user whether the symbol should be imported.

The function unexport is provided mainly as a way to undo erroneous calls to

export. It works only on symbols directly present in the current package, switching

them back to internal status. If unexport is given a symbol already accessible as an

internal symbol in the current package, it does nothing; if it is given a symbol not

accessible in the package at all, it signals an error.

11.5. Name Conflicts

A fundamental invariant of the package system is that within one package any par

ticular name can refer to at most one symbol. A name conflict is said to occur when

there is more than one candidate symbol and it is not obvious which one to choose.

If the system does not always choose the same way, the readread consistency rule

would be violated. For example, some programs or data might have been read in

254 COMMON LISP

under a certain mapping of the name to a symbol. If the mapping changes to a

different symbol, and subsequently additional programs or data are read, then the

two programs will not access the same symbol even though they use the same name.

Even if the system did always choose the same way, a name conflict is likely to

result in a mapping from names to symbols different from what was expected by the

user, causing programs to execute incorrectly. Therefore, any time a name conflict

is about to occur, an error is signaled. The user may continue from the error and tell

the package system how to resolve the conflict.

It may be that the same symbol is accessible to a package through more than one

path. For example, the symbol might be an external symbol of more than one used

package, or the symbol might be directly present in a package and also inherited from

another package. In such cases there is no name conflict. The same identical symbol

cannot conflict with itself. Name conflicts occur only between distinct symbols with

the same name.

The creator of a package can tell the system in advance how to resolve a name

conflict through the use of shadowing. Every package has a list of shadowing

symbols. A shadowing symbol takes precedence over any other symbol of the same

name that would otherwise be accessible to the package. A name conflict involving

a shadowing symbol is always resolved in favor of the shadowing symbol, without

signaling an error (except for one instance involving import described below). The

functions shadow and shadowing-import may be used to declare shadowing symbols.

Name conflicts are detected when they become possible, that is, when the package

structure is altered. There is no need to check for name conflicts during every name

lookup.

The functions use-package, import, and export check for name conflicts. use-

package makes the external symbols of the package being used accessible to the using

package; each of these symbols is checked for name conflicts with the symbols already

accessible. import adds a single symbol to the internals of a package, checking for a

name conflict with an existing symbol either present in the package or accessible to it.

import signals a name conflict error even if the conflict is with a shadowing symbol,

the rationale being that the user has given two explicit and inconsistent directives.

export makes a single symbol accessible to all the packages that use the package from

which the symbol is exported. All of these packages are checked for name conflicts:

(export s p) does (find-symbol (symbol-name s) q) for each package q in (package-

used-by-list p). Note that in the usual case of an export during the initial definition

of a package, the result of package-used-by-list will be nil and the nameconflict

checking will take negligible time.

The function intern, which is the one used most frequently by the Lisp reader

for looking up names of symbols, does not need to do any nameconflict checking,

because it never creates a new symbol if there is already an accessible symbol with

PACKAGES 255

the name given.

shadow and shadowing-import never signal a nameconflict error because the user,

by calling these functions, has specified how any possible conflict is to be resolved.

shadow does nameconflict checking to the extent that it checks whether a distinct

existing symbol with the specified name is accessible and, if so, whether it is directly

present in the package or inherited. In the latter case, a new symbol is created to

shadow it. shadowing-import does nameconflict checking to the extent that it checks

whether a distinct existing symbol with the same name is accessible; if so, it is

shadowed by the new symbol, which implies that it must be uninterned if it was

directly present in the package.

unuse-package, unexport, and unintern (when the symbol being uninterned is not a

shadowing symbol) do not need to do any nameconflict checking because they only

remove symbols from a package; they do not make any new symbols accessible.

Giving a shadowing symbol to unintern can uncover a name conflict that had

previously been resolved by the shadowing. If package A uses packages B and C, A

contains a shadowing symbol x, and B and C each contain external symbols named x,

then removing the shadowing symbol x from A will reveal a name conflict between

b:x and c:x if those two symbols are distinct. In this case unintern will signal an

error.

Aborting from a nameconflict error leaves the original symbol accessible. Package

functions always signal nameconflict errors before making any change to the package

structure. When multiple changes are to be made, however, for example when export

is given a list of symbols, it is permissible for the implementation to process each

change separately, so that aborting from a name conflict caused by the second symbol

in the list will not unexport the first symbol in the list. However, aborting from a

nameconflict error caused by export of a single symbol will not leave that symbol

accessible to some packages and inaccessible to others; with respect to each symbol

processed, export behaves as if it were an atomic operation.

Continuing from a nameconflict error should offer the user a chance to resolve the

name conflict in favor of either of the candidates. The package structure should be

altered to reflect the resolution of the name conflict, via shadowing-import, unintern,

or unexport.

A name conflict in use-package between a symbol directly present in the using

package and an external symbol of the used package may be resolved in favor of

the first symbol by making it a shadowing symbol, or in favor of the second symbol

by uninterning the first symbol from the using package. The latter resolution is

dangerous if the symbol to be uninterned is an external symbol of the using package,

since it will cease to be an external symbol.

A name conflict in use-package between two external symbols inherited by the

using package from other packages may be resolved in favor of either symbol by

256 COMMON LISP

importing it into the using package and making it a shadowing symbol.

A name conflict in export between the symbol being exported and a symbol already

present in a package that would inherit the newly exported symbol may be resolved

in favor of the exported symbol by uninterning the other one, or in favor of the

alreadypresent symbol by making it a shadowing symbol.

A name conflict in export or unintern due to a package inheriting two distinct

symbols with the same name from two other packages may be resolved in favor of

either symbol by importing it into the using package and making it a shadowing

symbol, just as with use-package.

A name conflict in import between the symbol being imported and a symbol

inherited from some other package may be resolved in favor of the symbol being

imported by making it a shadowing symbol, or in favor of the symbol already

accessible by not doing the import. A name conflict in import with a symbol already

present in the package may be resolved by uninterning that symbol, or by not doing

the import.

Good userinterface style dictates that use-package and export, which can cause

many name conflicts simultaneously, first check for all of the name conflicts before

presenting any of them to the user. The user may then choose to resolve all of

them wholesale or to resolve each of them individually, the latter requiring a lot of

interaction but permitting different conflicts to be resolved different ways.

Implementations may offer other ways of resolving name conflicts. For instance,

if the symbols that conflict are not being used as objects but only as names for

functions, it may be possible to “merge” the two symbols by putting the function

definition onto both symbols. References to either symbol for purposes of calling a

function would be equivalent. A similar merging operation can be done for variable

values and for things stored on the property list. In Lisp Machine Lisp, for example,

one can also forward the value, function, and property cells so that future changes to

either symbol will propagate to the other one. Some other implementations are able

to do this with value cells but not with property lists. Only the user can know whether

this way of resolving a name conflict is adequate, because it will work only if the

use of two noneq symbols with the same name will not prevent the correct operation

of the program. The value of offering symbol merging as a way of resolving name

conflicts is that it can avoid the need to throw away the whole Lisp world, correct the

packagedefinition forms that caused the error, and start over from scratch.

11.6. Builtin Packages

The following packages, at least, are built into every Common Lisp system.
...

lisp

The package named lisp contains the primitives of the Common Lisp system. Its

...

PACKAGES 257

external symbols include all of the uservisible functions and global variables that

are present in the Common Lisp system, such as car, cdr, and *package*. Almost all

other packages will want to use lisp so that these symbols will be accessible without

qualification.

user

The user package is, by default, the current package at the time a Common Lisp

system starts up. This package uses the lisp package.

X3J13 voted in March 1989 〈108〉 to specify that the forthcoming ANSI Common

Lisp will use the package name common-lisp instead of lisp and the package name

common-lisp-user instead of user. The purpose is to allow a single Lisp system to sup

port both “old” Common Lisp and “new” ANSI Common Lisp simultaneously despite

the fact that in some cases the two languages use the same names for incompatible

purposes. (That’s what packages are for!)

common-lisp

The package named common-lisp contains the primitives of the ANSI Common Lisp

system (as opposed to a Common Lisp system based on the 1984 specification). Its

external symbols include all of the uservisible functions and global variables that

are present in the ANSI Common Lisp system, such as car, cdr, and *package*. Note,

however, that the home package of such symbols is not necessarily the common-lisp

package (this makes it easier for symbols such as t and lambda to be shared between

the common-lisp package and another package, possibly one named lisp). Almost

all other packages ought to use common-lisp so that these symbols will be accessible

without qualification. This package has the nickname cl.

common-lisp-user

The common-lisp-user package is, by default, the current package at the time an ANSI

Common Lisp system starts up. This package uses the common-lisp package and has

the nickname cl-user. It may contain other implementationdependent symbols and

may use other implementationspecific packages.

keyword

This package contains all of the keywords used by builtin or userdefined Lisp

functions. Printed symbol representations that start with a colon are interpreted as

referring to symbols in this package, which are always external symbols. All symbols

in this package are treated as constants that evaluate to themselves, so that the user

can type :foo instead of ´:foo.

...

258 COMMON LISP

system..

This package name is reserved to the implementation. Normally this is used to contain

names of implementationdependent systeminterface functions. This package uses

lisp and has the nickname sys.

X3J13 voted in January 1989 〈125〉 to modify the requirements on the builtin

packages so as to limit what may appear in the common-lisp package and to lift the

requirement that every implementation have a package named system. The details

are as follows.

Not only must the common-lisp package in any given implementation contain all

the external symbols prescribed by the standard; the common-lisp package moreover

may not contain any external symbol that is not prescribed by the standard. However,

the common-lisp package may contain additional internal symbols, depending on the

implementation.

An external symbol of the common-lisp package may not have a function, macro,

or special form definition, or a toplevel value, or a special proclamation, or a type

definition, unless specifically permitted by the standard. Programmers may validly

rely on this fact; for example, fboundp is guaranteed to be false for all external symbols

of the common-lisp package except those explicitly specified in the standard to name

functions, macros, and special forms. Similarly, boundp will be false of all such

external symbols except those documented to be variables or constants.

Portable programs may use external symbols in the common-lisp package that are

not documented to be constants or variables as names of local lexical variables with

the presumption that the implementation has not proclaimed such variables to be

special; this legitimizes the common practice of using such names as list and string

as names for local variables.

A valid implementation may initially have properties on any symbol, or dynam

ically put new properties on symbols (even usercreated symbols), as long as no

property indicator used for this purpose is an external symbol of any package defined

by the standard or a symbol that is accessible from the common-lisp-user package or

any package defined by the user.

This vote eliminates the requirement that every implementation have a predefined

package named system. An implementation may provide any number of predefined

packages; these should be described in the documentation for that implementation.

The common-lisp-user package may contain symbols not described by the standard

and may use other implementationspecific packages.

X3J13 voted in March 1989 〈109〉 to restrict user programs from performing certain

actions that might interfere with builtin facilities or interact badly with them. Except

where explicitly allowed, the consequences are undefined if any of the following

actions are performed on a symbol in the common-lisp package.

PACKAGES 259

. binding or altering its value (lexically or dynamically)

. defining or binding it as a function

. defining or binding it as a macro

. defining it as a type specifier (defstruct, defclass, deftype)

. defining it as a structure (defstruct)

. defining it as a declaration

. dsing it as a symbol macro

. altering its print name

. altering its package

. tracing it

. declaring or proclaiming it special or lexical

. declaring or proclaiming its type or ftype

. removing it from the package common-lisp

X3J13 also voted in June 1989 〈49〉 to add to this list the item

. defining it as a compiler macro

If such a symbol is not globally defined as a variable or a constant, a user program

is allowed to lexically bind it and declare the type of that binding.

If such a symbol is not defined as a function, macro, or special form, a user program

is allowed to (lexically) bind it as a function and to declare the ftype of that binding

and to trace that binding.

If such a symbol is not defined as a function, macro, or special form, a user program

is allowed to (lexically) bind it as a macro.

As an example, the behavior of the code fragment

(flet ((open (filename &key direction)

(format t "˜%OPEN was called.")

(open filename :direction direction)))

(with-open-file (x "frob" :direction ´:output)

(format t "˜%Was OPEN called?")))

is undefined. Even in a “reasonable” implementation, for example, the macro ex

pansion of with-open-file might refer to the open function and might not. However,

the preceding rules eliminate the burden of deciding whether an implementation is

260 COMMON LISP

reasonable. The code fragment violates the rules; officially its behavior is therefore

completely undefined, and that’s that.

Note that “altering the property list” is not in the list of proscribed actions, so a

user program is permitted to add properties to or remove properties from symbols in

the common-lisp package.

11.7. Package System Functions and Variables

Some of the functions and variables in this section are described in previous sections

but are included here for completeness.

It is up to each implementation’s compiler to ensure that when a compiled file is
...

loaded, all of the symbols in the file end up in the same packages that they would oc

cupy if the Lisp source file were loaded. In most compilers, this will be accomplished

by treating certain package operations as though they are surrounded by (eval-when

(compile load eval) ...); see eval-when. These operations are make-package, in-

package, shadow, shadowing-import, export, unexport, use-package, unuse-package, and

import. To guarantee proper compilation in all Common Lisp implementations, these

functions should appear only at top level within a file. As a matter of style, it is

suggested that each file contain only one package, and that all of the package setup

forms appear near the start of the file. This is discussed in more detail, with examples,

in section 11.9.

X3J13 voted in March 1989 〈103〉 to cancel the specifications of the preceding

paragraph in order to support a model of file compilation in which the compiler need

never take special note of ordinary function calls; only special forms and macros are

recognized as affecting the state of the compilation process. As part of this change

in-package was changed to be a macro rather than a function and its functionality was

restricted. The actions of shadow, shadowing-import, use-package, import, intern, and

export for compilation purposes may be accomplished with the new macro defpackage.

Implementation note: In the past, some Lisp compilers have read the entire file into Lisp

before processing any of the forms. Other compilers have arranged for the loader to do all of its

intern operations before evaluating any of the toplevel forms. Neither of these techniques will

work in a straightforward way in Common Lisp because of the presence of multiple packages.

For the functions described here, all optional arguments named package default to

the current value of *package*. Where a function takes an argument that is either a

symbol or a list of symbols, an argument of nil is treated as an empty list of symbols.

Any argument described as a package name may be either a string or a symbol. If

a symbol is supplied, its print name will be used as the package name; if a string

PACKAGES 261

is supplied, the user must take care to specify the same capitalization used in the

package name, normally all uppercase.

[Variable]*package*

The value of this variable must be a package; this package is said to be the current

package. The initial value of *package* is the user package.

X3J13 voted in March 1989 〈108〉 to specify that the forthcoming ANSI Common

Lisp will use the package name common-lisp-user instead of user.

The function load rebinds *package* to its current value. If some form in the file

changes the value of *package* during loading, the old value will be restored when

the loading is completed.

X3J13 voted in October 1988 〈21〉 to require compile-file to rebind *package* to

its current value.

[Function]make-package package-name &key :nicknames :use

This creates and returns a new package with the specified package name. As described

above, this argument may be either a string or a symbol. The :nicknames argument

must be a list of strings to be used as alternative names for the package. Once again,

the user may supply symbols in place of the strings, in which case the print names

of the symbols are used. These names and nicknames must not conflict with any

existing package names; if they do, a correctable error is signaled.

The :use argument is a list of packages or the names (strings or symbols) of

packages whose external symbols are to be inherited by the new package. These

packages must already exist. If not supplied, :use defaults to a list of one package,

the lisp package.

X3J13 voted in March 1989 〈108〉 to specify that the forthcoming ANSI Common

Lisp will use the package name common-lisp instead of lisp.

X3J13 voted in January 1989 〈119〉 to change the specification of make-package

so that the default value for the :use argument is unspecified. Portable code should

specify :use ´("COMMON-LISP") explicitly.

Rationale: Many existing implementations of Common Lisp happen to have violated the

first edition specification, providing as the default not only the lisp package but also (or

instead) a package containing implementationdependent language extensions. This is for

good reason: usually it is much more convenient to the user for the default :use list to be the

entire, implementationdependent, extended language rather than only the facilities specified

in this book. The X3J13 vote simply legitimizes existing practice.

...

262 COMMON LISP

[Function]in-package package-name &key :nicknames :use
...

The in-package function is intended to be placed at the start of a file containing a

subsystem that is to be loaded into some package other than user.

If there is not already a package named packagename, this function is similar

to make-package, except that after the new package is created, *package* is set to it.

This binding will remain in force until changed by the user (perhaps with another in-

package call) or until the *package* variable reverts to its old value at the completion

of a load operation.

If there is an existing package whose name is packagename, the assumption is

that the user is reloading a file after making some changes. The existing package is

augmented to reflect any new nicknames or new packages in the :use list (with the

usual error checking), and *package* is then set to this package.

X3J13 voted in January 1989 〈156〉 to specify that in-package returns the new

package, that is, the value of *package* after the operation has been executed.

X3J13 voted in March 1989 〈108〉 to specify that the forthcoming ANSI Common

Lisp will use the package name common-lisp-user instead of user.

X3J13 voted in March 1989 〈103〉 to restrict the functionality of in-package and to

make it a macro. This is an incompatible change.

Making in-package a macro rather than a function means that there is no need to

require compile-file to handle it specially. Since defpackage is also defined to have

side effects on the compilation environment, there is no need to require any of the

package functions to be treated specially by the compiler.

[Macro]in-package name

This macro causes *package* to be set to the package named name, which must be

a symbol or string. The name is not evaluated. An error is signaled if the package

does not already exist. Everything this macro does is also performed at compile time

if the call appears at top level.

[Function]find-package name

The name must be a string that is the name or nickname for a package. This argument

may also be a symbol, in which case the symbol’s print name is used. The package

with that name or nickname is returned; if no such package exists, find-package

returns nil. The matching of names observes case (as in string−−).

X3J13 voted in January 1989 〈127〉 to allow find-package to accept a package

object, in which case the package is simply returned (see section 11.2).

PACKAGES 263

[Function]package-name package

The argument must be a package. This function returns the string that names that

package.

X3J13 voted in January 1989 〈127〉 to allow package-name to accept a package

name or nickname, in which case the primary name of the package so specified is

returned (see section 11.2).

X3J13 voted in January 1989 〈126〉 to add a function to delete packages. One

consequence of this vote is that package-name will return nil instead of a package

name if applied to a deleted package object. See delete-package.

[Function]package-nicknames package

The argument must be a package. This function returns the list of nickname strings

for that package, not including the primary name.

X3J13 voted in January 1989 〈127〉 to allow package-nicknames to accept a package

name or nickname, in which case the nicknames of the package so specified are

returned (see section 11.2).

[Function]rename-package package new-name &optional new-nicknames

The old name and all of the old nicknames of package are eliminated and are replaced

by newname and newnicknames. The newname argument is a string or symbol;

the newnicknames argument, which defaults to nil, is a list of strings or symbols.

X3J13 voted in January 1989 〈127〉 to clarify that the package argument may be

either a package object or a package name (see section 11.2).

X3J13 voted in January 1989 〈156〉 to specify that rename-package returns package.

[Function]package-use-list package

A list of other packages used by the argument package is returned.

X3J13 voted in January 1989 〈127〉 to clarify that the package argument may be

either a package object or a package name (see section 11.2).

[Function]package-used-by-list package

A list of other packages that use the argument package is returned.

X3J13 voted in January 1989 〈127〉 to clarify that the package argument may be

either a package object or a package name (see section 11.2).

264 COMMON LISP

[Function]package-shadowing-symbols package

A list is returned of symbols that have been declared as shadowing symbols in this

package by shadow or shadowing-import. All symbols on this list are present in the

specified package.

X3J13 voted in January 1989 〈127〉 to clarify that the package argument may be

either a package object or a package name (see section 11.2).

[Function]list-all-packages

This function returns a list of all packages that currently exist in the Lisp system.

[Function]delete-package package

X3J13 voted in January 1989 〈126〉 to add the delete-package function, which deletes

the specified package from all package system data structures. The package argument

may be either a package or the name of a package.

If package is a name but there is currently no package of that name, a correctable

error is signaled. Continuing from the error makes no deletion attempt but merely

returns nil from the call to delete-package.

If package is a package object that has already been deleted, no error is signaled

and no deletion is attempted; instead, delete-package immediately returns nil.

If the package specified for deletion is currently used by other packages, a cor

rectable error is signaled. Continuing from this error, the effect of the function

unuse-package is performed on all such other packages so as to remove their depen

dency on the specified package, after which delete-package proceeds to delete the

specified package as if no other package had been using it.

If any symbol had the specified package as its home package before the call to

delete-package, then its home package is unspecified (that is, the contents of its

package cell are unspecified) after the delete-package operation has been completed.

Symbols in the deleted package are not modified in any other way.

The name and nicknames of the package cease to be recognized package names.

The package object is still a package, but anonymous; packagep will be true of it, but

package-name applied to it will return nil.

The effect of any other package operation on a deleted package object is undefined.

In particular, an attempt to locate a symbol within a deleted package (using intern or

find-symbol, for example) will have unspecified results.

delete-package returns t if the deletion succeeds, and nil otherwise.

PACKAGES 265

[Function]intern string &optional package

The package, which defaults to the current package, is searched for a symbol with the

name specified by the string argument. This search will include inherited symbols, as

described in section 11.4. If a symbol with the specified name is found, it is returned.

If no such symbol is found, one is created and is installed in the specified package as

an internal symbol (as an external symbol if the package is the keyword package); the

specified package becomes the home package of the created symbol.

X3J13 voted in March 1989 〈11〉 to specify that intern may in effect per

form the search using a copy of the argument string in which some or all of the

implementationdefined attributes have been removed from the characters of the

string. It is implementationdependent which attributes are removed.

Two values are returned. The first is the symbol that was found or created. The

second value is nil if no preexisting symbol was found, and takes on one of three

values if a symbol was found:

:internal The symbol was directly present in the package as an internal

symbol.

:external The symbol was directly present as an external symbol.

:inherited The symbol was inherited via use-package (which implies that the

symbol is internal).

X3J13 voted in January 1989 〈127〉 to clarify that the package argument may be

either a package object or a package name (see section 11.2).

Compatibility note: Conceptually, intern translates a string to a symbol. In MacLisp and

several other dialects of Lisp, intern can take either a string or a symbol as its argument; in the

latter case, the symbol’s print name is extracted and used as the string. However, this leads to

some confusing issues about what to do if intern finds a symbol that is not eq to the argument

symbol. To avoid such confusion, Common Lisp requires the argument to be a string.

[Function]find-symbol string &optional package

This is identical to intern, but it never creates a new symbol. If a symbol with

the specified name is found in the specified package, directly or by inheritance, the

symbol found is returned as the first value and the second value is as specified for

intern. If the symbol is not accessible in the specified package, both values are nil.

X3J13 voted in January 1989 〈127〉 to clarify that the package argument may be

either a package object or a package name (see section 11.2).

266 COMMON LISP

[Function]unintern symbol &optional package

If the specified symbol is present in the specified package, it is removed from that

package and also from the package’s shadowingsymbols list if it is present there.

Moreover, if the package is the home package for the symbol, the symbol is made to

have no home package. Note that in some circumstances the symbol may continue to

be accessible in the specified package by inheritance. unintern returns t if it actually

removed a symbol, and nil otherwise.

unintern should be used with caution. It changes the state of the package system

in such a way that the consistency rules do not hold across the change.

X3J13 voted in January 1989 〈127〉 to clarify that the package argument may be

either a package object or a package name (see section 11.2).

Compatibility note: The equivalent of this in MacLisp is remob.

[Function]export symbols &optional package

The symbols argument should be a list of symbols, or possibly a single symbol. These

symbols become accessible as external symbols in package (see section 11.4). export

returns t.

By convention, a call to export listing all exported symbols is placed near the start

of a file to advertise which of the symbols mentioned in the file are intended to be

used by other programs.

X3J13 voted in January 1989 〈127〉 to clarify that the package argument may be

either a package object or a package name (see section 11.2).

[Function]unexport symbols &optional package

The argument should be a list of symbols, or possibly a single symbol. These symbols

become internal symbols in package. It is an error to unexport a symbol from the

keyword package (see section 11.4). unexport returns t.

X3J13 voted in January 1989 〈127〉 to clarify that the package argument may be

either a package object or a package name (see section 11.2).

[Function]import symbols &optional package

The argument should be a list of symbols, or possibly a single symbol. These symbols

become internal symbols in package and can therefore be referred to without having

to use qualifiedname (colon) syntax. import signals a correctable error if any of the

imported symbols has the same name as some distinct symbol already accessible in

the package (see section 11.4). import returns t.

PACKAGES 267

X3J13 voted in June 1987 〈102〉 to clarify that if any symbol to be imported has

no home package then import sets the home package of the symbol to the package to

which the symbol is being imported.

X3J13 voted in January 1989 〈127〉 to clarify that the package argument may be

either a package object or a package name (see section 11.2).

[Function]shadowing-import symbols &optional package

This is like import, but it does not signal an error even if the importation of a

symbol would shadow some symbol already accessible in the package. In addition

to being imported, the symbol is placed on the shadowingsymbols list of package

(see section 11.5). shadowing-import returns t.

shadowing-import should be used with caution. It changes the state of the package

system in such a way that the consistency rules do not hold across the change.

X3J13 voted in January 1989 〈127〉 to clarify that the package argument may be

either a package object or a package name (see section 11.2).

[Function]shadow symbols &optional package

The argument should be a list of symbols, or possibly a single symbol. The print

name of each symbol is extracted, and the specified package is searched for a symbol

of that name. If such a symbol is present in this package (directly, not by inheritance),

then nothing is done. Otherwise, a new symbol is created with this print name, and

it is inserted in the package as an internal symbol. The symbol is also placed on the

shadowingsymbols list of the package (see section 11.5). shadow returns t.

X3J13 voted in March 1988 〈161〉 to change shadow to accept strings as well as

well as symbols (a string in the symbols list being treated as a print name), and

to clarify that if a symbol of specified name is already in the package but is not

yet on the shadowingsymbols list for that package, then shadow does add it to the

shadowingsymbols list rather than simply doing nothing.

shadow should be used with caution. It changes the state of the package system in

such a way that the consistency rules do not hold across the change.

X3J13 voted in January 1989 〈127〉 to clarify that the package argument may be

either a package object or a package name (see section 11.2).

[Function]use-package packages-to-use &optional package

The packagestouse argument should be a list of packages or package names, or

possibly a single package or package name. These packages are added to the uselist

of package if they are not there already. All external symbols in the packages to use

268 COMMON LISP

become accessible in package as internal symbols (see section 11.4). It is an error to

try to use the keyword package. use-package returns t.

X3J13 voted in January 1989 〈127〉 to clarify that the package argument may be

either a package object or a package name (see section 11.2).

[Function]unuse-package packages-to-unuse &optional package

The packagestounuse argument should be a list of packages or package names, or

possibly a single package or package name. These packages are removed from the

uselist of package. unuse-package returns t.

X3J13 voted in January 1989 〈127〉 to clarify that the package argument may be

either a package object or a package name (see section 11.2).

X3J13 voted in January 1989 〈52〉 to add a macro defpackage to the language to

make it easier to create new packages, alleviating the burden on the programmer to

perform the various setup operations in exactly the correct sequence.

[Macro]defpackage definedpackagename {option}∗

This creates a new package, or modifies an existing one, whose name is defined

packagename. The definedpackagename may be a string or a symbol; if it is

a symbol, only its print name matters, and not what package, if any, the symbol

happens to be in. The newly created or modified package is returned as the value of

the defpackage form.

Each standard option is a list of a keyword (the name of the option) and associated

arguments. No part of a defpackage form is evaluated. Except for the :size option,

more than one option of the same kind may occur within the same defpackage form.

The standard options for defpackage are as follows. In every case, any option

argument called packagename or symbolname may be a string or a symbol; if it

is a symbol, only its print name matters, and not what package, if any, the symbol

happens to be in.

(:size integer)

This specifies approximately the number of symbols expected to be in the package.

This is purely an efficiency hint to the storage allocator, so that implementations using

hash tables as part of the package data structure (the usual technique) will not have

to incrementally expand the package as new symbols are added to it (for example, as

a large file is read while “in” that package).

(:nicknames {packagename}∗)
The specified names become nicknames of the package being defined. If any of

PACKAGES 269

the specified nicknames already refers to an existing package, a continuable error is

signaled exactly as for the function make-package.

(:shadow {symbolname}∗)
Symbols with the specified names are created as shadows in the package being

defined, just as with the function shadow.

(:shadowing-import-from packagename {symbolname}∗)
Symbols with the specified names are located in the specified package. These symbols

are imported into the package being defined, shadowing other symbols if necessary,

just as with the function shadowing-import. In no case will symbols be created in

a package other than the one being defined; a continuable error is signaled if for

any symbolname there is no symbol of that name accessible in the package named

packagename.

(:use {packagename}∗)
The package being defined is made to “use” (inherit from) the packages specified by

this option, just as with the function use-package. If no :use option is supplied, then

a default list is assumed as for make-package.

X3J13 voted in January 1989 〈119〉 to change the specification of make-package

so that the default value for the :use argument is unspecified. This change affects

defpackage as well. Portable code should specify (:use ´("COMMON-LISP")) explicitly.

(:import-from packagename {symbolname}∗)
Symbols with the specified names are located in the specified package. These symbols

are imported into the package being defined, just as with the function import. In no

case will symbols be created in a package other than the one being defined; a

continuable error is signaled if for any symbolname there is no symbol of that name

accessible in the package named packagename.

(:intern {symbolname}∗)
Symbols with the specified names are located or created in the package being defined,

just as with the function intern. Note that the action of this option may be affected

by a :use option, because an inherited symbol will be used in preference to creating

a new one.

(:export {symbolname}∗)
Symbols with the specified names are located or created in the package being defined

and then exported, just as with the function export. Note that the action of this option

270 COMMON LISP

may be affected by a :use, :import-from, or :shadowing-import-from option, because

an inherited or imported symbol will be used in preference to creating a new one.

The order in which options appear in a defpackage form does not matter; part of

the convenience of defpackage is that it sorts out the options into the correct order for

processing. Options are processed in the following order:

1. :shadow and :shadowing-import-from

2. :use

3. :import-from and :intern

4. :export

Shadows are established first in order to avoid spurious name conflicts when use links

are established. Use links must occur before importing and interning so that those

operations may refer to normally inherited symbols rather than creating new ones.

Exports are performed last so that symbols created by any of the other options, in

particular, shadows and imported symbols, may be exported. Note that exporting an

inherited symbol implicitly imports it first (see section 11.4).

If no package named definedpackagename already exists, defpackage creates

it. If such a package does already exist, then no new package is created. The

existing package is modified, if possible, to reflect the new definition. The results are

undefined if the new definition is not consistent with the current state of the package.

An error is signaled if more than one :size option appears.

An error is signaled if the same symbol-name argument (in the sense of comparing

names with string−−) appears more than once among the arguments to all the :shadow,

:shadowing-import-from, :import-from, and :intern options.

An error is signaled if the same symbol-name argument (in the sense of comparing

names with string−−) appears more than once among the arguments to all the :intern

and :export options.

Other kinds of name conflicts are handled in the same manner that the underlying

operations use-package, import, and export would handle them.

Implementations may support other defpackage options. Every implementation

should signal an error on encountering a defpackage option it does not support.

The function compile-file should treat toplevel defpackage forms in the same

way it would treat toplevel calls to packageaffecting functions (as described at the

beginning of section 11.7).

Here is an example of a call to defpackage that “plays it safe” by using only strings

as names.

PACKAGES 271

(cl:defpackage "MY-VERY-OWN-PACKAGE"

(:size 496)

(:nicknames "MY-PKG" "MYPKG" "MVOP")

(:use "COMMON-LISP")

(:shadow "CAR" "CDR")

(:shadowing-import-from "BRAND-X-LISP" "CONS")

(:import-from "BRAND-X-LISP" "GC" "BLINK-FRONT-PANEL-LIGHTS")

(:export "EQ" "CONS" "MY-VERY-OWN-FUNCTION"))

The preceding defpackage example is designed to operate correctly even if the package

current when the form is read happens not to “use” the common-lisp package. (Note

the use in this example of the nickname cl for the common-lisp package.) Moreover,

neither reading in nor evaluating this defpackage form will ever create any symbols

in the current package. Note too the use of uppercase letters in the strings.

Here, for the sake of contrast, is a rather similar use of defpackage that “plays the

whale” by using all sorts of permissible syntax.

(defpackage my-very-own-package

(:export :EQ common-lisp:cons my-very-own-function)

(:nicknames "MY-PKG" #--:MyPkg)

(:use "COMMON-LISP")

(:shadow "CAR")

(:size 496)

(:nicknames mvop)

(:import-from "BRAND-X-LISP" "GC" Blink-Front-Panel-Lights)

(:shadow common-lisp::cdr)

(:shadowing-import-from "BRAND-X-LISP" CONS))

This example has exactly the same effect on the newly created package but may create

useless symbols in other packages. The use of explicit package tags is particularly

confusing; for example, this defpackage form will cause the symbol cdrto be shadowed

in the new package; it will not be shadowed in the package common-lisp. The fact

that the name “CDR” was specified by a packagequalified reference to a symbol in

the common-lisp package is a red herring. The moral is that the syntactic flexibility

of defpackage, as in other parts of Common Lisp, yields considerable convenience

when used with commonsense competence, but unutterable confusion when used

with Malthusian profusion.

Implementation note: An implementation of defpackage might choose to transform all the

packagename and symbolname arguments into strings at macro expansion time, rather than

at the time the resulting expansion is executed, so that even if source code is expressed in terms

272 COMMON LISP

of strange symbols in the defpackage form, the binary file resulting from compiling the source

code would contain only strings. The purpose of this is simply to minimize the creation of

useless symbols in production code. This technique is permitted as an implementation strategy

but is not a behavior required by the specification of defpackage.

Note that defpackage is not capable by itself of defining mutually recursive pack

ages, for example two packages each of which uses the other. However, nothing

prevents one from using defpackage to perform much of the initial setup and then

using functions such as use-package, import, and export to complete the links.

The purpose of defpackage is to encourage the user to put the entire definition

of a package and its relationships to other packages in a single place. It may also

encourage the designer of a large system to place the definitions of all relevant

packages into a single file (say) that can be loaded before loading or compiling any

code that depends on those packages. Such a file, if carefully constructed, can simply

be loaded into the common-lisp-user package.

Implementations and programming environments may also be better able to support

the programming process (if only by providing better error checking) through global

knowledge of the intended package setup.

[Function]find-all-symbols string-or-symbol

find-all-symbols searches every package in the Lisp system to find every symbol

whose print name is the specified string. A list of all such symbols found is returned.

This search is casesensitive. If the argument is a symbol, its print name supplies the

string to be searched for.

[Macro]do-symbols (var [package [resultform]])

{declaration}∗ {tag | statement}∗

do-symbols provides straightforward iteration over the symbols of a package. The

body is performed once for each symbol accessible in the package, in no particular

order, with the variable var bound to the symbol. Then resultform (a single form,

not an implicit progn) is evaluated, and the result is the value of the do-symbols form.

(When the resultform is evaluated, the control variable var is still bound and has

the value nil.) If the resultform is omitted, the result is nil. return may be used to

terminate the iteration prematurely. If execution of the body affects which symbols

are contained in the package, other than possibly to remove the symbol currently the

value of var by using unintern, the effects are unpredictable.

X3J13 voted in January 1989 〈127〉 to clarify that the package argument may be

either a package object or a package name (see section 11.2).

PACKAGES 273

X3J13 voted in March 1988 〈66〉 to specify that the body of a do-symbols form

may be executed more than once for the same accessible symbol, and users should

take care to allow for this possibility.

The point is that the same symbol might be accessible via more than one chain of

inheritance, and it is implementationally costly to eliminate such duplicates. Here is

an example:

(setq *a* (make-package ´a)) ;Implicitly uses package common-lisp

(setq *b* (make-package ´b)) ;Implicitly uses package common-lisp

(setq *c* (make-package ´c :use ´(a b)))

(do-symbols (x *c*) (print x)) ;Symbols in package common-lisp

; might be printed once or twice here

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

Note that the loop construct provides a kind of for clause that can iterate over the

symbols of a package (see chapter 26).

[Macro]do-external-symbols (var [package [result]])

{declaration}∗ {tag | statement}∗

do-external-symbols is just like do-symbols, except that only the external symbols of

the specified package are scanned.

The clarification voted by X3J13 in March 1988 for do-symbols 〈66〉, regarding

redundant executions of the body for the same symbol, applies also to do-external-

symbols.

X3J13 voted in January 1989 〈127〉 to clarify that the package argument may be

either a package object or a package name (see section 11.2).

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

[Macro]do-all-symbols (var [resultform])

{declaration}∗ {tag | statement}∗

This is similar to do-symbols but executes the body once for every symbol contained

in every package. (This will not process every symbol whatsoever, because a symbol

not accessible in any package will not be processed. Normally, uninterned symbols

are not accessible in any package.) It is not in general the case that each symbol is

processed only once, because a symbol may appear in many packages.

The clarification voted by X3J13 in March 1988 for do-symbols 〈66〉, regarding

redundant executions of the body for the same symbol, applies also to do-all-symbols.

274 COMMON LISP

X3J13 voted in January 1989 〈127〉 to clarify that the package argument may be

either a package object or a package name (see section 11.2).

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

X3J13 voted in January 1989 〈98〉 to add a new macro with-package-iterator to

the language.

[Macro]with-package-iterator (mname packagelist {symboltype}+)

{ form}∗

The name mname is bound and defined as if by macrolet, with the body forms as its

lexical scope, to be a “generator macro” such that each invocation of (mname) will

return a symbol and that successive invocations will eventually deliver, one by one,

all the symbols from the packages that are elements of the list that is the value of the

expression packagelist (which is evaluated exactly once).

Each element of the packagelist value may be either a package or the name of a

package. As a further convenience, if the packagelist value is itself a package or

the name of a package, it is treated as if a singleton list containing that value had

been provided. If the packagelist value is nil, it is considered to be an empty list of

packages.

At each invocation of the generator macro, there are two possibilities. If there is yet

another unprocessed symbol, then four values are returned: t, the symbol, a keyword

indicating the accessibility of the symbol within the package (see below), and the

package from which the symbol was accessed. If there are no more unprocessed

symbols in the list of packages, then one value is returned: nil.

When the generator macro returns a symbol as its second value, the fourth value is

always one of the packages present or named in the packagelist value, and the third

value is a keyword indicating accessibility: :internal means present in the package

and not exported; :external means present and exported; and :inherited means not

present (thus not shadowed) but inherited from some package used by the package

that is the fourth value.

Each symboltype in an invocation of with-package-iterator is not evaluated. More

than one may be present; their order does not matter. They indicate the accessibility

types of interest. A symbol is not returned by the generator macro unless its actual

accessibility matches one of the symboltype indicators. The standard symboltype

indicators are :internal, :external, and :inherited, but implementations are permit

ted to extend the syntax of with-package-iterator by recognizing additional symbol

accessibility types. An error is signaled if no symboltype is supplied, or if any

supplied symboltype is not recognized by the implementation.

The order in which symbols are produced by successive invocations of the generator

macro is not necessarily correlated in any way with the order of the packages in the

PACKAGES 275

packagelist. When more than one package is in the packagelist, symbols accessible

from more than one package may be produced once or more than once. Even when

only one package is specified, symbols inherited in multiple ways via used packages

may be produced once or more than once.

The implicit interior state of the iteration over the list of packages and the symbols

within them has dynamic extent. It is an error to invoke the generator macro once

the with-package-iterator form has been exited.

Any number of invocations of with-package-iterator and related macros may be

nested, and the generator macro of an outer invocation may be called from within

an inner invocation (provided, of course, that its name is visible or otherwise made

available).

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

Rationale: This facility is a bit more flexible in some ways than do-symbols and friends. In

particular, it makes it possible to implement loop clauses for iterating over packages in a way

that is both portable and efficient (see chapter 26).

11.8. Modules

A module is a Common Lisp subsystem that is loaded from one or more files. A

module is normally loaded as a single unit, regardless of how many files are involved.

A module may consist of one package or several packages. The fileloading process is

necessarily implementationdependent, but Common Lisp provides some very simple

portable machinery for naming modules, for keeping track of which modules have

been loaded, and for loading modules as a unit.

X3J13 voted in January 1989 〈154〉 to eliminate the entire module facility from

the language; that is, the variable *modules* and the functions provide and require are

deleted. X3J13 commented that the fileloading feature of require is not portable,

and that the remaining functionality is easily implemented by user code. (I will add

that in any case the specification of require is so vague that different implementations

are likely to have differing behavior.)

[Variable]*modules*

The variable *modules* is a list of names of the modules that have been loaded into

the Lisp system so far. This list is used by the functions provide and require.

276 COMMON LISP

[Function]provide module-name

[Function]require module-name &optional pathname

Each module has a unique name (a string). The provide and require functions accept

either a string or a symbol as the modulename argument. If a symbol is provided, its

print name is used as the module name. If the module consists of a single package,

it is customary for the package and module names to be the same.

The provide function adds a new module name to the list of modules maintained

in the variable *modules*, thereby indicating that the module in question has been

loaded.

The require function tests whether a module is already present (using a case

sensitive comparison); if the module is not present, require proceeds to load the

appropriate file or set of files. The pathname argument, if present, is a single

pathname or a list of pathnames whose files are to be loaded in order, left to right. If

the pathname argument is nil or is not provided, the system will attempt to determine,

in some systemdependent manner, which files to load. This will typically involve

some central registry of module names and the associated file lists.

X3J13 voted in March 1988 not to permit symbols as pathnames 〈134〉 and to

specify exactly which streams may be used as pathnames 〈132〉 (see section 23.1.6).

Of course, this is moot if require is not in the language.

X3J13 voted in January 1989 〈156〉 to specify that the values returned by provide

and require are implementationdependent. Of course, this is moot if provide and

require are not in the language.

Implementation note: One way to implement such a registry on many operating systems is

simply to use a distinguished “library” directory within the file system, where the name of

each file is the same as the module it contains.

11.9. An Example

Most users will want to load and use packages but will never need to build one.
...

Often a user will load a number of packages into the user package whenever using

Common Lisp. Typically an implementation might provide some sort of initialization

file mechanism to make such setup automatic when the Lisp starts up. Table 111

shows such an initialization file, one that simply causes other facilities to be loaded.

X3J13 voted in March 1989 〈108〉 to specify that the forthcoming ANSI Common

Lisp will use the package name common-lisp-user instead of user.

When each of two files uses some symbols from the other, the author of those files

must be careful to arrange the contents of the file in the proper order. Typically each

PACKAGES 277

Table 111: An Initialization File

;;;; Lisp init file for I. Newton.

;;; Set up the USER package the way I like it.

(require ´calculus) ;I use CALCULUS a lot; load it.

(use-package ´calculus) ;Get easy access to its

; exported symbols.

(require ´newtonian-mechanics) ;Same thing for NEWTONIAN-MECHANICS

(use-package ´newtonian-mechanics)

;;; I just want a few things from RELATIVITY,

;;; and other things conflict.

;;; Import only what I need into the USER package.

(require ´relativity)

(import ´(relativity:speed-of-light

relativity:ignore-small-errors))

;;; These are worth loading, but I will use qualified names,

;;; such as PHLOGISTON:MAKE-FIRE-BOTTLE, to get at any symbols

;;; I might need from these packages.

(require ´phlogiston)

(require ´alchemy)

;;; End of Lisp init file for I. Newton.

file contains a single package that is a complete module. The contents of such a file

should include the following items, in order:

1. A call to provide that announces the module name.

2. A call to in-package that establishes the package.

3. A call to shadow that establishes any local symbols that will shadow symbols that

would otherwise be inherited from packages that this package will use.

4. A call to export that establishes all of this package’s external symbols.

5. Any number of calls to require to load other modules that the contents of this file

278 COMMON LISP

might want to use or refer to. (Because the calls to require follow the calls to

in-package, shadow, and export, it is possible for the packages that may be loaded

to refer to external symbols in this package.)

6. Any number of calls to use-package, to make external symbols from other packages

accessible in this package.

7. Any number of calls to import, to make symbols from other packages present in

this package.

8. Finally, the definitions making up the contents of this package/module.

The following mnemonic sentence may be helpful in remembering the proper order

of these calls:

Put in seven extremely random user interface commands.

Each word of the sentence corresponds to one item in the above ordering:

Put Provide

IN IN-package

Seven Shadow

EXtremely EXport

Random Require

USEr USE-package

Interface Import

COmmands COntents of package/module

The sentence says what it helps you to do.

The most distressing aspect of the X3J13 vote to eliminate provide and require

〈154〉 is of course that it completely ruins the mnemonic sentence.

Now, suppose for the sake of example that the phlogiston and alchemy packages

are singlefile, singlepackage modules as described above. The phlogiston package

needs to use the alchemy package, and the alchemy package needs to use several

external symbols from the phlogiston package. The definitions in the alchemy and

phlogiston files (see tables 112 and 113) allow a user to specify require statements

for either of these modules, or for both of them in either order, and all relevant

information will be loaded automatically and in the correct order.

For very large modules whose contents are spread over several files (the lisp
..

package is an example), it is recommended that the user create the package and

declare all of the shadows and external symbols in a separate file, so that this can be

loaded before anything that might use symbols from this package.

PACKAGES 279

Table 112: File alchemy

;;;; Alchemy functions, written and maintained by Merlin, Inc.

(provide ´alchemy) ;The module is named ALCHEMY.

(in-package ´alchemy) ;So is the package.

;;; There is nothing to shadow.

;;; Here is the external interface.

(export ´(lead-to-gold gold-to-lead

antimony-to-zinc elixir-of-life))

;;; This package/module needs a function from

;;; the PHLOGISTON package/module.

(require ´phlogiston)

;;; We don´t frequently need most of the external symbols from

;;; PHLOGISTON, so it´s not worth doing a USE-PACKAGE on it.

;;; We´ll just use qualified names as needed. But we use

;;; one function, MAKE-FIRE-BOTTLE, a lot, so import it.

;;; It´s external in PHLOGISTON and so can be referred to

;;; here using ":" qualified-name syntax.

(import ´(phlogiston:make-fire-bottle))

;;; Now for the real contents of this file.

(defun lead-to-gold (x)

"Takes a quantity of lead and returns gold."

(when (> (phlogiston:heat-flow 5 x x) ;Using a qualified symbol

3)

(make-fire-bottle x)) ;Using an imported symbol

(gild x))

;;; And so on ...

280 COMMON LISP

Table 113: File phlogiston

;;;; Phlogiston functions, by Thermofluidics, Ltd.

(provide ´phlogiston) ;The module is named PHLOGISTON.

(in-package ´phlogiston) ;So is the package.

;;; There is nothing to shadow.

;;; Here is the external interface.

(export ´(heat-flow cold-flow mix-fluids separate-fluids

burn make-fire-bottle))

;;; This file uses functions from the ALCHEMY package/module.

(require ´alchemy)

;;; We use alchemy functions a lot, so use the package.

;;; This will allow symbols exported from the ALCHEMY package

;;; to be referred to here without the need for qualified names.

(use-package ´alchemy)

;;; No calls to IMPORT are needed here.

;;; The real contents of this package/module.

(defvar *feeling-weak* nil)

(defun heat-flow (amount x y)

"Make some amount of heat flow from x to y."

(when *feeling-weak*

(quaff (elixir-of-life))) ;No qualifier is needed.

(push-heat amount x y))

;;; And so on ...

PACKAGES 281

Table 114: An Initialization File When defpackage Is Used

;;;; Lisp init file for I. Newton.

;;; Set up the USER package the way I like it.

(load "calculus") ;I use CALCULUS a lot; load it.

(use-package ´calculus) ;Get easy access to its

; exported symbols.

(load "newtonian-mechanics") ;Ditto for NEWTONIAN-MECHANICS

(use-package ´newtonian-mechanics)

;;; I just want a few things from RELATIVITY,

;;; and other things conflict.

;;; Import only what I need into the USER package.

(load "relativity")

(import ´(relativity:speed-of-light

relativity:ignore-small-errors))

;;; These are worth loading, but I will use qualified names,

;;; such as PHLOGISTON:MAKE-FIRE-BOTTLE, to get at any symbols

;;; I might need from these packages.

(load "phlogiston")

(load "alchemy")

;;; End of Lisp init file for I. Newton.

Indeed, the defpackage macro approved by X3J13 in January 1989 〈52〉 encourages

the use of such a separate file. (By the way, X3J13 voted in March 1989 〈108〉 to

specify that the forthcoming ANSI Common Lisp will use the package name common-

lisp instead of lisp.) Let’s take a look at a revision of I. Newton’s files using

defpackage.

The new version of the initialization file avoids using require; instead, we assume

that load will do the job (see table 114).

The other files have each been split into two parts, one that establishes the package

and one that defines the contents. This example uses a simple convention that for any

file named, say, “foo” the file named “foo-package” contains the necessary defpackage

282 COMMON LISP

and/or other packageestablishing code. The idiom

(unless (find-package "FOO")

(load "foo-package"))

is conventionally used to load a package definition but only if the package has not

already been defined. (This is a bit clumsy, and there are other ways to arrange things

so that a package is defined no more than once.)

The file alchemy-package is shown in table 115. The tricky point here is that the

alchemy and phlogiston packages contain mutual references (each imports from the

other), and so defpackage alone cannot do the job. Therefore the phlogiston package is

not mentioned in a :use option in the defpackage for the alchemy package. Instead, the

function use-package is called explicitly, after the package definition for phlogiston

has been loaded. Note that this file has been coded with excruciating care so as to

operate correctly even if the package current when the file is loaded does not inherit

from the common-lisp package. In particular, the standard loadpackagedefinition

idiom has been peppered with package qualifiers:

(cl:unless (cl:find-package "PHLOGISTON")

(cl:load "phlogiston-package"))

Note the use of the nickname cl for the common-lisp package.

The alchemy file, shown in table 116, simply loads the alchemy package definition,

makes that package current, and then defines the “real contents” of the package.

The file phlogiston-package is shown in table 117. This one is a little more straight

forward than the file alchemy-package, because the latter bears the responsibility for

breaking the circular package references. This file simply makes sure that the alchemy

package is defined and then performs a defpackage for the phlogiston package.

The phlogiston file, shown in table 118, simply loads the phlogiston package

definition, makes that package current, and then defines the “real contents” of the

package.

Let’s look at the question of package circularity in this example a little more closely.

Suppose that the file alchemy-package is loaded first. It defines the alchemy package

and then loads file phlogiston-package. That file in turn finds that the package alchemy

has already been defined and therefore does not attempt to load file alchemy-package

again; it merely defines package phlogiston. The file alchemy-package then has a

chance to import phlogiston:make-fire-bottle and everything is fine.

On the other hand, suppose that the file phlogiston-package is loaded first. It finds

that the package alchemy has not already been defined, and therefore it immediately

loads file alchemy-package. That file in turn defines the alchemy package; then it

finds that package phlogiston is not yet defined and so loads file phlogiston-package

PACKAGES 283

again (indeed, in nested fashion). This time file phlogiston-package does find that the

package alchemy has already been defined, so it simply defines package phlogiston and

terminates. The file alchemy-package then imports phlogiston:make-fire-bottle and

terminates. Finally, the outer loading of file phlogiston-package redefines package

phlogiston. Oh, dear. Fortunately the two definitions of package phlogiston agree in

every detail, so everything ought to be all right. Still, it looks a bit dicey; I certainly

don’t have the same warm, fuzzy feeling that I would if no package were defined

more than once.

284 COMMON LISP

Table 115: File alchemy-package Using defpackage

;;;; Alchemy package, written and maintained by Merlin, Inc.

(cl:defpackage "ALCHEMY"

(:export "LEAD-TO-GOLD" "GOLD-TO-LEAD"

"ANTIMONY-TO-ZINC" "ELIXIR-OF-LIFE")

)

;;; This package needs a function from the PHLOGISTON package.

;;; Load the definition of the PHLOGISTON package if necessary.

(cl:unless (cl:find-package "PHLOGISTON")

(cl:load "phlogiston-package"))

;;; We don´t frequently need most of the external symbols from

;;; PHLOGISTON, so it´s not worth doing a USE-PACKAGE on it.

;;; We´ll just use qualified names as needed. But we use

;;; one function, MAKE-FIRE-BOTTLE, a lot, so import it.

;;; It´s external in PHLOGISTON and so can be referred to

;;; here using ":" qualified-name syntax.

(cl:import ´(phlogiston:make-fire-bottle))

Table 116: File alchemy Using defpackage

;;;; Alchemy functions, written and maintained by Merlin, Inc.

(unless (find-package "ALCHEMY")

(load "alchemy-package"))

(in-package ´alchemy)

(defun lead-to-gold (x)

"Takes a quantity of lead and returns gold."

(when (> (phlogiston:heat-flow 5 x x) ;Using a qualified symbol

3)

(make-fire-bottle x)) ;Using an imported symbol

(gild x))

;;; And so on ...

PACKAGES 285

Table 117: File phlogiston-package Using defpackage

;;;; Phlogiston package definition, by Thermofluidics, Ltd.

;;; This package uses functions from the ALCHEMY package.

(cl:unless (cl:find-package "ALCHEMY")

(cl:load "alchemy-package"))

(cl:defpackage "PHLOGISTON"

(:use "COMMON-LISP" "ALCHEMY")

(:export "HEAT-FLOW"

"COLD-FLOW"

"MIX-FLUIDS"

"SEPARATE-FLUIDS"

"BURN"

"MAKE-FIRE-BOTTLE")

)

Table 118: File phlogiston Using defpackage

;;;; Phlogiston functions, by Thermofluidics, Ltd.

(unless (find-package "PHLOGISTON")

(load "phlogiston-package"))

(in-package ´phlogiston)

(defvar *feeling-weak* nil)

(defun heat-flow (amount x y)

"Make some amount of heat flow from x to y."

(when *feeling-weak*

(quaff (elixir-of-life))) ;No qualifier is needed.

(push-heat amount x y))

;;; And so on ...

286 COMMON LISP

Conclusion: defpackage goes a long way, but it certainly doesn’t solve all the

possible problems of package and file management. Neither did require and provide.

Perhaps further experimentation will yield facilities appropriate for future standard

ization.

12

Numbers

Common Lisp provides several different representations for numbers. These rep

resentations may be divided into four categories: integers, ratios, floatingpoint

numbers, and complex numbers. Many numeric functions will accept any kind of

number; they are generic. Other functions accept only certain kinds of numbers.

Note that this remark, predating the design of the Common Lisp Object System,

uses the term “generic” in a generic sense and not necessarily in the technical sense

used by CLOS (see chapter 2).

In general, numbers in Common Lisp are not true objects; eq cannot be counted

upon to operate on them reliably. In particular, it is possible that the expression

(let ((x z) (y z)) (eq x y))

may be false rather than true if the value of z is a number.

Rationale: This odd breakdown of eq in the case of numbers allows the implementor enough

design freedom to produce exceptionally efficient numerical code on conventional architec

tures. MacLisp requires this freedom, for example, in order to produce compiled numerical

code equal in speed to Fortran. Common Lisp makes this same restriction, if not for this

freedom, then at least for the sake of compatibility.

If two objects are to be compared for “identity,” but either might be a number, then

the predicate eql is probably appropriate; if both objects are known to be numbers,

then −− may be preferable.

12.1. Precision, Contagion, and Coercion

In general, computations with floatingpoint numbers are only approximate. The

precision of a floatingpoint number is not necessarily correlated at all with the

accuracy of that number. For instance, 3.142857142857142857 is a more precise

287

288 COMMON LISP

approximation to π than 3.14159, but the latter is more accurate. The precision refers

to the number of bits retained in the representation. When an operation combines a

short floatingpoint number with a long one, the result will be a long floatingpoint

number. This rule is made to ensure that as much accuracy as possible is preserved;

however, it is by no means a guarantee. Common Lisp numerical routines do assume,

however, that the accuracy of an argument does not exceed its precision. Therefore

when two small floatingpoint numbers are combined, the result will always be a

small floatingpoint number. This assumption can be overridden by first explicitly

converting a small floatingpoint number to a larger representation. (Common Lisp

never converts automatically from a larger size to a smaller one.)

Rational computations cannot overflow in the usual sense (though of course there

may not be enough storage to represent one), as integers and ratios may in principle

be of any magnitude. Floatingpoint computations may get exponent overflow or

underflow; this is an error.

X3J13 voted in June 1989 〈79〉 to address certain problems relating to floatingpoint

overflow and underflow, but certain parts of the proposed solution were not adopted,

namely to add the macro without-floating-underflow-traps to the language and to

require certain behavior of floatingpoint overflow and underflow. The committee

agreed that this area of the language requires more discussion before a solution is

standardized.

For the record, the proposal that was considered and rejected (for the nonce)

introduced a macro without-floating-underflow-traps that would execute its body

in such a way that, within its dynamic extent, a floatingpoint underflow must not

signal an error but instead must produce either a denormalized number or zero as the

result. The rejected proposal also specified the following treatment of overflow and

underflow:

. A floatingpoint computation that overflows should signal an error of type floating-

point-overflow.

. Unless the dynamic extent of a use of without-floating-underflow-traps, a floating

point computation that underflows should signal an error of type floating-point-

underflow. A result that can be represented only in denormalized form must be

considered an underflow in implementations that support denormalized floating

point numbers.

These points refer to conditions floating-point-overflow and floating-point-

underflow that were approved by X3J13 and are described in section 29.5.

When rational and floatingpoint numbers are compared or combined by a numer

ical function, the rule of floatingpoint contagion is followed: when a rational meets

a floatingpoint number, the rational is first converted to a floatingpoint number of

NUMBERS 289

the same format. For functions such as + that take more than two arguments, it may

be that part of the operation is carried out exactly using rationals and then the rest is

done using floatingpoint arithmetic.

X3J13 voted in January 1989 〈37〉 to apply the rule of floatingpoint contagion

stated above to the case of combining rational and floatingpoint numbers. For

comparing, the following rule is to be used instead: When a rational number and

a floatingpoint number are to be compared by a numerical function, in effect the

floatingpoint number is first converted to a rational number as if by the function

rational, and then an exact comparison of two rational numbers is performed. It is of

course valid to use a more efficient implementation than actually calling the function

rational, as long as the result of the comparison is the same. In the case of complex

numbers, the real and imaginary parts are handled separately.

Rationale: In general, accuracy cannot be preserved in combining operations, but it can be

preserved in comparisons, and preserving it makes that part of Common Lisp algebraically

a bit more tractable. In particular, this change prevents the breakdown of transitivity. Let a

be the result of (/ 10.0 single-float-epsilon), and let j be the result of (floor a). (Note that

(−− a (+ a 1.0)) is true, by the definition of single-float-epsilon.) Under the old rules, all of

(<−− a j), (< j (+ j 1)), and (<−− (+ j 1) a) would be true; transitivity would then imply that

(< a a) ought to be true, but of course it is false, and therefore transitivity fails. Under the new

rule, however, (<−− (+ j 1) a) is false.

For functions that are mathematically associative (and possibly commutative), a

Common Lisp implementation may process the arguments in any manner consistent

with associative (and possibly commutative) rearrangement. This does not affect the

order in which the argument forms are evaluated, of course; that order is always left

to right, as in all Common Lisp function calls. What is left loose is the order in which

the argument values are processed. The point of all this is that implementations

may differ in which automatic coercions are applied because of differing orders of

argument processing. As an example, consider this expression:

(+ 1/3 2/3 1.0D0 1.0 1.0E-15)

One implementation might process the arguments from left to right, first adding 1/3

and 2/3 to get 1, then converting that to a doubleprecision floatingpoint number

for combination with 1.0D0, then successively converting and adding 1.0 and 1.0E-

15. Another implementation might process the arguments from right to left, first

performing a singleprecision floatingpoint addition of 1.0 and 1.0E-15 (and probably

losing some accuracy in the process!), then converting the sum to double precision

and adding 1.0D0, then converting 2/3 to doubleprecision floatingpoint and adding

it, and then converting 1/3 and adding that. A third implementation might first scan all

290 COMMON LISP

the arguments, process all the rationals first to keep that part of the computation exact,

then find an argument of the largest floatingpoint format among all the arguments

and add that, and then add in all other arguments, converting each in turn (all in a

perhaps misguided attempt to make the computation as accurate as possible). In any

case, all three strategies are legitimate. The user can of course control the order of

processing explicitly by writing several calls; for example:

(+ (+ 1/3 2/3) (+ 1.0D0 1.0E-15) 1.0)

The user can also control all coercions simply by writing calls to coercion functions

explicitly.

In general, then, the type of the result of a numerical function is a floatingpoint

number of the largest format among all the floatingpoint arguments to the function;

but if the arguments are all rational, then the result is rational (except for functions

that can produce mathematically irrational results, in which case a singleformat

floatingpoint number may result).

There is a separate rule of complex contagion. As a rule, complex numbers never

result from a numerical function unless one or more of the arguments is complex.

(Exceptions to this rule occur among the irrational and transcendental functions,

specifically expt, log, sqrt, asin, acos, acosh, and atanh; see section 12.5.) When a

noncomplex number meets a complex number, the noncomplex number is in effect

first converted to a complex number by providing an imaginary part of zero.

If any computation produces a result that is a ratio of two integers such that the

denominator evenly divides the numerator, then the result is immediately converted

to the equivalent integer. This is called the rule of rational canonicalization.

If the result of any computation would be a complex rational with a zero imaginary

part, the result is immediately converted to a noncomplex rational number by taking

the real part. This is called the rule of complex canonicalization. Note that this rule

does not apply to complex numbers whose components are floatingpoint numbers.

Whereas #--C(5 0) and 5 are not distinct values in Common Lisp (they are always eql),

#--C(5.0 0.0) and 5.0 are always distinct values in Common Lisp (they are never eql,

although they are equalp).

12.2. Predicates on Numbers

Each of the following functions tests a single number for a specific property. Each

function requires that its argument be a number; to call one with a nonnumber is an

error.

NUMBERS 291

[Function]zerop number

This predicate is true if number is zero (the integer zero, a floatingpoint zero, or

a complex zero), and is false otherwise. Regardless of whether an implementation

provides distinct representations for positive and negative floatingpoint zeros, (zerop

-0.0) is always true. It is an error if the argument number is not a number.

[Function]plusp number

This predicate is true if number is strictly greater than zero, and is false otherwise. It

is an error if the argument number is not a noncomplex number.

[Function]minusp number

This predicate is true if number is strictly less than zero, and is false otherwise.

Regardless of whether an implementation provides distinct representations for pos

itive and negative floatingpoint zeros, (minusp -0.0) is always false. (The function

float-sign may be used to distinguish a negative zero.) It is an error if the argument

number is not a noncomplex number.

[Function]oddp integer

This predicate is true if the argument integer is odd (not divisible by 2), and otherwise

is false. It is an error if the argument is not an integer.

[Function]evenp integer

This predicate is true if the argument integer is even (divisible by 2), and otherwise

is false. It is an error if the argument is not an integer.

See also the datatype predicates integerp, rationalp, floatp, complexp, and numberp.

12.3. Comparisons on Numbers

Each of the functions in this section requires that its arguments all be numbers; to

call one with a nonnumber is an error. Unless otherwise specified, each works on all

types of numbers, automatically performing any required coercions when arguments

are of different types.

292 COMMON LISP

[Function]−− number &rest more-numbers

[Function]/−− number &rest more-numbers

[Function]< number &rest more-numbers

[Function]> number &rest more-numbers

[Function]<−− number &rest more-numbers

[Function]>−− number &rest more-numbers

These functions each take one or more arguments. If the sequence of arguments

satisfies a certain condition:

−− all the same

/−− all different

< monotonically increasing

> monotonically decreasing

<−− monotonically nondecreasing

>−− monotonically nonincreasing

then the predicate is true, and otherwise is false. Complex numbers may be compared

using −− and /−−, but the others require noncomplex arguments. Two complex numbers

are considered equal by −− if their real parts are equal and their imaginary parts are

equal according to −−. A complex number may be compared with a noncomplex

number with −− or /−−. For example:

(−− 3 3) is true. (/−− 3 3) is false.

(−− 3 5) is false. (/−− 3 5) is true.

(−− 3 3 3 3) is true. (/−− 3 3 3 3) is false.

(−− 3 3 5 3) is false. (/−− 3 3 5 3) is false.

(−− 3 6 5 2) is false. (/−− 3 6 5 2) is true.

(−− 3 2 3) is false. (/−− 3 2 3) is false.

(< 3 5) is true. (<−− 3 5) is true.

(< 3 -5) is false. (<−− 3 -5) is false.

(< 3 3) is false. (<−− 3 3) is true.

(< 0 3 4 6 7) is true. (<−− 0 3 4 6 7) is true.

(< 0 3 4 4 6) is false. (<−− 0 3 4 4 6) is true.

(> 4 3) is true. (>−− 4 3) is true.

(> 4 3 2 1 0) is true. (>−− 4 3 2 1 0) is true.

(> 4 3 3 2 0) is false. (>−− 4 3 3 2 0) is true.

(> 4 3 1 2 0) is false. (>−− 4 3 1 2 0) is false.

(−− 3) is true. (/−− 3) is true.

(< 3) is true. (<−− 3) is true.

(−− 3.0 #--C(3.0 0.0)) is true. (/−− 3.0 #--C(3.0 1.0)) is true.

(−− 3 3.0) is true. (−− 3.0s0 3.0d0) is true.

NUMBERS 293

(−− 0.0 -0.0) is true. (−− 5/2 2.5) is true.

(> 0.0 -0.0) is false. (−− 0 -0.0) is true.

With two arguments, these functions perform the usual arithmetic comparison tests.

With three or more arguments, they are useful for range checks, as shown in the

following example:

(<−− 0 x 9) ;true if x is between 0 and 9, inclusive

(< 0.0 x 1.0) ;true if x is between 0.0 and 1.0, exclusive

(< -1 j (length s)) ;true if j is a valid index for s

(<−− 0 j k (- (length s) 1)) ;true if j and k are each valid

; indices for s and j ≤ k

Rationale: The “unequality” relation is called /−− rather than <> (the name used in Pascal) for

two reasons. First, /−− of more than two arguments is not the same as the or of < and > of those

same arguments. Second, unequality is meaningful for complex numbers even though < and >

are not. For both reasons it would be misleading to associate unequality with the names of <

and >.

Compatibility note: In Common Lisp, the comparison operations perform “mixedmode”

comparisons: (−− 3 3.0) is true. In MacLisp, there must be exactly two arguments, and they

must be either both fixnums or both floatingpoint numbers. To compare two numbers for

numerical equality and type equality, use eql.

[Function]max number &rest more-numbers

[Function]min number &rest more-numbers

The arguments may be any noncomplex numbers. max returns the argument that is

greatest (closest to positive infinity). min returns the argument that is least (closest to

negative infinity).

For max, if the arguments are a mixture of rationals and floatingpoint numbers,

and the largest argument is a rational, then the implementation is free to produce

either that rational or its floatingpoint approximation; if the largest argument is a

floatingpoint number of a smaller format than the largest format of any floatingpoint

argument, then the implementation is free to return the argument in its given format or

expanded to the larger format. More concisely, the implementation has the choice of

returning the largest argument as is or applying the rules of floatingpoint contagion,

taking all the arguments into consideration for contagion purposes. Also, if two or

more of the arguments are equal, then any one of them may be chosen as the value

to return. Similar remarks apply to min (replacing “largest argument” by “smallest

argument”).

294 COMMON LISP

(max 6 12) ⇒ 12 (min 6 12) ⇒ 6

(max -6 -12) ⇒ -6 (min -6 -12) ⇒ -12

(max 1 3 2 -7) ⇒ 3 (min 1 3 2 -7) ⇒ -7

(max -2 3 0 7) ⇒ 7 (min -2 3 0 7) ⇒ -2

(max 3) ⇒ 3 (min 3) ⇒ 3

(max 5.0 2) ⇒ 5.0 (min 5.0 2) ⇒ 2 or 2.0

(max 3.0 7 1) ⇒ 7 or 7.0 (min 3.0 7 1) ⇒ 1 or 1.0

(max 1.0s0 7.0d0) ⇒ 7.0d0

(min 1.0s0 7.0d0) ⇒ 1.0s0 or 1.0d0

(max 3 1 1.0s0 1.0d0) ⇒ 3 or 3.0d0

(min 3 1 1.0s0 1.0d0) ⇒ 1 or 1.0s0 or 1.0d0

12.4. Arithmetic Operations

Each of the functions in this section requires that its arguments all be numbers; to

call one with a nonnumber is an error. Unless otherwise specified, each works on all

types of numbers, automatically performing any required coercions when arguments

are of different types.

[Function]+ &rest numbers

This returns the sum of the arguments. If there are no arguments, the result is 0,

which is an identity for this operation.

Compatibility note: While + is compatible with its use in Lisp Machine Lisp, it is incompatible

with MacLisp, which uses + for fixnumonly addition.

[Function]- number &rest more-numbers

The function -, when given one argument, returns the negative of that argument.

The function -, when given more than one argument, successively subtracts from

the first argument all the others, and returns the result. For example, (- 3 4 5)⇒ -6.

Compatibility note: While - is compatible with its use in Lisp Machine Lisp, it is incompatible

with MacLisp, which uses - for fixnumonly subtraction. Also, - differs from difference as

used in most Lisp systems in the case of one argument.

NUMBERS 295

[Function]* &rest numbers

This returns the product of the arguments. If there are no arguments, the result is 1,

which is an identity for this operation.

Compatibility note: While * is compatible with its use in Lisp Machine Lisp, it is incompatible

with MacLisp, which uses * for fixnumonly multiplication.

[Function]/ number &rest more-numbers

The function /, when given more than one argument, successively divides the first

argument by all the others and returns the result.

It is generally accepted that it is an error for any argument other than the first to be

zero.

With one argument, / reciprocates the argument.

It is generally accepted that it is an error in this case for the argument to be zero.

/ will produce a ratio if the mathematical quotient of two integers is not an exact

integer. For example:

(/ 12 4) ⇒ 3

(/ 13 4) ⇒ 13/4

(/ -8) ⇒ -1/8

(/ 3 4 5) ⇒ 3/20

To divide one integer by another producing an integer result, use one of the functions

floor, ceiling, truncate, or round.

If any argument is a floatingpoint number, then the rules of floatingpoint conta

gion apply.

Compatibility note: What / does is totally unlike what the usual // or quotient operator does.

In most Lisp systems, quotient behaves like / except when dividing integers, in which case it

behaves like truncate of two arguments; this behavior is mathematically intractable, leading

to such anomalies as

(quotient 1.0 2.0) ⇒ 0.5 but (quotient 1 2) ⇒ 0

In contrast, the Common Lisp function / produces these results:

(/ 1.0 2.0) ⇒ 0.5 and (/ 1 2) ⇒ 1/2

In practice quotient is used only when one is sure that both arguments are integers, or when

one is sure that at least one argument is a floatingpoint number. / is tractable for its purpose

and works for any numbers.

296 COMMON LISP

[Function]1+ number

[Function]1- number

(1+ x) is the same as (+ x 1).

(1- x) is the same as (- x 1). Note that the short name may be confusing: (1- x)

does not mean 1 − x; rather, it means x − 1.

Rationale: These are included primarily for compatibility with MacLisp and Lisp Machine

Lisp. Some programmers prefer always to write (+ x 1) and (- x 1) instead of (1+ x) and (1-

x).

Implementation note: Compiler writers are very strongly encouraged to ensure that (1+ x)

and (+ x 1) compile into identical code, and similarly for (1- x) and (- x 1), to avoid pressure

on a Lisp programmer to write possibly less clear code for the sake of efficiency. This can

easily be done as a sourcelanguage transformation.

[Macro]incf place [delta]

[Macro]decf place [delta]

The number produced by the form delta is added to (incf) or subtracted from (decf)

the number in the generalized variable named by place, and the sum is stored back

into place and returned. The form place may be any form acceptable as a generalized

variable to setf. If delta is not supplied, then the number in place is changed by 1.

For example:

(setq n 0)

(incf n) ⇒ 1 and now n ⇒ 1

(decf n 3) ⇒ -2 and now n ⇒ -2

(decf n -5) ⇒ 3 and now n ⇒ 3

(decf n) ⇒ 2 and now n ⇒ 2

The effect of (incf place delta) is roughly equivalent to

(setf place (+ place delta))

except that the latter would evaluate any subforms of place twice, whereas incf takes

care to evaluate them only once. Moreover, for certain place forms incf may be

significantly more efficient than the setf version.

X3J13 voted in March 1988 〈146〉 to clarify order of evaluation (see section 7.2).

NUMBERS 297

[Function]conjugate number

This returns the complex conjugate of number. The conjugate of a noncomplex

number is itself. For a complex number z,

(conjugate z) ≡ (complex (realpart z) (- (imagpart z)))

For example:

(conjugate #--C(3/5 4/5)) ⇒ #--C(3/5 -4/5)

(conjugate #--C(0.0D0 -1.0D0)) ⇒ #--C(0.0D0 1.0D0)

(conjugate 3.7) ⇒ 3.7

[Function]gcd &rest integers

This returns the greatest common divisor of all the arguments, which must be integers.

The result of gcd is always a nonnegative integer. If one argument is given, its absolute

value is returned. If no arguments are given, gcd returns 0, which is an identity for

this operation. For three or more arguments,

(gcd a b c ... z) ≡ (gcd (gcd a b) c ... z)

Here are some examples of the use of gcd:

(gcd 91 -49) ⇒ 7

(gcd 63 -42 35) ⇒ 7

(gcd 5) ⇒ 5

(gcd -4) ⇒ 4

(gcd) ⇒ 0

[Function]lcm integer &rest more-integers

This returns the least common multiple of its arguments, which must be integers.

The result of lcm is always a nonnegative integer. For two arguments that are not

both zero,

(lcm a b) ≡ (/ (abs (* a b)) (gcd a b))

If one or both arguments are zero,

(lcm a 0) ≡ (lcm 0 a) ≡ 0

For one argument, lcm returns the absolute value of that argument. For three or

more arguments,

298 COMMON LISP

(lcm a b c ... z) ≡ (lcm (lcm a b) c ... z)

Some examples:

(lcm 14 35) ⇒ 70

(lcm 0 5) ⇒ 0

(lcm 1 2 3 4 5 6) ⇒ 60

Mathematically, (lcm) should return infinity. Because Common Lisp does not have

a representation for infinity, lcm, unlike gcd, always requires at least one argument.

X3J13 voted in January 1989 〈107〉 to specify that (lcm) ⇒ 1.

This is one of my biggest boners. The identity for lcm is of course 1, not infinity,

and so (lcm) ought to have been defined to return 1. Sorry about that, though in point

of fact very few users have complained to me that this mistake in the first edition has

cramped their programming style.

12.5. Irrational and Transcendental Functions

Common Lisp provides no data type that can accurately represent irrational numerical

values. The functions in this section are described as if the results were mathemati

cally accurate, but actually they all produce floatingpoint approximations to the true

mathematical result in the general case. In some places mathematical identities are

set forth that are intended to elucidate the meanings of the functions; however, two

mathematically identical expressions may be computationally different because of

errors inherent in the floatingpoint approximation process.

When the arguments to a function in this section are all rational and the true

mathematical result is also (mathematically) rational, then unless otherwise noted an

implementation is free to return either an accurate result of type rational or a single

precision floatingpoint approximation. If the arguments are all rational but the

result cannot be expressed as a rational number, then a singleprecision floatingpoint

approximation is always returned.

X3J13 voted in March 1989 〈29〉 to clarify that the provisions of the previous

paragraph apply to complex numbers. If the arguments to a function are all of

type (or rational (complex rational)) and the true mathematical result is (mathe

matically) a complex number with rational real and imaginary parts, then unless

otherwise noted an implementation is free to return either an accurate result of type

(or rational (complex rational)) or a singleprecision floatingpoint approximation

of type single-float (permissible only if the imaginary part of the true mathematical

result is zero) or (complex single-float). If the arguments are all of type (or rational

NUMBERS 299

(complex rational)) but the result cannot be expressed as a rational or complex ratio

nal number, then the returned value will be of type single-float (permissible only if

the imaginary part of the true mathematical result is zero) or (complex single-float).

The rules of floatingpoint contagion and complex contagion are effectively obeyed

by all the functions in this section except expt, which treats some cases of rational

exponents specially. When, possibly after contagious conversion, all of the arguments

are of the same floatingpoint or complex floatingpoint type, then the result will be

of that same type unless otherwise noted.

Implementation note: There is a “floatingpoint cookbook” by Cody and Waite [14] that may

be a useful aid in implementing the functions defined in this section.

12.5.1. Exponential and Logarithmic Functions

Along with the usual oneargument and twoargument exponential and logarithm

functions, sqrt is considered to be an exponential function, because it raises a number

to the power 1/2.

[Function]exp number

Returns e raised to the power number, where e is the base of the natural logarithms.

[Function]expt base-number power-number

Returns basenumber raised to the power powernumber. If the basenumber is of

type rational and the powernumber is an integer, the calculation will be exact and

the result will be of type rational; otherwise a floatingpoint approximation may

result.

X3J13 voted in March 1989 〈29〉 to clarify that provisions similar to those of

the previous paragraph apply to complex numbers. If the basenumber is of type

(complex rational) and the powernumber is an integer, the calculation will also be

exact and the result will be of type (or rational (complex rational)); otherwise a

floatingpoint or complex floatingpoint approximation may result.

When powernumber is 0 (a zero of type integer), then the result is always the value

1 in the type of basenumber, even if the basenumber is zero (of any type). That is:

(expt x 0) ≡ (coerce 1 (type-of x))

300 COMMON LISP

If the powernumber is a zero of any other data type, then the result is also the value

1, in the type of the arguments after the application of the contagion rules, with one

exception: it is an error if basenumber is zero when the powernumber is a zero not

of type integer.

Implementations of expt are permitted to use different algorithms for the cases of

a rational powernumber and a floatingpoint powernumber; the motivation is that

in many cases greater accuracy can be achieved for the case of a rational power

number. For example, (expt pi 16) and (expt pi 16.0) may yield slightly different

results if the first case is computed by repeated squaring and the second by the use

of logarithms. Similarly, an implementation might choose to compute (expt x 3/2)

as if it had been written (sqrt (expt x 3)), perhaps producing a more accurate result

than would (expt x 1.5). It is left to the implementor to determine the best strategies.

X3J13 voted in January 1989 〈75〉 to clarify that the preceding remark is in error,

because (sqrt (expt x 3)) does not produce the same value as (expt x 3/2) in most

cases, and to specify that the specification of the principal value of expt as given in

section 12.5.3 should be regarded as definitive.

As an example of the difficulty, let x = cis 2π

3
= −1

2
+

√
3

2
i. Then

√

x3 =
√

1 = 1,

but x3/2 = e(3/2) logx = e(3/2)(2π/3)i = eπi = −1. Another example is x = −1;

then
√

x3 =
√
−1 = i, but x3/2 = e(3/2) logx = e(3/2)πi = −i.

The result of expt can be a complex number, even when neither argument is

complex, if basenumber is negative and powernumber is not an integer. The result

is always the principal complex value. Note that (expt -8 1/3) is not permitted to

return -2; while -2 is indeed one of the cube roots of -8, it is not the principal cube

root, which is a complex number approximately equal to #--C(1.0 1.73205).

Notice of correction. The first edition gave the incorrect value #--C(0.5 1.73205) for

the principal cube root of -8. The correct value is #--C(1.0 1.73205), that is, 1 +
√

3i. I

simply don’t know what I was thinking of!

[Function]log number &optional base

Returns the logarithm of number in the base base, which defaults to e, the base of the

natural logarithms. For example:

(log 8.0 2) ⇒ 3.0

(log 100.0 10) ⇒ 2.0

The result of (log 8 2) may be either 3 or 3.0, depending on the implementation.

Note that log may return a complex result when given a noncomplex argument if

the argument is negative. For example:

NUMBERS 301

(log -1.0) ≡ (complex 0.0 (float pi 0.0))

X3J13 voted in January 1989 〈101〉 to specify certain floatingpoint behavior when

minus zero is supported. As a part of that vote it approved a mathematical definition

of complex logarithm in terms of real logarithm, absolute value, arc tangent of two

real arguments, and the phase function as

Logarithm log |z| + i phase z

This specifies the branch cuts precisely whether minus zero is supported or not; see

phase and atan.

[Function]sqrt number

Returns the principal square root of number. If the number is not complex but is

negative, then the result will be a complex number. For example:

(sqrt 9.0) ⇒ 3.0

(sqrt -9.0) ⇒ #--c(0.0 3.0)

The result of (sqrt 9) may be either 3 or 3.0, depending on the implementation. The

result of (sqrt -9) may be either #--c(0 3) or #--c(0.0 3.0).

X3J13 voted in January 1989 〈101〉 to specify certain floatingpoint behavior when

minus zero is supported. As a part of that vote it approved a mathematical definition

of complex square root in terms of complex logarithm and exponential functions as

Square root e(log z)/2

This specifies the branch cuts precisely whether minus zero is supported or not; see

phase and atan.

[Function]isqrt integer

Integer square root: the argument must be a nonnegative integer, and the result is the

greatest integer less than or equal to the exact positive square root of the argument.

For example:

(isqrt 9) ⇒ 3

(isqrt 12) ⇒ 3

(isqrt 300) ⇒ 17

(isqrt 325) ⇒ 18

302 COMMON LISP

12.5.2. Trigonometric and Related Functions

Some of the functions in this section, such as abs and signum, are apparently unre

lated to trigonometric functions when considered as functions of real numbers only.

The way in which they are extended to operate on complex numbers makes the

trigonometric connection clear.

[Function]abs number

Returns the absolute value of the argument. For a noncomplex number x,

(abs x) ≡ (if (minusp x) (- x) x)

and the result is always of the same type as the argument.

For a complex number z, the absolute value may be computed as

(sqrt (+ (expt (realpart z) 2) (expt (imagpart z) 2)))

Implementation note: The careful implementor will not use this formula directly for all

complex numbers but will instead handle very large or very small components specially to

avoid intermediate overflow or underflow.

For example:

(abs #--c(3.0 -4.0)) ⇒ 5.0

The result of (abs #--c(3 4)) may be either 5 or 5.0, depending on the implementation.

[Function]phase number

The phase of a number is the angle part of its polar representation as a complex

number. That is,

(phase z) ≡ (atan (imagpart z) (realpart z))

The result is in radians, in the range −π (exclusive) to π (inclusive). The phase of
..

a positive noncomplex number is zero; that of a negative noncomplex number is π.

The phase of zero is arbitrarily defined to be zero.

X3J13 voted in January 1989 〈101〉 to specify certain floatingpoint behavior when

minus zero is supported; phase is still defined in terms of atan as above, but thanks to

a change in atan the range of phase becomes −π inclusive to π inclusive. The value

−π results from an argument whose real part is negative and whose imaginary part

NUMBERS 303

is minus zero. The phase function therefore has a branch cut along the negative real

axis. The phase of +0 + 0i is +0, of +0 − 0i is −0, of −0 + 0i is +π, and of −0 − 0i

is −π.

If the argument is a complex floatingpoint number, the result is a floatingpoint

number of the same type as the components of the argument. If the argument is a

floatingpoint number, the result is a floatingpoint number of the same type. If the

argument is a rational number or complex rational number, the result is a singleformat

floatingpoint number.

[Function]signum number

By definition,

(signum x) ≡ (if (zerop x) x (/ x (abs x)))

For a rational number, signum will return one of -1, 0, or 1 according to whether the

number is negative, zero, or positive. For a floatingpoint number, the result will

be a floatingpoint number of the same format whose value is −1, 0, or 1. For a

complex number z, (signum z) is a complex number of the same phase but with unit

magnitude, unless z is a complex zero, in which case the result is z. For example:

(signum 0) ⇒ 0

(signum -3.7L5) ⇒ -1.0L0

(signum 4/5) ⇒ 1

(signum #--C(7.5 10.0)) ⇒ #--C(0.6 0.8)

(signum #--C(0.0 -14.7)) ⇒ #--C(0.0 -1.0)

For noncomplex rational numbers, signum is a rational function, but it may be

irrational for complex arguments.

[Function]sin radians

[Function]cos radians

[Function]tan radians

sin returns the sine of the argument, cos the cosine, and tan the tangent. The argument

is in radians. The argument may be complex.

[Function]cis radians

This computes ei·radians. The name cis means “cos + i sin,” because eiθ = cos θ +

i sin θ. The argument is in radians and may be any noncomplex number. The result is

a complex number whose real part is the cosine of the argument and whose imaginary

304 COMMON LISP

part is the sine. Put another way, the result is a complex number whose phase is the

equal to the argument (mod 2π) and whose magnitude is unity.

Implementation note: Often it is cheaper to calculate the sine and cosine of a single angle

together than to perform two disjoint calculations.

[Function]asin number

[Function]acos number

asin returns the arc sine of the argument, and acos the arc cosine. The result is in

radians. The argument may be complex.

The arc sine and arc cosine functions may be defined mathematically for an

argument z as follows:

Arc sine −i log
(

iz +
√

1 − z2
)

Arc cosine −i log
(

z + i
√

1 − z2
)

Note that the result of asin or acos may be complex even if the argument is not

complex; this occurs when the absolute value of the argument is greater than 1.

Kahan [25] suggests for acos the defining formula

Arc cosine

2 log

(

√

1+z
2

+ i

√

1−z
2

)

i

or even the much simpler (π/2) − arcsin z. Both equations are mathematically

equivalent to the formula shown above.

Implementation note: These formulae are mathematically correct, assuming completely

accurate computation. They may be terrible methods for floatingpoint computation. Imple

mentors should consult a good text on numerical analysis. The formulae given above are not

necessarily the simplest ones for realvalued computations, either; they are chosen to define

the branch cuts in desirable ways for the complex case.

[Function]atan y &optional x

An arc tangent is calculated and the result is returned in radians.

With two arguments y and x, neither argument may be complex. The result is the

arc tangent of the quantity y/x. The signs of y and x are used to derive quadrant

information; moreover, x may be zero provided y is not zero. The value of atan is

NUMBERS 305

always between−π (exclusive) and π (inclusive). The following table details various

special cases.

Condition Cartesian Locus Range of Result

y = 0 x > 0 Positive xaxis 0

y > 0 x > 0 Quadrant I 0 < result < π/2

y > 0 x = 0 Positive yaxis π/2

y > 0 x < 0 Quadrant II π/2 < result < π

y = 0 x < 0 Negative xaxis π

y < 0 x < 0 Quadrant III −π < result < −π/2

y < 0 x = 0 Negative yaxis −π/2

y < 0 x > 0 Quadrant IV −π/2 < result < 0

y = 0 x = 0 Origin error

X3J13 voted in January 1989 〈101〉 to specify certain floatingpoint behavior when

minus zero is supported. When there is a minus zero, the preceding table must be

modified slightly:

Condition Cartesian Locus Range of Result

y = +0 x > 0 Just above positive xaxis +0

y > 0 x > 0 Quadrant I +0 < result < π/2

y > 0 x = ±0 Positive yaxis π/2

y > 0 x < 0 Quadrant II π/2 < result < π

y = +0 x < 0 Just below negative xaxis π
y = −0 x < 0 Just above negative xaxis π

y < 0 x < 0 Quadrant III −π < result < −π/2

y < 0 x = ±0 Negative yaxis −π/2

y < 0 x > 0 Quadrant IV −π/2 < result < −0

y = −0 x > 0 Just below positive xaxis −0

y = +0 x = +0 Near origin +0

y = −0 x = +0 Near origin −0

y = +0 x = −0 Near origin π

y = −0 x = −0 Near origin −π

Note that the case y = 0, x = 0 is an error in the absence of minus zero, but the four

cases y = ±0, x = ±0 are defined in the presence of minus zero.

With only one argument y, the argument may be complex. The result is the arc
...

tangent of y, which may be defined by the following formula:

Arc tangent −i log

(

(1 + iy)

√

1/(1 + y2)

)

306 COMMON LISP

Implementation note: This formula is mathematically correct, assuming completely accurate

computation. It may be a terrible method for floatingpoint computation. Implementors should

consult a good text on numerical analysis. The formula given above is not necessarily the

simplest one for realvalued computations, either; it is chosen to define the branch cuts in

desirable ways for the complex case.

X3J13 voted in January 1989 〈28〉 to replace the preceding formula with the

formula

Arc tangent
log(1 + iy) − log(1 − iy)

2i

This change alters the direction of continuity for the branch cuts, which alters the

result returned by atan only for arguments on the imaginary axis that are of magnitude

greater than 1. See section 12.5.3 for further details.

For a noncomplex argument y, the result is noncomplex and lies between −π/2

and π/2 (both exclusive).

Compatibility note: MacLisp has a function called atan whose range is from 0 to 2π. Almost

every other programming language (ANSI Fortran, IBM PL/1, Interlisp) has a twoargument

arc tangent function with range −π to π. Lisp Machine Lisp provides two twoargument arc

tangent functions, atan (compatible with MacLisp) and atan2 (compatible with all others).

Common Lisp makes twoargument atan the standard one with range −π to π. Observe

that this makes the oneargument and twoargument versions of atan compatible in the sense

that the branch cuts do not fall in different places. The Interlisp oneargument function arctan

has a range from 0 to π, while nearly every other programming language provides the range

−π/2 to π/2 for oneargument arc tangent! Nevertheless, since Interlisp uses the standard

twoargument version of arc tangent, its branch cuts are inconsistent anyway.

[Constant]pi

This global variable has as its value the best possible approximation to π in long

floatingpoint format. For example:

(defun sind (x) ;The argument is in degrees

(sin (* x (/ (float pi x) 180))))

An approximation to π in some other precision can be obtained by writing (float pi

x), where x is a floatingpoint number of the desired precision, or by writing (coerce

pi type), where type is the name of the desired type, such as short-float.

NUMBERS 307

[Function]sinh number

[Function]cosh number

[Function]tanh number

[Function]asinh number

[Function]acosh number

[Function]atanh number

These functions compute the hyperbolic sine, cosine, tangent, arc sine, arc cosine,
...

and arc tangent functions, which are mathematically defined for an argument z as

follows:

Hyperbolic sine (ez − e−z)/2

Hyperbolic cosine (ez + e−z)/2

Hyperbolic tangent (ez − e−z)/(ez + e−z)

Hyperbolic arc sine log
(

z +
√

1 + z2
)

Hyperbolic arc cosine log
(

z + (z + 1)
√

(z − 1)/(z + 1)
)

Hyperbolic arc tangent log

(

(1 + z)

√

1 − 1/z2
)

WRONG!

WARNING! The formula shown above for hyperbolic arc tangent is incorrect. It

is not a matter of incorrect branch cuts; it simply does not compute anything like a

hyperbolic arc tangent. This unfortunate error in the first edition was the result of

mistranscribing a (correct) APL formula from Penfield’s paper [36]. The formula

should have been transcribed as

Hyperbolic arc tangent log

(

(1 + z)

√

1/(1 − z2)

)

A proposal was submitted to X3J13 in September 1989 to replace the formulae for

acosh and atanh. See section 12.5.3 for further discussion.

Note that the result of acosh may be complex even if the argument is not complex;

this occurs when the argument is less than 1. Also, the result of atanh may be

complex even if the argument is not complex; this occurs when the absolute value of

the argument is greater than 1.

Implementation note: These formulae are mathematically correct, assuming completely

accurate computation. They may be terrible methods for floatingpoint computation. Imple

mentors should consult a good text on numerical analysis. The formulae given above are not

necessarily the simplest ones for realvalued computations, either; they are chosen to define

the branch cuts in desirable ways for the complex case.

308 COMMON LISP

12.5.3. Branch Cuts, Principal Values, and Boundary Conditions in

the Complex Plane

Many of the irrational and transcendental functions are multiply defined in the com

plex domain; for example, there are in general an infinite number of complex values

for the logarithm function. In each such case, a principal value must be chosen for

the function to return. In general, such values cannot be chosen so as to make the

range continuous; lines in the domain called branch cuts must be defined, which in

turn define the discontinuities in the range.

Common Lisp defines the branch cuts, principal values, and boundary conditions

for the complex functions following a proposal for complex functions in APL [36].

The contents of this section are borrowed largely from that proposal.

Compatibility note: The branch cuts defined here differ in a few very minor respects from

those advanced by W. Kahan, who considers not only the “usual” definitions but also the special

modifications necessary for IEEE proposed floatingpoint arithmetic, which has infinities and

minus zero as explicit computational objects. For example, he proposes that
√
−4 + 0i = 2i,

but
√
−4 − 0i = −2i.

It may be that the differences between the APL proposal and Kahan’s proposal will be

ironed out. If so, Common Lisp may be changed as necessary to be compatible with these

other groups. Any changes from the specification below are likely to be quite minor, probably

concerning primarily questions of which side of a branch cut is continuous with the cut itself.

Indeed, X3J13 voted in January 1989 〈28〉 to alter the direction of continuity for

the branch cuts of atan, and also 〈101〉 to address the treatment of branch cuts in

implementations that have a distinct floatingpoint minus zero.

The treatment of minus zero centers in twoargument atan. If there is no minus

zero, then the branch cut runs just below the negative real axis as before, and the range

of twoargument atan is (−π, π]. If there is a minus zero, however, then the branch

cut runs precisely on the negative real axis, skittering between pairs of numbers of

the form −x ± 0i, and the range of twoargument atan is [−π, π].

The treatment of minus zero by all other irrational and transcendental functions

is then specified by defining those functions in terms of twoargument atan. First,

phase is defined in terms of twoargument atan, and complex abs in terms of real sqrt;

then complex log is defined in terms of phase, abs, and real log; then complex sqrt in

terms of complex log; and finally all others are defined in terms of these.

Kahan [25] treats these matters in some detail and also suggests specific algorithms

for implementing irrational and transcendental functions in IEEE standard floating

point arithmetic [23].

Remarks in the first edition about the direction of the continuity of branch cuts

continue to hold in the absence of minus zero and may be ignored if minus zero

NUMBERS 309

is supported; since all branch cuts happen to run along the principal axes, they run

between plus zero and minus zero, and so each sort of zero is associated with the

obvious quadrant.

sqrt

The branch cut for square root lies along the negative real axis, continuous with

quadrant II. The range consists of the right halfplane, including the nonnegative

imaginary axis and excluding the negative imaginary axis.

X3J13 voted in January 1989 〈101〉 to specify certain floatingpoint behavior when

minus zero is supported. As a part of that vote it approved a mathematical definition

of complex square root:

√
z = e(log z)/2

This defines the branch cuts precisely, whether minus zero is supported or not.

phase

The branch cut for the phase function lies along the negative real axis, continuous

with quadrant II. The range consists of that portion of the real axis between −π

(exclusive) and π (inclusive).

X3J13 voted in January 1989 〈101〉 to specify certain floatingpoint behavior when

minus zero is supported. As a part of that vote it approved a mathematical definition

of phase:

phase z = arctan(ℑz,ℜz)

where ℑz is the imaginary part of z and ℜz the real part of z. This defines the branch

cuts precisely, whether minus zero is supported or not.

log

The branch cut for the logarithm function of one argument (natural logarithm) lies

along the negative real axis, continuous with quadrant II. The domain excludes the

origin. For a complex number z, log z is defined to be

log z =
(

log |z|
)

+ i(phase z)

Therefore the range of the oneargument logarithm function is that strip of the

complex plane containing numbers with imaginary parts between −π (exclusive)

and π (inclusive).

310 COMMON LISP

The X3J13 vote on minus zero 〈101〉 would alter that exclusive bound of −π to be

inclusive if minus zero is supported.

The twoargument logarithm function is defined as logb z = (log z)/(log b). This

defines the principal values precisely. The range of the twoargument logarithm

function is the entire complex plane. It is an error if z is zero. If z is nonzero and b

is zero, the logarithm is taken to be zero.

exp

The simple exponential function has no branch cut.

expt

The twoargument exponential function is defined as bx = ex log b. This defines the

principal values precisely. The range of the twoargument exponential function is the

entire complex plane. Regarded as a function of x, with b fixed, there is no branch

cut. Regarded as a function of b, with x fixed, there is in general a branch cut along

the negative real axis, continuous with quadrant II. The domain excludes the origin.

By definition, 00 = 1. If b = 0 and the real part of x is strictly positive, then bx = 0.

For all other values of x, 0x is an error.

asin

The following definition for arc sine determines the range and branch cuts:

arcsin z = −i log
(

iz +
√

1 − z2
)

This is equivalent to the formula

arcsin z =
arcsinh iz

i

recommended by Kahan [25].

The branch cut for the arc sine function is in two pieces: one along the negative

real axis to the left of −1 (inclusive), continuous with quadrant II, and one along the

positive real axis to the right of 1 (inclusive), continuous with quadrant IV. The range

is that strip of the complex plane containing numbers whose real part is between

−π/2 and π/2. A number with real part equal to −π/2 is in the range if and only

if its imaginary part is nonnegative; a number with real part equal to π/2 is in the

range if and only if its imaginary part is nonpositive.

acos

The following definition for arc cosine determines the range and branch cuts:

NUMBERS 311

arccos z = −i log
(

z + i
√

1 − z2
)

or, which is equivalent,

arccos z = π

2
− arcsin z

The branch cut for the arc cosine function is in two pieces: one along the negative

real axis to the left of −1 (inclusive), continuous with quadrant II, and one along

the positive real axis to the right of 1 (inclusive), continuous with quadrant IV. This

is the same branch cut as for arc sine. The range is that strip of the complex plane

containing numbers whose real part is between zero and π. A number with real part

equal to zero is in the range if and only if its imaginary part is nonnegative; a number

with real part equal to π is in the range if and only if its imaginary part is nonpositive.

atan

The following definition for (oneargument) arc tangent determines the range and

branch cuts:

arctan z = −i log

(

(1 + iz)

√

1/(1 + z2)

)

..

Beware of simplifying this formula; “obvious” simplifications are likely to alter

the branch cuts or the values on the branch cuts incorrectly.

The branch cut for the arc tangent function is in two pieces: one along the positive

imaginary axis above i (exclusive), continuous with quadrant II, and one along the

negative imaginary axis below −i (exclusive), continuous with quadrant IV. The

points i and −i are excluded from the domain. The range is that strip of the complex

plane containing numbers whose real part is between −π/2 and π/2. A number

with real part equal to −π/2 is in the range if and only if its imaginary part is

strictly positive; a number with real part equal to π/2 is in the range if and only if

its imaginary part is strictly negative. Thus the range of the arc tangent function is

identical to that of the arc sine function with the points −π/2 and π/2 excluded.

X3J13 voted in January 1989 〈28〉 to replace the formula shown above with the

formula

arctan z =
log(1 + iz) − log(1 − iz)

2i

This is equivalent to the formula

arctan z =
arctanh iz

i

312 COMMON LISP

recommended by Kahan [25]. It causes the upper branch cut to be continuous with

quadrant I rather than quadrant II, and the lower branch cut to be continuous with

quadrant III rather than quadrant IV; otherwise it agrees with the formula of the first

edition. Therefore this change alters the result returned by atan only for arguments on

the positive imaginary axis that are of magnitude greater than 1. The full description

for this new formula is as follows.

The branch cut for the arc tangent function is in two pieces: one along the positive

imaginary axis above i (exclusive), continuous with quadrant I, and one along the

negative imaginary axis below −i (exclusive), continuous with quadrant III. The

points i and −i are excluded from the domain. The range is that strip of the complex

plane containing numbers whose real part is between −π/2 and π/2. A number with

real part equal to −π/2 is in the range if and only if its imaginary part is strictly

negative; a number with real part equal to π/2 is in the range if and only if its

imaginary part is strictly positive. Thus the range of the arc tangent function is not

identical to that of the arc sine function.

asinh

The following definition for the inverse hyperbolic sine determines the range and

branch cuts:

arcsinh z = log
(

z +
√

1 + z2
)

The branch cut for the inverse hyperbolic sine function is in two pieces: one along

the positive imaginary axis above i (inclusive), continuous with quadrant I, and one

along the negative imaginary axis below −i (inclusive), continuous with quadrant III.

The range is that strip of the complex plane containing numbers whose imaginary

part is between −π/2 and π/2. A number with imaginary part equal to −π/2 is in

the range if and only if its real part is nonpositive; a number with imaginary part

equal to π/2 is in the range if and only if its real part is nonnegative.

acosh

The following definition for the inverse hyperbolic cosine determines the range and

branch cuts:

arccosh z = log
(

z + (z + 1)
√

(z − 1)/(z + 1)
)

Kahan [25] suggests the formula

arccosh z = 2 log
(

√

(z + 1)/2 +
√

(z − 1)/2
)

NUMBERS 313

pointing out that it yields the same principal value but eliminates a gratuitous re

movable singularity at z = −1. A proposal was submitted to X3J13 in September

1989 to replace the formula acosh with that recommended by Kahan. There is a good

possibility that it will be adopted.

The branch cut for the inverse hyperbolic cosine function lies along the real axis to

the left of 1 (inclusive), extending indefinitely along the negative real axis, continuous

with quadrant II and (between 0 and 1) with quadrant I. The range is that halfstrip

of the complex plane containing numbers whose real part is nonnegative and whose

imaginary part is between −π (exclusive) and π (inclusive). A number with real part

zero is in the range if its imaginary part is between zero (inclusive) and π (inclusive).

atanh

The following definition for the inverse hyperbolic tangent determines the range and

branch cuts:

arctanh z = log

(

(1 + z)

√

1 − 1/z2
)

WRONG!

...

WARNING! The formula shown above for hyperbolic arc tangent is incorrect. It

is not a matter of incorrect branch cuts; it simply does not compute anything like a

hyperbolic arc tangent. This unfortunate error in the first edition was the result of

mistranscribing a (correct) APL formula from Penfield’s paper [36]. The formula

should have been transcribed as

arctanh z = log

(

(1 + z)

√

1/(1 − z2)

)

Beware of simplifying this formula; “obvious” simplifications are likely to alter
..

the branch cuts or the values on the branch cuts incorrectly.

The branch cut for the inverse hyperbolic tangent function is in two pieces: one

along the negative real axis to the left of −1 (inclusive), continuous with quadrant

III, and one along the positive real axis to the right of 1 (inclusive), continuous with

quadrant I. The points−1 and 1 are excluded from the domain. The range is that strip

of the complex plane containing numbers whose imaginary part is between −π/2

and π/2. A number with imaginary part equal to −π/2 is in the range if and only

if its real part is strictly negative; a number with imaginary part equal to π/2 is in

the range if and only if its real part is strictly positive. Thus the range of the inverse

hyperbolic tangent function is identical to that of the inverse hyperbolic sine function

with the points −πi/2 and πi/2 excluded.

314 COMMON LISP

A proposal was submitted to X3J13 in September 1989 to replace the formula

atanh with that recommended by Kahan [25]:

arctanh z =
(log(1 + z) − log(1 − z))

2

There is a good possibility that it will be adopted. If it is, the complete description

of the branch cuts of atanh will then be as follows.

The branch cut for the inverse hyperbolic tangent function is in two pieces: one

along the negative real axis to the left of −1 (inclusive), continuous with quadrant

II, and one along the positive real axis to the right of 1 (inclusive), continuous with

quadrant IV. The points −1 and 1 are excluded from the domain. The range is that

strip of the complex plane containing numbers whose imaginary part is between

−π/2 and π/2. A number with imaginary part equal to −π/2 is in the range if and

only if its real part is strictly positive; a number with imaginary part equal to π/2

is in the range if and only if its real part is strictly negative. Thus the range of the

inverse hyperbolic tangent function is not the same as that of the inverse hyperbolic

sine function.

With these definitions, the following useful identities are obeyed throughout the

applicable portion of the complex domain, even on the branch cuts:

sin iz = i sinh z sinh iz = i sin z arctan iz = i arctanh z

cos iz = cosh z cosh iz = cos z arcsinh iz = i arcsin z

tan iz = i tanh z arcsin iz = i arcsinh z arctanh iz = i arctan z

I thought it would be useful to provide some graphs illustrating the behavior of

the irrational and transcendental functions in the complex plane. It also provides an

opportunity to show off the Common Lisp code that was used to generate them.

Imagine the complex plane to be decorated as follows. The real and imaginary

axes are painted with thick lines. Parallels from the axes on both sides at distances

of 1, 2, and 3 are painted with thin lines; these parallels are doubly infinite lines, as

are the axes. Four annuli (rings) are painted in gradated shades of gray. Ring 1, the

inner ring, consists of points whose radial distances from the origin lie in the range

[1/4, 1/2]; ring 2 is in the radial range [3/4, 1]; ring 3, in the range [π/2, 2]; and

ring 4, in the range [3, π]. Ring j is divided into 2j+1 equal sectors, with each sector

painted a different shade of gray, darkening as one proceeds counterclockwise from

the positive real axis.

We can illustrate the behavior of a numerical function f by considering how it maps

the complex plane to itself. More specifically, consider each point z of the decorated

plane. We decorate a new plane by coloring the point f (z) with the same color that

NUMBERS 315

point z had in the original decorated plane. In other words, the newly decorated plane

illustrates how the f maps the axes, other horizontal and vertical lines, and annuli.

In each figure we will show only a fragment of the complex plane, with the real axis

horizontal in the usual manner (−∞ to the left, +∞ to the right) and the imaginary

axis vertical (−∞i below, +∞i above). Each fragment shows a region containing

points whose real and imaginary parts are in the range [−4.1, 4.1]. The axes of the

new plane are shown as very thin lines, with large tick marks at integer coordinates

and somewhat smaller tick marks at multiples of π/2.

Figure 121 shows the result of plotting the identity function (quite literally); the

graph exhibits the decoration of the original plane.

Figures 122 through 1220 show the graphs for the functions sqrt, exp, log, sin,

asin, cos, acos, tan, atan, sinh, asinh, cosh, acosh, tanh, and atanh, and as a bonus,

the graphs for the functions
√

1 − z2,
√

1 + z2, (z − 1)/(z + 1), and (1 + z)/(1 − z).

All of these are related to the trigonometric functions in various ways. For example,

if f (z) = (z − 1)/(z + 1), then tanh z = f (e2z), and if g(z) =
√

1 − z2, then cos z =

g(sin z). It is instructive to examine the graph for
√

1 − z2 and try to visualize how

it transforms the graph for sin into the graph for cos.

Each figure is accompanied by a commentary on what maps to what and other

interesting features. None of this material is terribly new; much of it may be found in

any good textbook on complex analysis. I believe that the particular form in which the

graphs are presented is novel, as well as the fact that the graphs have been generated

as PostScript [1] code by Common Lisp code. This PostScript code was then fed

directly to the typesetting equipment that set the pages for this book. Samples of

this PostScript code follow the figures themselves, after which the code for the entire

program is presented.

In the commentaries that accompany the figures I sometimes speak of mapping the

points ±∞ or ±∞i. When I say that function f maps +∞ to a certain point z, I mean

that

z = lim
x→+∞

f (x + 0i)

Similarly, when I say that f maps −∞i to z, I mean that

z = lim
y→−∞

f (0 + yi)

In other words, I am considering a limit as one travels out along one of the main axes.

I also speak in a similar manner of mapping to one of these infinities.

316 COMMON LISP

Figure 121: Initial Decoration of the Complex Plane (Identity Function)

This figure was produced in exactly the same manner as succeeding figures, simply by plotting

the function identity instead of a numerical function. Thus the first of these figures was

produced by the last function of the first edition. I knew it would come in handy someday!

NUMBERS 317

Figure 122: Illustration of the Range of the Square Root Function

The sqrt function maps the complex plane into the right half of the plane by slitting it along

the negative real axis and then sweeping it around as if halfclosing a folding fan. The fan

also shrinks, as if it were made of cotton and had gotten wetter at the periphery than at the

center. The positive real axis is mapped onto itself. The negative real axis is mapped onto

the positive imaginary axis (but if minus zero is supported, then −x + 0i is mapped onto the

positive imaginary axis and −x − 0i onto the negative imaginary axis, assuming x > 0). The

positive imaginary axis is mapped onto the northeast diagonal, and the negative imaginary axis

onto the southeast diagonal. More generally, lines are mapped to rectangular hyperbolas (or

fragments thereof) centered on the origin; lines through the origin are mapped to degenerate

hyperbolas (perpendicular lines through the origin).

318 COMMON LISP

Figure 123: Illustration of the Range of the Exponential Function

The exp function maps horizontal lines to radii and maps vertical lines to circles centered at the

origin. The origin is mapped to 1. (It is instructive to compare this graph with those of other

functions that map the origin to 1, for example (1 + z)/(1 − z), cos z, and
√

1 − z2.) The entire

real axis is mapped to the positive real axis, with −∞ mapping to the origin and +∞ to itself.

The imaginary axis is mapped to the unit circle with infinite multiplicity (period 2π); therefore

the mapping of the imaginary infinities ±∞i is indeterminate. It follows that the entire left

halfplane is mapped to the interior of the unit circle, and the right halfplane is mapped to the

exterior of the unit circle. A line at any angle other than horizontal or vertical is mapped to a

logarithmic spiral (but this is not illustrated here).

NUMBERS 319

Figure 124: Illustration of the Range of the Natural Logarithm Function

The log function, which is the inverse of exp, naturally maps radial lines to horizontal lines and

circles centered at the origin to vertical lines. The interior of the unit circle is thus mapped to

the entire left halfplane, and the exterior of the unit circle is mapped to the right halfplane.

The positive real axis is mapped to the entire real axis, and the negative real axis to a horizontal

line of height π. The positive and negative imaginary axes are mapped to horizontal lines of

height ±π/2. The origin is mapped to −∞.

320 COMMON LISP

Figure 125: Illustration of the Range of the Function (z − 1)/(z + 1)

A line is a degenerate circle with infinite radius; when I say “circles” here I also mean lines.

Then (z − 1)/(z + 1) maps circles into circles. All circles through −1 become lines; all lines

become circles through 1. The real axis is mapped onto itself: 1 to the origin, the origin to

−1, −1 to infinity, and infinity to 1. The imaginary axis becomes the unit circle; i is mapped

to itself, as is −i. Thus the entire right halfplane is mapped to the interior of the unit circle,

the unit circle interior to the left halfplane, the left halfplane to the unit circle exterior, and

the unit circle exterior to the right halfplane. Imagine the complex plane to be a vast sea. The

Colossus of Rhodes straddles the origin, its left foot on i and its right foot on −i. It bends

down and briefly paddles water between its legs so furiously that the water directly beneath is

pushed out into the entire area behind it; much that was behind swirls forward to either side;

and all that was before is sucked in to lie between its feet.

NUMBERS 321

Figure 126: Illustration of the Range of the Function (1 + z)/(1 − z)

The function h(z) = (1 + z)/(1 − z) is the inverse of f (z) = (z − 1)/(z + 1); that is, h(f (z)) =

f (h(z)) = z. At first glance, the graph of h appears to be that of f flipped lefttoright, or

perhaps reflected in the origin, but careful consideration of the shaded annuli reveals that this

is not so; something more subtle is going on. Note that f (f (z)) = h(h(z)) = g(z) = −1/z. The

functions f , g, h, and the identity function thus form a group under composition, isomorphic to

the group of the cyclic permutations of the points −1, 0, 1, and ∞, as indeed these functions

accomplish the four possible cyclic permutations on those points. This function group is a

subset of the group of bilinear transformations (az + b)/(cz + d), all of which are conformal

(anglepreserving) and map circles onto circles. Now, doesn’t that tangle of circles through

−1 look like something the cat got into?

322 COMMON LISP

Figure 127: Illustration of the Range of the Sine Function

We are used to seeing sin looking like a wiggly ocean wave, graphed vertically as a function

of the real axis only. Here is a different view. The entire real axis is mapped to the segment

[−1, 1] of the real axis with infinite multiplicity (period 2π). The imaginary axis is mapped

to itself as if by sinh considered as a real function. The origin is mapped to itself. Horizontal

lines are mapped to ellipses with foci at ±1 (note that two horizontal lines equidistant from

the real axis will map onto the same ellipse). Vertical lines are mapped to hyperbolas with the

same foci. There is a curious accident: the ellipse for horizontal lines at distance ±1 from

the real axis appears to intercept the real axis at ±π/2 ≈ ±1.57 . . . but this is not so; the

intercepts are actually at ±(e + 1/e)/2 ≈ ±1.54

NUMBERS 323

Figure 128: Illustration of the Range of the Arc Sine Function

Just as sin grabs horizontal lines and bends them into elliptical loops around the origin, so its

inverse asin takes annuli and yanks them more or less horizontally straight. Because sine is

not injective, its inverse as a function cannot be surjective. This is just a highfalutin way of

saying that the range of the asin function doesn’t cover the entire plane but only a strip π wide;

arc sine as a onetomany relation would cover the plane with an infinite number of copies

of this strip side by side, looking for all the world like the tail of a peacock with an infinite

number of feathers. The imaginary axis is mapped to itself as if by asinh considered as a real

function. The real axis is mapped to a bent path, turning corners at ±π/2 (the points to which

±1 are mapped); +∞ is mapped to π/2 −∞i, and −∞ to −π/2 + ∞i.

324 COMMON LISP

Figure 129: Illustration of the Range of the Cosine Function

We are used to seeing cos looking exactly like sin, a wiggly ocean wave, only displaced.

Indeed the complex mapping of cos is also similar to that of sin, with horizontal and vertical

lines mapping to the same ellipses and hyperbolas with foci at ±1, although mapping to them

in a different manner, to be sure. The entire real axis is again mapped to the segment [−1, 1]

of the real axis, but each half of the imaginary axis is mapped to the real axis to the right of 1

(as if by cosh considered as a real function). Therefore ±∞i both map to +∞. The origin is

mapped to 1. Whereas sin is an odd function, cos is an even function; as a result two points in

each annulus, one the negative of the other, are mapped to the same shaded point in this graph;

the shading shown here is taken from points in the original upper halfplane.

NUMBERS 325

Figure 1210: Illustration of the Range of the Arc Cosine Function

The graph of acos is very much like that of asin. One might think that our nervous peacock

has shuffled half a step to the right, but the shading on the annuli shows that we have instead

caught the bird exactly in midflight while doing a cartwheel. This is easily understood if we

recall that arccos z = (π/2) − arcsin z; negating arcsin z rotates it upside down, and adding the

result to π/2 translates it π/2 to the right. The imaginary axis is mapped upside down to the

vertical line at π/2. The point +1 is mapped to the origin, and −1 to π. The image of the real

axis is again cranky; +∞ is mapped to +∞i, and −∞ to π −∞i.

326 COMMON LISP

Figure 1211: Illustration of the Range of the Tangent Function

The usual graph of tan as a real function looks like an infinite chorus line of disco dancers, left

hands pointed skyward and right hands to the floor. The tan function is the quotient of sin and

cos but it doesn’t much look like either except for having period 2π. This goes for the complex

plane as well, although the swoopy loops produced from the annulus between π/2 and 2 look

vaguely like those from the graph of sin inside out. The real axis is mapped onto itself with

infinite multiplicity (period 2π). The imaginary axis is mapped backwards onto [−i, i]: +∞i

is mapped to −i and −∞i to +i. Horizontal lines below or above the real axis become circles

surrounding +i or −i, respectively. Vertical lines become circular arcs from +i to −i; two

vertical lines separated by (2k + 1)π for integer k together become a complete circle. It seems

that two arcs shown hit the real axis at ±π/2 = ±1.57 . . . but that is a coincidence; they really

hit the axis at ± tan 1 = 1.55

NUMBERS 327

Figure 1212: Illustration of the Range of the Arc Tangent Function

All I can say is that this peacock is a horse of another color. At first glance, the axes seem

to map in the same way as for asin and acos, but look again: this time it’s the imaginary axis

doing weird things. All infinities map multiply to the points (2k + 1)π/2; within the strip of

principal values we may say that the real axis is mapped to the interval [−π/2, +π/2] and

therefore −∞ is mapped to −π/2 and +∞ to +π/2. The point +i is mapped to +∞i, and

−i to −∞i, and so the imaginary axis is mapped into three pieces: the segment [−∞i,−i] is

mapped to [π/2, π/2−∞i]; the segment [−i, i] is mapped to the imaginary axis [−∞i,+∞i];

and the segment [+i, +∞i] is mapped to [−π/2 + ∞i,−π/2].

328 COMMON LISP

Figure 1213: Illustration of the Range of the Hyperbolic Sine Function

It would seem that the graph of sinh is merely that of sin rotated 90 degrees. If that were

so, then we would have sinh z = i sin z. Careful inspection of the shading, however, reveals

that this is not quite the case; in both graphs the lightest and darkest shades, which initially

are adjacent to the positive real axis, remain adjacent to the positive real axis in both cases.

To derive the graph of sinh from sin we must therefore first rotate the complex plane by −90

degrees, then apply sin, then rotate the result by 90 degrees. In other words, sinh z = i sin(−i)z;

consistently replacing z with iz in this formula yields the familiar identity sinh iz = i sin z.

NUMBERS 329

Figure 1214: Illustration of the Range of the Hyperbolic Arc Sine Function

The peacock sleeps. Because arcsinh iz = i arcsin z, the graph of asinh is related to that of asin

by pre and postrotations of the complex plane in the same way as for sinh and sin.

330 COMMON LISP

Figure 1215: Illustration of the Range of the Hyperbolic Cosine Function

The graph of cosh does not look like that of cos rotated 90 degrees; instead it looks like that of

cos unrotated. That is because cosh iz is not equal to i cos z; rather, cosh iz = cos z. Interpreted,

that means that the shading is prerotated but there is no postrotation.

NUMBERS 331

Figure 1216: Illustration of the Range of the Hyperbolic Arc Cosine Function

Hmm—I’d rather not say what happened to this peacock. This feather looks a bit mangled.

Actually it is all right—the principal value for acosh is so chosen that its graph does not look

simply like a rotated version of the graph of acos, but if all values were shown, the two graphs

would fill the plane in repeating patterns related by a rotation.

332 COMMON LISP

Figure 1217: Illustration of the Range of the Hyperbolic Tangent Function

The diagram for tanh is simply that of tan turned on its ear: i tan z = tanh iz. The imaginary

axis is mapped onto itself with infinite multiplicity (period 2π), and the real axis is mapped

onto the segment [−1, +1]: +∞ is mapped to +1, and −∞ to −1. Vertical lines to the left

or right of the real axis are mapped to circles surrounding −1 or 1, respectively. Horizontal

lines are mapped to circular arcs anchored at −1 and +1; two horizontal lines separated by a

distance (2k + 1)π for integer k are together mapped into a complete circle. How do we know

these really are circles? Well, tanh z = ((exp 2z) − 1)/((exp 2z) + 1), which is the composition

of the bilinear transform (z − 1)/(z + 1), the exponential exp z, and the magnification 2z.

Magnification maps lines to lines of the same slope; the exponential maps horizontal lines

to circles and vertical lines to radial lines; and a bilinear transform maps generalized circles

(including lines) to generalized circles. Q.E.D.

NUMBERS 333

Figure 1218: Illustration of the Range of the Hyperbolic Arc Tangent Function

A sleeping peacock of another color: arctanh iz = i arctan z.

334 COMMON LISP

Figure 1219: Illustration of the Range of the Function
√

1 − z2

Here is a curious graph indeed for so simple a function! The origin is mapped to 1. The real

axis segment [0, 1] is mapped backwards (and nonlinearly) into itself; the segment [1, +∞]

is mapped nonlinearly onto the positive imaginary axis. The negative real axis is mapped to

the same points as the positive real axis. Both halves of the imaginary axis are mapped into

[1, +∞] on the real axis. Horizontal lines become vaguely vertical, and vertical lines become

vaguely horizontal. Circles centered at the origin are transformed into Cassinian (half)ovals;

the unit circle is mapped to a (half)lemniscate of Bernoulli. The outermost annulus appears

to have its inner edge at π on the real axis and its outer edge at 3 on the imaginary axis, but

this is another accident; the intercept on the real axis, for example, is not really at π ≈ 3.14 . . .

but at
√

1 − (3i)2 =
√

10 ≈ 3.16

NUMBERS 335

Figure 1220: Illustration of the Range of the Function
√

1 + z2

The graph of q(z) =
√

1 + z2 looks like that of p(z) =
√

1 − z2 except for the shading. You

might not expect p and q to be related in the same way that cos and cosh are, but after a little

reflection (or perhaps I should say, after turning it around in one’s mind) one can see that

q(iz) = p(z). This formula is indeed of exactly the same form as cosh iz = cos z. The function√
1 + z2 maps both halves of the real axis into [1, +∞] on the real axis. The segments [0, i] and

[0,−i] of the imaginary axis are each mapped backwards onto segment [0, 1] of the real axis;

[i, +∞i] and [−,−∞i] are each mapped onto the positive imaginary axis (but if minus zero

is supported then opposite sides of the imaginary axis map to opposite halves of the imaginary

axis—for example, q(+0 + 2i) =
√

5i but q(−0 + 2i) = −
√

5i).

336 COMMON LISP

Here is a sample of the PostScript code that generated figure 121, showing the

initial scaling, translation, and clipping parameters; the code for one sector of the

innermost annulus; and the code for the negative imaginary axis. Comment lines

indicate how path or boundary segments were generated separately and then spliced

(in order to allow for the places that a singularity might lurk, in which case the

generating code can “inch up” to the problematical argument value).

The size of the entire PostScript file for the identity function was about 68 kilobytes

(2757 lines, including comments). The smallest files were the plots for atan and atanh,

about 65 kilobytes apiece; the largest were the plots for sin, cos, sinh, and cosh, about

138 kilobytes apiece.

% PostScript file for plot of function IDENTITY

% Plot is to fit in a region 4.666666666666667 inches square

% showing axes extending 4.1 units from the origin.

40.97560975609756 40.97560975609756 scale

4.1 4.1 translate

newpath

-4.1 -4.1 moveto

4.1 -4.1 lineto

4.1 4.1 lineto

-4.1 4.1 lineto

closepath

clip

% Moby grid for function IDENTITY

% Annulus 0.25 0.5 4 0.97 0.45

% Sector from 4.7124 to 6.2832 (quadrant 3)

newpath

0.0 -0.25 moveto

0.0 -0.375 lineto

%middle radial

0.0 -0.375 lineto

0.0 -0.5 lineto

%end radial

0.0 -0.5 lineto

0.092 -0.4915 lineto

0.1843 -0.4648 lineto

0.273 -0.4189 lineto

0.3536 -0.3536 lineto

%middle circumferential

0.3536 -0.3536 lineto

0.413 -0.2818 lineto

0.4594 -0.1974 lineto

0.4894 -0.1024 lineto

NUMBERS 337

0.5 0.0 lineto

%end circumferential

0.5 0.0 lineto

0.375 0.0 lineto

%middle radial

0.375 0.0 lineto

0.25 0.0 lineto

%end radial

0.25 0.0 lineto

0.2297 -0.0987 lineto

0.1768 -0.1768 lineto

%middle circumferential

0.1768 -0.1768 lineto

0.0922 -0.2324 lineto

0.0 -0.25 lineto

%end circumferential

closepath

currentgray 0.45 setgray fill setgray

[2598 lines omitted]

% Vertical line from (0.0, -0.5) to (0.0, 0.0)

newpath

0.0 -0.5 moveto

0.0 0.0 lineto

0.05 setlinewidth 1 setlinecap stroke

% Vertical line from (0.0, -0.5) to (0.0, -1.0)

newpath

0.0 -0.5 moveto

0.0 -1.0 lineto

0.05 setlinewidth 1 setlinecap stroke

% Vertical line from (0.0, -2.0) to (0.0, -1.0)

newpath

0.0 -2.0 moveto

0.0 -1.0 lineto

0.05 setlinewidth 1 setlinecap stroke

% Vertical line from (0.0, -2.0) to (0.0, -1.1579208923731617E77)

newpath

0.0 -2.0 moveto

0.0 -6.3553 lineto

0.0 -6.378103166302659 lineto

0.0 -6.378103166302659 lineto

0.0 -6.378103166302659 lineto

0.05 setlinewidth 1 setlinecap stroke

[84 lines omitted]

% End of PostScript file for plot of function IDENTITY

338 COMMON LISP

Here is the program that generated the PostScript code for the graphs shown in

figures 121 through 1220. It contains a mixture of fairly general mechanisms and

ad hoc kludges for plotting functions of a single complex argument while gracefully

handling extremely large and small values, branch cuts, singularities, and periodic

behavior. The aim was to provide a simple user interface that would not require the

caller to provide special advice for each function to be plotted. The file for figure 121,

for example, was generated by the call (picture ´identity), which resulted in the

writing of a file named identity-plot.ps.

The program assumes that any periodic behavior will have a period that is a

multiple of 2π; that branch cuts will fall along the real or imaginary axis; and that

singularities or very large or small values will occur only at the origin, at ±1 or

±i, or on the boundaries of the annuli (particularly those with radius π/2 or π).

The central function is parametric-path, which accepts four arguments: two real

numbers that are the endpoints of an interval of real numbers, a function that maps

this interval into a path in the complex plane, and the function to be plotted; the task

of parametric-path is to generate PostScript code (a series of lineto operations) that

will plot an approximation to the image of the parametric path as transformed by the

function to be plotted. Each of the functions hline, vline, -hline, -vline, radial, and

circumferential takes appropriate parameters and returns a function suitable for use

as the third argument to parametric-path. There is some code that defends against

errors (by using ignore-errors) and against certain peculiarities of IEEE floatingpoint

arithmetic (the code that checks for notanumber (NaN) results).

The program is offered here without further comment or apology.

(defparameter units-to-show 4.1)

(defparameter text-width-in-picas 28.0)

(defparameter device-pixels-per-inch 300)

(defparameter pixels-per-unit

(* (/ (/ text-width-in-picas 6)

(* units-to-show 2))

device-pixels-per-inch))

(defparameter big (sqrt (sqrt most-positive-single-float)))

(defparameter tiny (sqrt (sqrt least-positive-single-float)))

(defparameter path-really-losing 1000.0)

(defparameter path-outer-limit (* units-to-show (sqrt 2) 1.1))

(defparameter path-minimal-delta (/ 10 pixels-per-unit))

(defparameter path-outer-delta (* path-outer-limit 0.3))

(defparameter path-relative-closeness 0.00001)

(defparameter back-off-delta 0.0005)

NUMBERS 339

(defun comment-line (stream &rest stuff)

(format stream "˜%% ")

(apply #--´format stream stuff)

(format t "˜%% ")

(apply #--´format t stuff))

(defun parametric-path (from to paramfn plotfn)

(assert (and (plusp from) (plusp to)))

(flet ((domainval (x) (funcall paramfn x))

(rangeval (x) (funcall plotfn (funcall paramfn x)))

(losing (x) (or (null x)

(/−− (realpart x) (realpart x)) ;NaN?

(/−− (imagpart x) (imagpart x)) ;NaN?

(> (abs (realpart x)) path-really-losing)

(> (abs (imagpart x)) path-really-losing))))

(when (> to 1000.0)

(let ((f0 (rangeval from))

(f1 (rangeval (+ from 1)))

(f2 (rangeval (+ from (* 2 pi))))

(f3 (rangeval (+ from 1 (* 2 pi))))

(f4 (rangeval (+ from (* 4 pi)))))

(flet ((close (x y)

(or (< (careful-abs (- x y)) path-minimal-delta)

(< (careful-abs (- x y))

(* (+ (careful-abs x) (careful-abs y))

path-relative-closeness)))))

(when (and (close f0 f2)

(close f2 f4)

(close f1 f3)

(or (and (close f0 f1)

(close f2 f3))

(and (not (close f0 f1))

(not (close f2 f3)))))

(format t "˜&Periodicity detected.")

(setq to (+ from (* (signum (- to from)) 2 pi)))))))

(let ((fromrange (ignore-errors (rangeval from)))

(torange (ignore-errors (rangeval to))))

(if (losing fromrange)

(if (losing torange)

´()

(parametric-path (back-off from to) to paramfn plotfn))

(if (losing torange)

(parametric-path from (back-off to from) paramfn plotfn)

(expand-path (refine-path (list from to) #--´rangeval)

#--´rangeval))))))

340 COMMON LISP

(defun back-off (point other)

(if (or (> point 10.0) (< point 0.1))

(let ((sp (sqrt point)))

(if (or (> point sp other) (< point sp other))

sp

(* sp (sqrt other))))

(+ point (* (signum (- other point)) back-off-delta))))

(defun careful-abs (z)

(cond ((or (> (realpart z) big)

(< (realpart z) (- big))

(> (imagpart z) big)

(< (imagpart z) (- big)))

big)

((complexp z) (abs z))

((minusp z) (- z))

(t z)))

(defparameter max-refinements 5000)

(defun refine-path (original-path rangevalfn)

(flet ((rangeval (x) (funcall rangevalfn x)))

(let ((path original-path))

(do ((j 0 (+ j 1)))

((null (rest path)))

(when (zerop (mod (+ j 1) max-refinements))

(break "Runaway path"))

(let* ((from (first path))

(to (second path))

(fromrange (rangeval from))

(torange (rangeval to))

(dist (careful-abs (- torange fromrange)))

(mid (* (sqrt from) (sqrt to)))

(midrange (rangeval mid)))

(cond ((or (and (far-out fromrange) (far-out torange))

(and (< dist path-minimal-delta)

(< (abs (- midrange fromrange))

path-minimal-delta)

;; Next test is intentionally asymmetric to

;; avoid problems with periodic functions.

(< (abs (- (rangeval (/ (+ to (* from 1.5))

2.5))

fromrange))

path-minimal-delta)))

(pop path))

NUMBERS 341

((−− mid from) (pop path))

((−− mid to) (pop path))

(t (setf (rest path) (cons mid (rest path)))))))))

original-path)

(defun expand-path (path rangevalfn)

(flet ((rangeval (x) (funcall rangevalfn x)))

(let ((final-path (list (rangeval (first path)))))

(do ((p (rest path) (cdr p)))

((null p)

(unless (rest final-path)

(break "Singleton path"))

(reverse final-path))

(let ((v (rangeval (car p))))

(cond ((and (rest final-path)

(not (far-out v))

(not (far-out (first final-path)))

(between v (first final-path)

(second final-path)))

(setf (first final-path) v))

((null (rest p)) ;Mustn´t omit last point

(push v final-path))

((< (abs (- v (first final-path))) path-minimal-delta))

((far-out v)

(unless (and (far-out (first final-path))

(< (abs (- v (first final-path)))

path-outer-delta))

(push (* 1.01 path-outer-limit (signum v))

final-path)))

(t (push v final-path))))))))

(defun far-out (x)

(> (careful-abs x) path-outer-limit))

(defparameter between-tolerance 0.000001)

(defun between (p q r)

(let ((px (realpart p)) (py (imagpart p))

(qx (realpart q)) (qy (imagpart q))

(rx (realpart r)) (ry (imagpart r)))

(and (or (<−− px qx rx) (>−− px qx rx))

(or (<−− py qy ry) (>−− py qy ry))

(< (abs (- (* (- qx px) (- ry qy))

(* (- rx qx) (- qy py))))

between-tolerance))))

342 COMMON LISP

(defun circle (radius)

#--´(lambda (angle) (* radius (cis angle))))

(defun hline (imag)

#--´(lambda (real) (complex real imag)))

(defun vline (real)

#--´(lambda (imag) (complex real imag)))

(defun -hline (imag)

#--´(lambda (real) (complex (- real) imag)))

(defun -vline (real)

#--´(lambda (imag) (complex real (- imag))))

(defun radial (phi quadrant)

#--´(lambda (rho) (repair-quadrant (* rho (cis phi)) quadrant)))

(defun circumferential (rho quadrant)

#--´(lambda (phi) (repair-quadrant (* rho (cis phi)) quadrant)))

;;; Quadrant is 0, 1, 2, or 3, meaning I, II, III, or IV.

(defun repair-quadrant (z quadrant)

(complex (* (+ (abs (realpart z)) tiny)

(case quadrant (0 1.0) (1 -1.0) (2 -1.0) (3 1.0)))

(* (+ (abs (imagpart z)) tiny)

(case quadrant (0 1.0) (1 1.0) (2 -1.0) (3 -1.0)))))

(defun clamp-real (x)

(if (far-out x)

(* (signum x) path-outer-limit)

(round-real x)))

(defun round-real (x)

(/ (round (* x 10000.0)) 10000.0))

(defun round-point (z)

(complex (round-real (realpart z)) (round-real (imagpart z))))

(defparameter hiringshade 0.97)

(defparameter loringshade 0.45)

(defparameter ticklength 0.12)

(defparameter smallticklength 0.09)

NUMBERS 343

;;; This determines the pattern of lines and annuli to be drawn.

(defun moby-grid (&optional (fn ´sqrt) (stream t))

(comment-line stream "Moby grid for function ˜S" fn)

(shaded-annulus 0.25 0.5 4 hiringshade loringshade fn stream)

(shaded-annulus 0.75 1.0 8 hiringshade loringshade fn stream)

(shaded-annulus (/ pi 2) 2.0 16 hiringshade loringshade fn stream)

(shaded-annulus 3 pi 32 hiringshade loringshade fn stream)

(moby-lines :horizontal 1.0 fn stream)

(moby-lines :horizontal -1.0 fn stream)

(moby-lines :vertical 1.0 fn stream)

(moby-lines :vertical -1.0 fn stream)

(let ((tickline 0.015)

(axisline 0.008))

(flet ((tick (n) (straight-line (complex n ticklength)

(complex n (- ticklength))

tickline

stream))

(smalltick (n) (straight-line (complex n smallticklength)

(complex n (- smallticklength))

tickline

stream)))

(comment-line stream "Real axis")

(straight-line #--c(-5 0) #--c(5 0) axisline stream)

(dotimes (j (floor units-to-show))

(let ((q (+ j 1))) (tick q) (tick (- q))))

(dotimes (j (floor units-to-show (/ pi 2)))

(let ((q (* (/ pi 2) (+ j 1))))

(smalltick q)

(smalltick (- q)))))

(flet ((tick (n) (straight-line (complex ticklength n)

(complex (- ticklength) n)

tickline

stream))

(smalltick (n) (straight-line (complex smallticklength n)

(complex (- smallticklength) n)

tickline

stream)))

(comment-line stream "Imaginary axis")

(straight-line #--c(0 -5) #--c(0 5) axisline stream)

(dotimes (j (floor units-to-show))

(let ((q (+ j 1))) (tick q) (tick (- q))))

(dotimes (j (floor units-to-show (/ pi 2)))

(let ((q (* (/ pi 2) (+ j 1))))

(smalltick q)

(smalltick (- q)))))))

344 COMMON LISP

(defun straight-line (from to wid stream)

(format stream

"˜%newpath ˜S ˜S moveto ˜S ˜S lineto ˜S ˜
setlinewidth 1 setlinecap stroke"

(realpart from)

(imagpart from)

(realpart to)

(imagpart to)

wid))

;;; This function draws the lines for the pattern.

(defun moby-lines (orientation signum plotfn stream)

(let ((paramfn (ecase orientation

(:horizontal (if (< signum 0) #--´-hline #--´hline))

(:vertical (if (< signum 0) #--´-vline #--´vline)))))

(flet ((foo (from to other wid)

(ecase orientation

(:horizontal

(comment-line stream

"Horizontal line from (˜S, ˜S) to (˜S, ˜S)"

(round-real (* signum from))

(round-real other)

(round-real (* signum to))

(round-real other)))

(:vertical

(comment-line stream

"Vertical line from (˜S, ˜S) to (˜S, ˜S)"

(round-real other)

(round-real (* signum from))

(round-real other)

(round-real (* signum to)))))

(postscript-path

stream

(parametric-path from

to

(funcall paramfn other)

plotfn))

(postscript-penstroke stream wid)))

(let* ((thick 0.05)

(thin 0.02))

;; Main axis

(foo 0.5 tiny 0.0 thick)

(foo 0.5 1.0 0.0 thick)

(foo 2.0 1.0 0.0 thick)

(foo 2.0 big 0.0 thick)

NUMBERS 345

;; Parallels at 1 and -1

(foo 2.0 tiny 1.0 thin)

(foo 2.0 big 1.0 thin)

(foo 2.0 tiny -1.0 thin)

(foo 2.0 big -1.0 thin)

;; Parallels at 2, 3, -2, -3

(foo tiny big 2.0 thin)

(foo tiny big -2.0 thin)

(foo tiny big 3.0 thin)

(foo tiny big -3.0 thin)))))

(defun splice (p q)

(let ((v (car (last p)))

(w (first q)))

(and (far-out v)

(far-out w)

(>−− (abs (- v w)) path-outer-delta)

;; Two far-apart far-out points. Try to walk around

;; outside the perimeter, in the shorter direction.

(let* ((pdiff (phase (/ v w)))

(npoints (floor (abs pdiff) (asin .2)))

(delta (/ pdiff (+ npoints 1)))

(incr (cis delta)))

(do ((j 0 (+ j 1))

(p (list w "end splice") (cons (* (car p) incr) p)))

((−− j npoints) (cons "start splice" p)))))))

;;; This function draws the annuli for the pattern.

(defun shaded-annulus (inner outer sectors firstshade lastshade fn stream)

(assert (zerop (mod sectors 4)))

(comment-line stream "Annulus ˜S ˜S ˜S ˜S ˜S"

(round-real inner) (round-real outer)

sectors firstshade lastshade)

(dotimes (jj sectors)

(let ((j (- sectors jj 1)))

(let* ((lophase (+ tiny (* 2 pi (/ j sectors))))

(hiphase (* 2 pi (/ (+ j 1) sectors)))

(midphase (/ (+ lophase hiphase) 2.0))

(midradius (/ (+ inner outer) 2.0))

(quadrant (floor (* j 4) sectors)))

(comment-line stream "Sector from ˜S to ˜S (quadrant ˜S)"

(round-real lophase)

(round-real hiphase)

quadrant)

346 COMMON LISP

(let ((p0 (reverse (parametric-path midradius

inner

(radial lophase quadrant)

fn)))

(p1 (parametric-path midradius

outer

(radial lophase quadrant)

fn))

(p2 (reverse (parametric-path midphase

lophase

(circumferential outer

quadrant)

fn)))

(p3 (parametric-path midphase

hiphase

(circumferential outer quadrant)

fn))

(p4 (reverse (parametric-path midradius

outer

(radial hiphase quadrant)

fn)))

(p5 (parametric-path midradius

inner

(radial hiphase quadrant)

fn))

(p6 (reverse (parametric-path midphase

hiphase

(circumferential inner

quadrant)

fn)))

(p7 (parametric-path midphase

lophase

(circumferential inner quadrant)

fn)))

(postscript-closed-path stream

(append

p0 (splice p0 p1) ´("middle radial")

p1 (splice p1 p2) ´("end radial")

p2 (splice p2 p3) ´("middle circumferential")

p3 (splice p3 p4) ´("end circumferential")

p4 (splice p4 p5) ´("middle radial")

p5 (splice p5 p6) ´("end radial")

p6 (splice p6 p7) ´("middle circumferential")

p7 (splice p7 p0) ´("end circumferential")

)))

NUMBERS 347

(postscript-shade stream

(/ (+ (* firstshade (- (- sectors 1) j))

(* lastshade j))

(- sectors 1)))))))

(defun postscript-penstroke (stream wid)

(format stream "˜%˜S setlinewidth 1 setlinecap stroke"

wid))

(defun postscript-shade (stream shade)

(format stream "˜%currentgray ˜S setgray fill setgray"

shade))

(defun postscript-closed-path (stream path)

(unless (every #--´far-out (remove-if-not #--´numberp path))

(postscript-raw-path stream path)

(format stream "˜% closepath")))

(defun postscript-path (stream path)

(unless (every #--´far-out (remove-if-not #--´numberp path))

(postscript-raw-path stream path)))

;;; Print a path as a series of PostScript "lineto" commands.

(defun postscript-raw-path (stream path)

(format stream "˜%newpath")

(let ((fmt "˜% ˜S ˜S moveto"))

(dolist (pt path)

(cond ((stringp pt)

(format stream "˜% %˜A" pt))

(t (format stream

fmt

(clamp-real (realpart pt))

(clamp-real (imagpart pt)))

(setq fmt "˜% ˜S ˜S lineto"))))))

;;; Definitions of functions to be plotted that are not

;;; standard Common Lisp functions.

(defun one-plus-over-one-minus (x) (/ (+ 1 x) (- 1 x)))

(defun one-minus-over-one-plus (x) (/ (- 1 x) (+ 1 x)))

(defun sqrt-square-minus-one (x) (sqrt (- 1 (* x x))))

(defun sqrt-one-plus-square (x) (sqrt (+ 1 (* x x))))

348 COMMON LISP

;;; Because X3J13 voted for a new definition of the atan function,

;;; the following definition was used in place of the atan function

;;; provided by the Common Lisp implementation I was using.

(defun good-atan (x)

(/ (- (log (+ 1 (* x #--c(0 1))))

(log (- 1 (* x #--c(0 1)))))

#--c(0 2)))

;;; Because the first edition had an erroneous definition of atanh,

;;; the following definition was used in place of the atanh function

;;; provided by the Common Lisp implementation I was using.

(defun really-good-atanh (x)

(/ (- (log (+ 1 x))

(log (- 1 x)))

2))

;;; This is the main procedure that is intended to be called by a user.

(defun picture (&optional (fn #--´sqrt))

(with-open-file (stream (concatenate ´string

(string-downcase (string fn))

"-plot.ps")

:direction :output)

(format stream "% PostScript file for plot of function ˜S˜%" fn)

(format stream "% Plot is to fit in a region ˜S inches square˜%"

(/ text-width-in-picas 6.0))

(format stream

"% showing axes extending ˜S units from the origin.˜%"

units-to-show)

(let ((scaling (/ (* text-width-in-picas 12) (* units-to-show 2))))

(format stream "˜%˜S ˜:*˜S scale" scaling))

(format stream "˜%˜S ˜:*˜S translate" units-to-show)

(format stream "˜%newpath")

(format stream "˜% ˜S ˜S moveto" (- units-to-show) (- units-to-show))

(format stream "˜% ˜S ˜S lineto" units-to-show (- units-to-show))

(format stream "˜% ˜S ˜S lineto" units-to-show units-to-show)

(format stream "˜% ˜S ˜S lineto" (- units-to-show) units-to-show)

(format stream "˜% closepath")

(format stream "˜%clip")

(moby-grid fn stream)

(format stream

"˜%% End of PostScript file for plot of function ˜S"

fn)

(terpri stream)))

NUMBERS 349

12.6. Type Conversions and Component Extractions on Numbers

While most arithmetic functions will operate on any kind of number, coercing types

if necessary, the following functions are provided to allow specific conversions of

data types to be forced when desired.

[Function]float number &optional other

This converts any noncomplex number to a floatingpoint number. With no second

argument, if number is already a floatingpoint number, then number is returned;

otherwise a single-float is produced. If the argument other is provided, then it must

be a floatingpoint number, and number is converted to the same format as other. See

also coerce.

[Function]rational number

[Function]rationalize number

Each of these functions converts any noncomplex number to a rational number. If

the argument is already rational, it is returned. The two functions differ in their

treatment of floatingpoint numbers.

rational assumes that the floatingpoint number is completely accurate and returns

a rational number mathematically equal to the precise value of the floatingpoint

number.

rationalize assumes that the floatingpoint number is accurate only to the precision

of the floatingpoint representation and may return any rational number for which the

floatingpoint number is the best available approximation of its format; in doing this

it attempts to keep both numerator and denominator small.

It is always the case that

(float (rational x) x) ≡ x

and

(float (rationalize x) x) ≡ x

That is, rationalizing a floatingpoint number by either method and then converting

it back to a floatingpoint number of the same format produces the original number.

What distinguishes the two functions is that rational typically has a simple, inexpen

sive implementation, whereas rationalize goes to more trouble to produce a result

that is more pleasant to view and simpler to compute with for some purposes.

350 COMMON LISP

[Function]numerator rational

[Function]denominator rational

These functions take a rational number (an integer or ratio) and return as an integer

the numerator or denominator of the canonical reduced form of the rational. The

numerator of an integer is that integer; the denominator of an integer is 1. Note that

(gcd (numerator x) (denominator x)) ⇒ 1

The denominator will always be a strictly positive integer; the numerator may be any

integer. For example:

(numerator (/ 8 -6)) ⇒ -4

(denominator (/ 8 -6)) ⇒ 3

There is no fix function in Common Lisp because there are several interesting

ways to convert nonintegral values to integers. These are provided by the functions

below, which perform not only type conversion but also some nontrivial calculations

as well.

[Function]floor number &optional divisor

[Function]ceiling number &optional divisor

[Function]truncate number &optional divisor

[Function]round number &optional divisor

In the simple oneargument case, each of these functions converts its argument

number (which must not be complex) to an integer. If the argument is already an

integer, it is returned directly. If the argument is a ratio or floatingpoint number, the

functions use different algorithms for the conversion.

floor converts its argument by truncating toward negative infinity; that is, the result

is the largest integer that is not larger than the argument.

ceiling converts its argument by truncating toward positive infinity; that is, the

result is the smallest integer that is not smaller than the argument.

truncate converts its argument by truncating toward zero; that is, the result is the

integer of the same sign as the argument and which has the greatest integral magnitude

not greater than that of the argument.

round converts its argument by rounding to the nearest integer; if number is exactly

halfway between two integers (that is, of the form integer + 0.5), then it is rounded

to the one that is even (divisible by 2).

The following table shows what the four functions produce when given various

arguments.

NUMBERS 351

Argument floor ceiling truncate round

2.6 2 3 2 3

2.5 2 3 2 2

2.4 2 3 2 2

0.7 0 1 0 1

0.3 0 1 0 0

-0.3 -1 0 0 0

-0.7 -1 0 0 -1

-2.4 -3 -2 -2 -2

-2.5 -3 -2 -2 -2

-2.6 -3 -2 -2 -3

If a second argument divisor is supplied, then the result is the appropriate type of

rounding or truncation applied to the result of dividing the number by the divisor.

For example, (floor 5 2) ≡ (floor (/ 5 2)) but is potentially more efficient.

This statement is not entirely accurate; one should instead say that (values (floor

5 2)) ≡ (values (floor (/ 5 2))), because there is a second value to consider, as

discussed below. In other words, the first values returned by the two forms will be

the same, but in general the second values will differ. Indeed, we have

(floor 5 2) ⇒ 2 and 1

(floor (/ 5 2)) ⇒ 2 and 1/2

for this example.

The divisor may be any noncomplex number.

It is generally accepted that it is an error for the divisor to be zero.

The oneargument case is exactly like the twoargument case where the second

argument is 1.

In other words, the oneargument case returns an integer and fractional part for the

number: (truncate 5.3) ⇒ 5.0 and 0.3, for example.

Each of the functions actually returns two values, whether given one or two ar

guments. The second result is the remainder and may be obtained using multiple-

value-bind and related constructs. If any of these functions is given two arguments

x and y and produces results q and r, then q · y + r = x. The first result q is always

an integer. The remainder r is an integer if both arguments are integers, is rational if

both arguments are rational, and is floatingpoint if either argument is floatingpoint.

One consequence is that in the oneargument case the remainder is always a number

of the same type as the argument.

When only one argument is given, the two results are exact; the mathematical sum

of the two results is always equal to the mathematical value of the argument.

352 COMMON LISP

Compatibility note: The names of the functions floor, ceiling, truncate, and round are more

accurate than names like fix that have heretofore been used in various Lisp systems. The

names used here are compatible with standard mathematical terminology (and with PL/1, as

it happens). In Fortran ifix means truncate. Algol 68 provides round and uses entier to mean

floor. In MacLisp, fix and ifix both mean floor (one is generic, the other flonumin/fixnum

out). In Interlisp, fix means truncate. In Lisp Machine Lisp, fix means floor and fixr means

round. Standard Lisp provides a fix function but does not specify precisely what it does. The

existing usage of the name fix is so confused that it seemed best to avoid it altogether.

The names and definitions given here have recently been adopted by Lisp Machine Lisp,

and MacLisp and NIL (New Implementation of Lisp) seem likely to follow suit.

[Function]mod number divisor

[Function]rem number divisor

mod performs the operation floor on its two arguments and returns the second result

of floor as its only result. Similarly, rem performs the operation truncate on its

arguments and returns the second result of truncate as its only result.

mod and rem are therefore the usual modulus and remainder functions when applied

to two integer arguments. In general, however, the arguments may be integers or

floatingpoint numbers.

(mod 13 4) ⇒ 1 (rem 13 4) ⇒ 1

(mod -13 4) ⇒ 3 (rem -13 4) ⇒ -1

(mod 13 -4) ⇒ -3 (rem 13 -4) ⇒ 1

(mod -13 -4) ⇒ -1 (rem -13 -4) ⇒ -1

(mod 13.4 1) ⇒ 0.4 (rem 13.4 1) ⇒ 0.4

(mod -13.4 1) ⇒ 0.6 (rem -13.4 1) ⇒ -0.4

Compatibility note: The Interlisp function remainder is essentially equivalent to the Com

mon Lisp function rem. The MacLisp function remainder is like rem but accepts only integer

arguments.

[Function]ffloor number &optional divisor

[Function]fceiling number &optional divisor

[Function]ftruncate number &optional divisor

[Function]fround number &optional divisor

These functions are just like floor, ceiling, truncate, and round, except that the

result (the first result of two) is always a floatingpoint number rather than an integer.

It is roughly as if ffloor gave its arguments to floor, and then applied float to

NUMBERS 353

the first result before passing them both back. In practice, however, ffloor may

be implemented much more efficiently. Similar remarks apply to the other three

functions. If the first argument is a floatingpoint number, and the second argument

is not a floatingpoint number of longer format, then the first result will be a floating

point number of the same type as the first argument. For example:

(ffloor -4.7) ⇒ -5.0 and 0.3

(ffloor 3.5d0) ⇒ 3.0d0 and 0.5d0

[Function]decode-float float

[Function]scale-float float integer

[Function]float-radix float

[Function]float-sign float1 &optional float2

[Function]float-digits float

[Function]float-precision float

[Function]integer-decode-float float

The function decode-float takes a floatingpoint number and returns three values.

The first value is a new floatingpoint number of the same format representing the

significand; the second value is an integer representing the exponent; and the third

value is a floatingpoint number of the same format indicating the sign (−1.0 or 1.0).

Let b be the radix for the floatingpoint representation; then decode-float divides the

argument by an integral power of b so as to bring its value between 1/b (inclusive)

and 1 (exclusive) and returns the quotient as the first value. If the argument is zero,

however, the result is equal to the absolute value of the argument (that is, if there is a

negative zero, its significand is considered to be a positive zero).

The second value of decode-float is the integer exponent e to which b must be

raised to produce the appropriate power for the division. If the argument is zero, any

integer value may be returned, provided that the identity shown below for scale-float

holds.

The third value of decode-float is a floatingpoint number, of the same format as

the argument, whose absolute value is 1 and whose sign matches that of the argument.

The function scale-float takes a floatingpoint number f (not necessarily between

1/b and 1) and an integer k, and returns (* f (expt (float b f) k)). (The use of scale-

float may be much more efficient than using exponentiation and multiplication and

avoids intermediate overflow and underflow if the final result is representable.)

Note that

354 COMMON LISP

(multiple-value-bind (signif expon sign)

(decode-float f)

(scale-float signif expon))

≡ (abs f)

and

(multiple-value-bind (signif expon sign)

(decode-float f)

(* (scale-float signif expon) sign))

≡ f

The function float-radix returns (as an integer) the radix b of the floatingpoint

argument.

The function float-sign returns a floatingpoint number z such that z and float1

have the same sign and also such that z and float2 have the same absolute value. The

argument float2 defaults to the value of (float 1 float1); (float-sign x) therefore

always produces a 1.0 or -1.0 of appropriate format according to the sign of x. (Note

that if an implementation has distinct representations for negative zero and positive

zero, then (float-sign -0.0) ⇒ -1.0.)

The function float-digits returns, as a nonnegative integer, the number of radixb

digits used in the representation of its argument (including any implicit digits, such

as a “hidden bit”). The function float-precision returns, as a nonnegative integer,

the number of significant radixb digits present in the argument; if the argument is (a

floatingpoint) zero, then the result is (an integer) zero. For normalized floatingpoint

numbers, the results of float-digits and float-precision will be the same, but the

precision will be less than the number of representation digits for a denormalized or

zero number.

The function integer-decode-float is similar to decode-float but for its first value

returns, as an integer, the significand scaled so as to be an integer. For an argument

f, this integer will be strictly less than

(expt b (float-precision f))

but no less than

(expt b (- (float-precision f) 1))

except that if f is zero, then the integer value will be zero.

The second value bears the same relationship to the first value as for decode-float:

NUMBERS 355

(multiple-value-bind (signif expon sign)

(integer-decode-float f)

(scale-float (float signif f) expon))

≡ (abs f)

The third value of integer-decode-float will be 1 or -1.

Rationale: These functions allow the writing of machineindependent, or at least machine

parameterized, floatingpoint software of reasonable efficiency.

[Function]complex realpart &optional imagpart

The arguments must be noncomplex numbers; a number is returned that has realpart

as its real part and imagpart as its imaginary part, possibly converted according to

the rule of floatingpoint contagion (thus both components will be of the same type).

If imagpart is not specified, then (coerce 0 (type-of realpart)) is effectively used.

Note that if both the realpart and imagpart are rational and the imagpart is zero,

then the result is just the realpart because of the rule of canonical representation

for complex rationals. It follows that the result of complex is not always a complex

number; it may be simply a rational.

[Function]realpart number

[Function]imagpart number

These return the real and imaginary parts of a complex number. If number is a non

complex number, then realpart returns its argument number and imagpart returns (*

0 number), which has the effect that the imaginary part of a rational is 0 and that of

a floatingpoint number is a floatingpoint zero of the same format.

A clever way to multiply a complex number z by i is to write

(complex (- (imagpart z)) (realpart z))

instead of (* z #--c(0 1)). This cleverness is not always gratuitous; it may be of

particular importance in the presence of minus zero. For example, if we are using

IEEE standard floatingpoint arithmetic and z = 4 + 0i, the result of the clever

expression is −0 + 4i, a true 90◦ rotation of z, whereas the result of (* z #--c(0 1)) is

likely to be

(4 + 0i)(+0 + i) = ((4)(+0) − (+0)(1)) + ((4)(1) + (+0)(+0))i

= ((+0) − (+0)) + ((4) + (+0))i = +0 + 4i

which could land on the wrong side of a branch cut, for example.

356 COMMON LISP

12.7. Logical Operations on Numbers

The logical operations in this section require integers as arguments; it is an error to

supply a noninteger as an argument. The functions all treat integers as if they were

represented in two’scomplement notation.

Implementation note: Internally, of course, an implementation of Common Lisp may or may

not use a two’scomplement representation. All that is necessary is that the logical operations

perform calculations so as to give this appearance to the user.

The logical operations provide a convenient way to represent an infinite vector of

bits. Let such a conceptual vector be indexed by the nonnegative integers. Then

bit j is assigned a “weight” 2j. Assume that only a finite number of bits are 1’s or

only a finite number of bits are 0’s. A vector with only a finite number of onebits is

represented as the sum of the weights of the onebits, a positive integer. A vector with

only a finite number of zerobits is represented as -1 minus the sum of the weights of

the zerobits, a negative integer.

This method of using integers to represent bitvectors can in turn be used to

represent sets. Suppose that some (possibly countably infinite) universe of discourse

for sets is mapped into the nonnegative integers. Then a set can be represented as a

bit vector; an element is in the set if the bit whose index corresponds to that element

is a onebit. In this way all finite sets can be represented (by positive integers), as

well as all sets whose complements are finite (by negative integers). The functions

logior, logand, and logxor defined below then compute the union, intersection, and

symmetric difference operations on sets represented in this way.

[Function]logior &rest integers

This returns the bitwise logical inclusive or of its arguments. If no argument is

given, then the result is zero, which is an identity for this operation.

[Function]logxor &rest integers

This returns the bitwise logical exclusive or of its arguments. If no argument is

given, then the result is zero, which is an identity for this operation.

[Function]logand &rest integers

This returns the bitwise logical and of its arguments. If no argument is given, then

the result is -1, which is an identity for this operation.

NUMBERS 357

[Function]logeqv &rest integers

This returns the bitwise logical equivalence (also known as exclusive nor) of its

arguments. If no argument is given, then the result is -1, which is an identity for this

operation.

[Function]lognand integer1 integer2

[Function]lognor integer1 integer2

[Function]logandc1 integer1 integer2

[Function]logandc2 integer1 integer2

[Function]logorc1 integer1 integer2

[Function]logorc2 integer1 integer2

These are the other six nontrivial bitwise logical operations on two arguments.

Because they are not associative, they take exactly two arguments rather than any

nonnegative number of arguments.

(lognand n1 n2) ≡ (lognot (logand n1 n2))

(lognor n1 n2) ≡ (lognot (logior n1 n2))

(logandc1 n1 n2) ≡ (logand (lognot n1) n2)

(logandc2 n1 n2) ≡ (logand n1 (lognot n2))

(logorc1 n1 n2) ≡ (logior (lognot n1) n2)

(logorc2 n1 n2) ≡ (logior n1 (lognot n2))

The ten bitwise logical operations on two integers are summarized in the following

table:

integer1 0 0 1 1

integer2 0 1 0 1 Operation Name

logand 0 0 0 1 and

logior 0 1 1 1 inclusive or

logxor 0 1 1 0 exclusive or

logeqv 1 0 0 1 equivalence (exclusive nor)

lognand 1 1 1 0 notand

lognor 1 0 0 0 notor

logandc1 0 1 0 0 and complement of integer1 with integer2

logandc2 0 0 1 0 and integer1 with complement of integer2

logorc1 1 1 0 1 or complement of integer1 with integer2

logorc2 1 0 1 1 or integer1 with complement of integer2

358 COMMON LISP

[Function]boole op integer1 integer2

[Constant]boole-clr

[Constant]boole-set

[Constant]boole-1

[Constant]boole-2

[Constant]boole-c1

[Constant]boole-c2

[Constant]boole-and

[Constant]boole-ior

[Constant]boole-xor

[Constant]boole-eqv

[Constant]boole-nand

[Constant]boole-nor

[Constant]boole-andc1

[Constant]boole-andc2

[Constant]boole-orc1

[Constant]boole-orc2

The function boole takes an operation op and two integers, and returns an integer

produced by performing the logical operation specified by op on the two integers.

The precise values of the sixteen constants are implementationdependent, but they

are suitable for use as the first argument to boole:

integer1 0 0 1 1

integer2 0 1 0 1 Operation Performed

boole-clr 0 0 0 0 always 0

boole-set 1 1 1 1 always 1

boole-1 0 0 1 1 integer1

boole-2 0 1 0 1 integer2

boole-c1 1 1 0 0 complement of integer1

boole-c2 1 0 1 0 complement of integer2

boole-and 0 0 0 1 and

boole-ior 0 1 1 1 inclusive or

boole-xor 0 1 1 0 exclusive or

boole-eqv 1 0 0 1 equivalence (exclusive nor)

boole-nand 1 1 1 0 notand

boole-nor 1 0 0 0 notor

boole-andc1 0 1 0 0 and complement of integer1 with integer2

boole-andc2 0 0 1 0 and integer1 with complement of integer2

boole-orc1 1 1 0 1 or complement of integer1 with integer2

boole-orc2 1 0 1 1 or integer1 with complement of integer2

NUMBERS 359

boole can therefore compute all sixteen logical functions on two arguments. In

general,

(boole boole-and x y) ≡ (logand x y)

and the latter is more perspicuous. However, boole is useful when it is necessary to

parameterize a procedure so that it can use one of several logical operations.

[Function]lognot integer

This returns the bitwise logical not of its argument. Every bit of the result is the

complement of the corresponding bit in the argument.

(logbitp j (lognot x)) ≡ (not (logbitp j x))

[Function]logtest integer1 integer2

logtest is a predicate that is true if any of the bits designated by the 1’s in integer1

are 1’s in integer2.

(logtest x y) ≡ (not (zerop (logand x y)))

[Function]logbitp index integer

logbitp is true if the bit in integer whose index is index (that is, its weight is 2index)

is a onebit; otherwise it is false. For example:

(logbitp 2 6) is true

(logbitp 0 6) is false

(logbitp k n) ≡ (ldb-test (byte 1 k) n)

X3J13 voted in January 1989 〈7〉 to clarify that the index must be a nonnegative

integer.

[Function]ash integer count

This function shifts integer arithmetically left by count bit positions if count is

positive, or right by −count bit positions if count is negative. The sign of the result

is always the same as the sign of integer.

Mathematically speaking, this operation performs the computation floor(integer ·
2count).

Logically, this moves all of the bits in integer to the left, adding zerobits at the

bottom, or moves them to the right, discarding bits. (In this context the question of

360 COMMON LISP

what gets shifted in on the left is irrelevant; integers, viewed as strings of bits, are

“halfinfinite,” that is, conceptually extend infinitely far to the left.) For example:

(logbitp j (ash n k)) ≡ (and (>−− j k) (logbitp (- j k) n))

[Function]logcount integer

The number of bits in integer is determined and returned. If integer is positive,

the 1bits in its binary representation are counted. If integer is negative, the 0bits

in its two’scomplement binary representation are counted. The result is always a

nonnegative integer. For example:

(logcount 13) ⇒ 3 ;Binary representation is ...0001101

(logcount -13) ⇒ 2 ;Binary representation is ...1110011

(logcount 30) ⇒ 4 ;Binary representation is ...0011110

(logcount -30) ⇒ 4 ;Binary representation is ...1100010

The following identity always holds:

(logcount x) ≡ (logcount (- (+ x 1)))

≡ (logcount (lognot x))

[Function]integer-length integer

This function performs the computation

ceiling(log2(if integer < 0 then − integer else integer + 1))

This is useful in two different ways. First, if integer is nonnegative, then its value

can be represented in unsigned binary form in a field whose width in bits is no smaller

than (integer-length integer). Second, regardless of the sign of integer, its value

can be represented in signed binary two’scomplement form in a field whose width

in bits is no smaller than (+ (integer-length integer) 1). For example:

(integer-length 0) ⇒ 0

(integer-length 1) ⇒ 1

(integer-length 3) ⇒ 2

(integer-length 4) ⇒ 3

(integer-length 7) ⇒ 3

(integer-length -1) ⇒ 0

(integer-length -4) ⇒ 2

(integer-length -7) ⇒ 3

(integer-length -8) ⇒ 3

NUMBERS 361

Compatibility note: This function is similar to the MacLisp function haulong. One may define

haulong as

(haulong x) ≡ (integer-length (abs x))

12.8. Byte Manipulation Functions

Several functions are provided for dealing with an arbitrarywidth field of contiguous

bits appearing anywhere in an integer. Such a contiguous set of bits is called a byte.

Here the term byte does not imply some fixed number of bits (such as eight), rather

a field of arbitrary and userspecifiable width.

The bytemanipulation functions use objects called byte specifiers to designate a

specific byte position within an integer. The representation of a byte specifier is

implementationdependent; in particular, it may or may not be a number. It is suffi

cient to know that the function byte will construct one, and that the bytemanipulation

functions will accept them. The function byte accepts two integers representing the

position and size of the byte and returns a byte specifier. Such a specifier designates

a byte whose width is size and whose bits have weights 2position+size−1 through

2position.

[Function]byte size position

byte takes two integers representing the size and position of a byte and returns a byte

specifier suitable for use as an argument to bytemanipulation functions.

[Function]byte-size bytespec

[Function]byte-position bytespec

Given a byte specifier, byte-size returns the size specified as an integer; byte-position

similarly returns the position. For example:

(byte-size (byte j k)) ≡ j

(byte-position (byte j k)) ≡ k

[Function]ldb bytespec integer

bytespec specifies a byte of integer to be extracted. The result is returned as a

nonnegative integer. For example:

362 COMMON LISP

(logbitp j (ldb (byte s p) n)) ≡ (and (< j s) (logbitp (+ j p) n))

The name of the function ldb means “load byte.”

Compatibility note: The MacLisp function haipart can be implemented in terms of ldb as

follows:

(defun haipart (integer count)

(let ((x (abs integer)))

(if (minusp count)

(ldb (byte (- count) 0) x)

(ldb (byte count (max 0 (- (integer-length x) count)))

x))))

If the argument integer is specified by a form that is a place form acceptable to

setf, then setf may be used with ldb to modify a byte within the integer that is stored

in that place. The effect is to perform a dpb operation and then store the result back

into the place.

[Function]ldb-test bytespec integer

ldb-test is a predicate that is true if any of the bits designated by the byte specifier

bytespec are 1’s in integer; that is, it is true if the designated field is nonzero.

(ldb-test bytespec n) ≡ (not (zerop (ldb bytespec n)))

[Function]mask-field bytespec integer

This is similar to ldb; however, the result contains the specified byte of integer in

the position specified by bytespec, rather than in position 0 as with ldb. The result

therefore agrees with integer in the byte specified but has zerobits everywhere else.

For example:

(ldb bs (mask-field bs n)) ≡ (ldb bs n)

(logbitp j (mask-field (byte s p) n))

≡ (and (>−− j p) (< j (+ p s)) (logbitp j n))

(mask-field bs n) ≡ (logand n (dpb -1 bs 0))

NUMBERS 363

If the argument integer is specified by a form that is a place form acceptable to

setf, then setf may be used with mask-field to modify a byte within the integer that

is stored in that place. The effect is to perform a deposit-field operation and then

store the result back into the place.

[Function]dpb newbyte bytespec integer

This returns a number that is the same as integer except in the bits specified by

bytespec. Let s be the size specified by bytespec; then the low s bits of newbyte

appear in the result in the byte specified by bytespec. The integer newbyte is therefore

interpreted as being rightjustified, as if it were the result of ldb. For example:

(logbitp j (dpb m (byte s p) n))

≡ (if (and (>−− j p) (< j (+ p s)))

(logbitp (- j p) m)

(logbitp j n))

The name of the function dpb means “deposit byte.”

[Function]deposit-field newbyte bytespec integer

This function is to mask-field as dpb is to ldb. The result is an integer that contains

the bits of newbyte within the byte specified by bytespec, and elsewhere contains the

bits of integer. For example:

(logbitp j (deposit-field m (byte s p) n))

≡ (if (and (>−− j p) (< j (+ p s)))

(logbitp j m)

(logbitp j n))

Implementation note: If the bytespec is a constant, one may of course construct, at compile

time, an equivalent mask m, for example by computing (deposit-field -1 bytespec 0). Given

this mask m, one may then compute

(deposit-field newbyte bytespec integer)

by computing

(logior (logand newbyte m) (logand integer (lognot m)))

where the result of (lognot m) can of course also be computed at compile time. However,

the following expression may also be used and may require fewer temporary registers in some

situations:

364 COMMON LISP

(logxor integer (logand m (logxor integer newbyte)))

A related, though possibly less useful, trick is that

(let ((z (logand (logxor x y) m)))

(setq x (logxor z x))

(setq y (logxor z y)))

interchanges those bits of x and y for which the mask m is 1, and leaves alone those bits of x

and y for which m is 0.

12.9. Random Numbers

The Common Lisp facility for generating pseudorandom numbers has been carefully

defined to make its use reasonably portable. While two implementations may produce

different series of pseudorandom numbers, the distribution of values should be

relatively independent of such machinedependent aspects as word size.

[Function]random number &optional state

(random n) accepts a positive number n and returns a number of the same kind

between zero (inclusive) and n (exclusive). The number n may be an integer or a

floatingpoint number. An approximately uniform choice distribution is used. If n

is an integer, each of the possible results occurs with (approximate) probability 1/n.

(The qualifier “approximate” is used because of implementation considerations; in

practice, the deviation from uniformity should be quite small.)

The argument state must be an object of type random-state; it defaults to the

value of the variable *random-state*. This object is used to maintain the state of

the pseudorandomnumber generator and is altered as a side effect of the random

operation.

Compatibility note: random of zero arguments as defined in MacLisp has been omitted because

its value is too implementationdependent (limited by fixnum range).

Implementation note: In general, even if random of zero arguments were defined as in MacLisp,

it is not adequate to define (random n) for integral n to be simply (mod (random) n); this fails to

be uniformly distributed if n is larger than the largest number produced by random, or even if n

merely approaches this number. This is another reason for omitting random of zero arguments

in Common Lisp. Assuming that the underlying mechanism produces “random bits” (possibly

in chunks such as fixnums), the best approach is to produce enough random bits to construct

an integer k some number d of bits larger than (integer-length n) (see integer-length), and

then compute (mod k n). The quantity d should be at least 7, and preferably 10 or more.

NUMBERS 365

To produce random floatingpoint numbers in the halfopen range [A,B), accepted practice

(as determined by a look through the Collected Algorithms from the ACM, particularly algo

rithms 133, 266, 294, and 370) is to compute X · (B − A) + A, where X is a floatingpoint

number uniformly distributed over [0.0, 1.0) and computed by calculating a random integer N

in the range [0,M) (typically by a multiplicativecongruential or linearcongruential method

mod M) and then setting X = N/M. See also [27]. If one takes M = 2f, where f is the

length of the significand of a floatingpoint number (and it is in fact common to choose M

to be a power of 2), then this method is equivalent to the following assemblylanguagelevel

procedure. Assume the representation has no hidden bit. Take a floatingpoint 0.5, and clobber

its entire significand with random bits. Normalize the result if necessary.

For example, on the DEC PDP10, assume that accumulator T is completely random (all 36

bits are random). Then the code sequence

LSH T,-9 ;Clear high 9 bits; low 27 are random

FSC T,128. ;Install exponent and normalize

will produce in T a random floatingpoint number uniformly distributed over [0.0, 1.0). (Instead

of the LSH instruction, one could do

TLZ T,777000 ;That’s 777000 octal

but if the 36 random bits came from a congruential randomnumber generator, the highorder

bits tend to be “more random” than the loworder ones, and so the LSH would be better for

uniform distribution. Ideally all the bits would be the result of highquality randomness.)

With a hiddenbit representation, normalization is not a problem, but dealing with the hidden

bit is. The method can be adapted as follows. Take a floatingpoint 1.0 and clobber the explicit

significand bits with random bits; this produces a random floatingpoint number in the range

[1.0, 2.0). Then simply subtract 1.0. In effect, we let the hidden bit creep in and then subtract

it away again.

For example, on the DEC VAX, assume that register T is completely random (but a little

less random than on the PDP10, as it has only 32 random bits). Then the code sequence

INSV #--ˆX81,#--7,#--9,T ;Install correct sign bit and exponent

SUBF #--ˆF1.0,T ;Subtract 1.0

will produce in T a random floatingpoint number uniformly distributed over [0.0, 1.0). Again,

if the loworder bits are not random enough, then the instruction

ROTL #--7,T

should be performed first.

Implementors may wish to consult reference [41] for a discussion of some efficient methods

of generating pseudorandom numbers.

[Variable]*random-state*

This variable holds a data structure, an object of type random-state, that encodes

the internal state of the randomnumber generator that random uses by default. The

366 COMMON LISP

nature of this data structure is implementationdependent. It may be printed out and

successfully read back in, but may or may not function correctly as a randomnumber

state object in another implementation. A call to random will perform a side effect on

this data structure. Lambdabinding this variable to a different randomnumber state

object will correctly save and restore the old state object.

[Function]make-random-state &optional state

This function returns a new object of type random-state, suitable for use as the value

of the variable *random-state*. If state is nil or omitted, make-random-state returns

a copy of the current randomnumber state object (the value of the variable *random-

state*). If state is a state object, a copy of that state object is returned. If state is

t, then a new state object is returned that has been “randomly” initialized by some

means (such as by a timeofday clock).

Rationale: Common Lisp purposely provides no way to initialize a random-state object from

a userspecified “seed.” The reason for this is that the number of bits of state information

in a random-state object may vary widely from one implementation to another, and there

is no simple way to guarantee that any userspecified seed value will be “random enough.”

Instead, the initialization of random-state objects is left to the implementor in the case where

the argument t is given to make-random-state.

To handle the common situation of executing the same program many times in a reproducible

manner, where that program uses random, the following procedure may be used:

1. Evaluate (make-random-state t) to create a random-state object.

2. Write that object to a file, using print, for later use.

3. Whenever the program is to be run, first use read to create a copy of the random-state object

from the printed representation in the file. Then use the random-state object newly created

by the read operation to initialize the randomnumber generator for the program.

It is for the sake of this procedure for reproducible execution that implementations are required

to provide a read/print syntax for objects of type random-state.

It is also possible to make copies of a random-state object directly without going through

the print/read process, simply by using the make-random-state function to copy the object; this

allows the same sequence of random numbers to be generated many times within a single

program.

Implementation note: A recommended way to implement the type random-state is effectively

to use the machinery for defstruct. The usual structure syntax may then be used for printing

random-state objects; one might look something like

#--S(RANDOM-STATE DATA #--(14 49 98436589 786345 8734658324 ...))

NUMBERS 367

where the components are of course completely implementationdependent.

[Function]random-state-p object

random-state-p is true if its argument is a randomstate object, and otherwise is false.

(random-state-p x) ≡ (typep x ´random-state)

12.10. Implementation Parameters

The values of the named constants defined in this section are implementation

dependent. They may be useful for parameterizing code in some situations.

[Constant]most-positive-fixnum

[Constant]most-negative-fixnum

The value of most-positive-fixnum is that fixnum closest in value to positive infinity

provided by the implementation.

The value of most-negative-fixnum is that fixnum closest in value to negative infinity

provided by the implementation.

X3J13 voted in January 1989 〈76〉 to specify that fixnum must be a supertype of

the type (signed-byte 16), and additionally that the value of array-dimension-limit

must be a fixnum. This implies that the value of most-negative-fixnum must be less

than or equal to −215, and the value of most-positive-fixnum must be greater than or

equal to both 215 − 1 and the value of array-dimension-limit.

[Constant]most-positive-short-float

[Constant]least-positive-short-float

[Constant]least-negative-short-float

[Constant]most-negative-short-float

The value of most-positive-short-float is that shortformat floatingpoint number

closest in value to (but not equal to) positive infinity provided by the implementation.

The value of least-positive-short-float is that positive shortformat floatingpoint

number closest in value to (but not equal to) zero provided by the implementation.

The value of least-negative-short-float is that negative shortformat floating

point number closest in value to (but not equal to) zero provided by the implemen

tation. (Note that even if an implementation supports minus zero as a distinct short

floatingpoint value, least-negative-short-float must not be minus zero.)

368 COMMON LISP

X3J13 voted in June 1989 〈79〉 to clarify that these definitions are to be taken

quite literally. In implementations that support denormalized numbers, the values of

least-positive-short-float and least-negative-short-float may be denormalized.

The value of most-negative-short-float is that shortformat floatingpoint number

closest in value to (but not equal to) negative infinity provided by the implementation.

[Constant]most-positive-single-float

[Constant]least-positive-single-float

[Constant]least-negative-single-float

[Constant]most-negative-single-float

[Constant]most-positive-double-float

[Constant]least-positive-double-float

[Constant]least-negative-double-float

[Constant]most-negative-double-float

[Constant]most-positive-long-float

[Constant]least-positive-long-float

[Constant]least-negative-long-float

[Constant]most-negative-long-float

These are analogous to the constants defined above for shortformat floatingpoint

numbers.

[Constant]least-positive-normalized-short-float

[Constant]least-negative-normalized-short-float

X3J13 voted in June 1989 〈79〉 to add these constants to the language.

The value of least-positive-normalized-short-float is that positive normalized

shortformat floatingpoint number closest in value to (but not equal to) zero provided

by the implementation. In implementations that do not support denormalized numbers

this may be the same as the value of least-positive-short-float.

The value of least-negative-normalized-short-float is that negative normalized

shortformat floatingpoint number closest in value to (but not equal to) zero provided

by the implementation. (Note that even if an implementation supports minus zero

as a distinct short floatingpoint value, least-negative-normalized-short-float must

not be minus zero.) In implementations that do not support denormalized numbers

this may be the same as the value of least-positive-short-float.

NUMBERS 369

[Constant]least-positive-normalized-single-float

[Constant]least-negative-normalized-single-float

[Constant]least-positive-normalized-double-float

[Constant]least-negative-normalized-double-float

[Constant]least-positive-normalized-long-float

[Constant]least-negative-normalized-long-float

These are analogous to the constants defined above for shortformat floatingpoint

numbers.

[Constant]short-float-epsilon

[Constant]single-float-epsilon

[Constant]double-float-epsilon

[Constant]long-float-epsilon

These constants have as value, for each floatingpoint format, the smallest positive

floatingpoint number e of that format such that the expression

(not (−− (float 1 e) (+ (float 1 e) e)))

is true when actually evaluated.

[Constant]short-float-negative-epsilon

[Constant]single-float-negative-epsilon

[Constant]double-float-negative-epsilon

[Constant]long-float-negative-epsilon

These constants have as value, for each floatingpoint format, the smallest positive

floatingpoint number e of that format such that the expression

(not (−− (float 1 e) (- (float 1 e) e)))

is true when actually evaluated.

13

Characters

Common Lisp provides a character data type; objects of this type represent printed

symbols such as letters.

In general, characters in Common Lisp are not true objects; eq cannot be counted

upon to operate on them reliably. In particular, it is possible that the expression

(let ((x z) (y z)) (eq x y))

may be false rather than true, if the value of z is a character.

Rationale: This odd breakdown of eq in the case of characters allows the implementor enough

design freedom to produce exceptionally efficient code on conventional architectures. In this

respect the treatment of characters exactly parallels that of numbers, as described in chapter 12.

If two objects are to be compared for “identity,” but either might be a character,

then the predicate eql is probably appropriate.

X3J13 voted in March 1989 〈11〉 to approve the following definitions and termi

nology for use in discussing character facilities in Common Lisp.

A character repertoire defines a collection of characters independent of their

specific rendered image or font. (This corresponds to the mathematical notion of a

set, but the term character set is avoided here because it has been used in the past to

mean both what is here called a repertoire and what is here called a coded character

set.) Character repertoires are specified independent of coding and their characters

are identified only with a unique character label, a graphic symbol, and a character

description. As an example, table 131 shows the character labels, graphic symbols,

and character descriptions for all of the characters in the repertoire standard-char

except for #--\Space and #--\Newline.

Every Common Lisp implementation must support the standard character reper

toire as well as repertoires named base-character, extended-character, and character.

370

CHARACTERS 371

Table 131: Standard Character Labels, Glyphs, and Descriptions

SM05 @ commercial at SD13 ` grave accent

SP02 ! exclamation mark LA02 A capital A LA01 a small a

SP04 " quotation mark LB02 B capital B LB01 b small b

SM01 #-- number sign LC02 C capital C LC01 c small c

SC03 $ dollar sign LD02 D capital D LD01 d small d

SM02 % percent sign LE02 E capital E LE01 e small e

SM03 & ampersand LF02 F capital F LF01 f small f

SP05 ´ apostrophe LG02 G capital G LG01 g small g

SP06 (left parenthesis LH02 H capital H LH01 h small h

SP07) right parenthesis LI02 I capital I LI01 i small i

SM04 * asterisk LJ02 J capital J LJ01 j small j

SA01 + plus sign LK02 K capital K LK01 k small k

SP08 , comma LL02 L capital L LL01 l small l

SP10 - hyphen or minus sign LM02 M capital M LM01 m small m

SP11 . period or full stop LN02 N capital N LN01 n small n

SP12 / solidus LO02 O capital O LO01 o small o

ND10 0 digit 0 LP02 P capital P LP01 p small p

ND01 1 digit 1 LQ02 Q capital Q LQ01 q small q

ND02 2 digit 2 LR02 R capital R LR01 r small r

ND03 3 digit 3 LS02 S capital S LS01 s small s

ND04 4 digit 4 LT02 T capital T LT01 t small t

ND05 5 digit 5 LU02 U capital U LU01 u small u

ND06 6 digit 6 LV02 V capital V LV01 v small v

ND07 7 digit 7 LW02 W capital W LW01 w small w

ND08 8 digit 8 LX02 X capital X LX01 x small x

ND09 9 digit 9 LY02 Y capital Y LY01 y small y

SP13 : colon LZ02 Z capital Z LZ01 z small z

SP14 ; semicolon SM06 [left square bracket SM11 { left curly bracket

SA03 < lessthan sign SM07 \ reverse solidus SM13 | vertical bar

SA04 −− equals sign SM08] right square bracket SM14 } right curly bracket

SA05 > greaterthan sign SD15 ˆ circumflex accent SD19 ˜ tilde

SP15 ? question mark SP09 _ low line

The characters in this table plus the space and newline characters make up the standard

Common Lisp character repertoire (type standard-char). The character labels and character

descriptions shown here are taken from ISO standard 6937/2 . The first character of the label

categorizes the character as Latin, Numeric, or Special.

372 COMMON LISP

Other repertoires may be supported as well. X3J13 voted in June 1989 〈122〉 to spec

ify that names of repertoires may be used as type specifiers. Such types must be sub

types of character; that is, in a given implementation the repertoire named character

must encompass all the character objects supported by that implementation.

A coded character set is a character repertoire plus an encoding that provides a

bijective mapping between each character in the set and a number (typically a non

negative integer) that serves as the character representation. There are numerous

internationally standardized coded character sets.

A character may be included in one or more character repertoires. Similarly, a

character may be included in one or more coded character sets.

To ensure that each character is uniquely defined, we may use a universal registry of

characters that incorporates a collection of distinguished repertoires called character

scripts that form an exhaustive partition of all characters. That is, each character

is included in exactly one character script. (Draft ISO 10646 Coded Character Set

Standard, if eventually approved as a standard, may become the practical realization

of this universal registry.)

(X3J13 voted in June 1989 〈122〉 to specify that an implementation must doc

ument the character scripts it supports. For each script the documentation should

discuss character labels, glyphs, and descriptions; any canonicalization processes

performed by the reader that result in treating distinct characters as equivalent; any

canonicalization performed by format in processing directives; the behavior of char-

upcase, char-downcase, and the predicates alpha-char-p, upper-case-p, lower-case-p,

both-case-p, graphic-char-p, alphanumericp, char-equal, char-not-equal, char-lessp,

char-greaterp, char-not-greaterp, and char-not-lessp for characters in the script; and

behavior with respect to input and output, including coded character sets and external

coding schemes.)

In Common Lisp a character data object is identified by its character code, a

unique numerical code. Each character code is composed from a character script

and a character label. The convention by which a character script and character label

compose a character code is implementation dependent. [X3J13 did not approve

all parts of the proposal from its Subcommittee on Characters. As a result, some

features that were approved appear to have no purpose. X3J13 wished to support the

standardization by ISO of character scripts and coded character sets but declined to

design facilities for use in Common Lisp until there has been more progress by ISO

in this area. The approval of the terminology for scripts and labels gives a hint to

implementors of likely directions for Common Lisp in the future.]

A character object that is classified as graphic, or displayable, has an associated

glpyh. The glyph is the visual representation of the character. All other character

data objects are classified as nongraphic.

This terminology assigns names to Common Lisp concepts in a manner consistent

CHARACTERS 373

with related concepts discussed in various ISO standards for coded character sets and

provides a demarcation between standardization activities. For example, facilities

for manipulating characters, character scripts, and coded character sets are properly

defined by a Common Lisp standard, but Common Lisp should not define standard

character sets or standard character scripts.

13.1. Character Attributes

Every character has three attributes: code, bits, and font. The code attribute is

intended to distinguish among the printed glyphs and formatting functions for char

acters. The bits attribute allows extra flags to be associated with a character. The

font attribute permits a specification of the style of the glyphs (such as italics).

The treatment of character attributes in Common Lisp has not been entirely suc

cessful. The font attribute has not been widely used, for two reasons. First, a single

integer, limited in most implementations to 255 at most, is not an adequate, con

venient, or portable representation for a font. Second, in many applications where

font information matters it is more convenient or more efficient to represent font

information as shift codes that apply to many characters, rather than attaching font

information separately to each character.

As for the bits attribute, it was intended to support character input from extended

keyboards having extra “shift” keys. This, in turn, was imagined to support the

programming of a portable EMACSlike editor in Common Lisp. (The EMACS

command set is most convenient when the keyboard has separate “control” and

“meta” keys.) The bits attribute has been used in the implementation of such editors

and other interactive interfaces. However, software that relies crucially on these

extended characters will not be portable to Common Lisp implementations that do

not support them.

X3J13 voted in March 1989 〈11〉 and in June 1989 〈122〉 to revise considerably the

treatment of characters in the language. The bits and font attributes are eliminated;

instead a character may have implementationdefined attributes. The treatment of

such attributes by existing characterhandling functions is carefully constrained by

certain rules.

Implementations are free to continue to support bits and font attributes, but they

are formally regarded as implementationdefined attributes. The rules are generally

consistent with the previous treatment of the bits and font attributes. My guess is that

the font attribute as currently defined will wither away, but the bits attribute as defined

by the first edition will continue to be supported as a de facto standard extension,

because it fills a useful small purpose.

374 COMMON LISP

[Constant]char-code-limit

The value of char-code-limit is a nonnegative integer that is the upper exclusive

bound on values produced by the function char-code, which returns the code compo

nent of a given character; that is, the values returned by char-code are nonnegative

and strictly less than the value of char-code-limit.

Common Lisp does not at present explicitly guarantee that all integers between

zero and the value of char-code-limit are valid character codes, and so it is wise in

any case for the programmer to assume that the space of assigned character codes

may be sparse.

[Constant]char-font-limit
..

The value of char-font-limit is a nonnegative integer that is the upper exclusive

bound on values produced by the function char-font, which returns the font compo

nent of a given character; that is, the values returned by char-font are nonnegative

and strictly less than the value of char-font-limit.

Implementation note: No Common Lisp implementation is required to support nonzero font

attributes; if it does not, then char-font-limit should be 1.

X3J13 voted in March 1989 〈11〉 to eliminate char-font-limit.

Experience has shown that numeric codes are not an especially convenient, let alone

portable, representation for font information. A system based on typeface names,

type styles, and point sizes would be much better. (Macintosh software developers

made the same discovery and have recently converted to a new font identification

scheme.)

[Constant]char-bits-limit
...

The value of char-bits-limit is a nonnegative integer that is the upper exclusive

bound on values produced by the function char-bits, which returns the bits component

of a given character; that is, the values returned by char-bits are nonnegative and

strictly less than the value of char-bits-limit. Note that the value of char-bits-limit

will be a power of 2.

Implementation note: No Common Lisp implementation is required to support nonzero bits

attributes; if it does not, then char-bits-limit should be 1.

X3J13 voted in March 1989 〈11〉 to eliminate char-bits-limit.

CHARACTERS 375

13.2. Predicates on Characters

The predicate characterp may be used to determine whether any Lisp object is a

character object.

[Function]standard-char-p char

The argument char must be a character object. standard-char-p is true if the argument

is a “standard character,” that is, an object of type standard-char.

Note that any character with a nonzero bits or font attribute is nonstandard.

[Function]graphic-char-p char

The argument char must be a character object. graphic-char-p is true if the argument

is a “graphic” (printing) character, and false if it is a “nongraphic” (formatting or

control) character. Graphic characters have a standard textual representation as a

single glyph, such as A or * or −−. By convention, the space character is considered

to be graphic. Of the standard characters all but #--\Newline are graphic. The semi

standard characters #--\Backspace, #--\Tab, #--\Rubout, #--\Linefeed, #--\Return, and #--\Page are

not graphic.

Programs may assume that graphic characters of font 0 are all of the same width

when printed, for example, for purposes of columnar formatting. (This does not

prohibit the use of a variablepitch font as font 0, but merely implies that every

implementation of Common Lisp must provide some mode of operation in which

font 0 is a fixedpitch font.) Portable programs should assume that, in general,

nongraphic characters and characters of other fonts may be of varying widths.

Any character with a nonzero bits attribute is nongraphic.

[Function]string-char-p char
...

The argument char must be a character object. string-char-p is true if char can be

stored into a string, and otherwise is false. Any character that satisfies standard-char-p

also satisfies string-char-p; others may also.

X3J13 voted in March 1989 〈11〉 to eliminate string-char-p.

[Function]alpha-char-p char

The argument char must be a character object. alpha-char-p is true if the argument

is an alphabetic character, and otherwise is false.

376 COMMON LISP

If a character is alphabetic, then it is perforce graphic. Therefore any character

with a nonzero bits attribute cannot be alphabetic. Whether a character is alphabetic

may depend on its font number.

Of the standard characters (as defined by standard-char-p), the letters A through Z

and a through z are alphabetic.

[Function]upper-case-p char

[Function]lower-case-p char

[Function]both-case-p char

The argument char must be a character object.

upper-case-p is true if the argument is an uppercase character, and otherwise is

false.

lower-case-p is true if the argument is a lowercase character, and otherwise is false.

both-case-p is true if the argument is an uppercase character and there is a corre

sponding lowercase character (which can be obtained using char-downcase), or if the

argument is a lowercase character and there is a corresponding uppercase character

(which can be obtained using char-upcase).

If a character is either uppercase or lowercase, it is necessarily alphabetic (and

therefore is graphic, and therefore has a zero bits attribute). However, it is permissible

in theory for an alphabetic character to be neither uppercase nor lowercase (in a non

Roman font, for example).

Of the standard characters (as defined by standard-char-p), the letters A through Z

are uppercase and a through z are lowercase.

[Function]digit-char-p char &optional (radix 10)

The argument char must be a character object, and radix must be a nonnegative

integer. If char is not a digit of the radix specified by radix, then digit-char-p is

false; otherwise it returns a nonnegative integer that is the “weight” of char in that

radix.

Digits are necessarily graphic characters.

Of the standard characters (as defined by standard-char-p), the characters 0 through

9, A through Z, and a through z are digits. The weights of 0 through 9 are the integers 0

through 9, and of A through Z (and also a through z) are 10 through 35. digit-char-p

returns the weight for one of these digits if and only if its weight is strictly less than

radix. Thus, for example, the digits for radix 16 are

0 1 2 3 4 5 6 7 8 9 A B C D E F

Here is an example of the use of digit-char-p:

CHARACTERS 377

(defun convert-string-to-integer (str &optional (radix 10))

"Given a digit string and optional radix, return an integer."

(do ((j 0 (+ j 1))

(n 0 (+ (* n radix)

(or (digit-char-p (char str j) radix)

(error "Bad radix-˜D digit: ˜C"

radix

(char str j))))))

((−− j (length str)) n)))

[Function]alphanumericp char

The argument char must be a character object. alphanumericp is true if char is either

alphabetic or numeric. By definition,

(alphanumericp x)

≡ (or (alpha-char-p x) (not (null (digit-char-p x))))

Alphanumeric characters are therefore necessarily graphic (as defined by the predicate

graphic-char-p).

Of the standard characters (as defined by standard-char-p), the characters 0 through

9, A through Z, and a through z are alphanumeric.

[Function]char−− character &rest more-characters

[Function]char/−− character &rest more-characters

[Function]char< character &rest more-characters

[Function]char> character &rest more-characters

[Function]char<−− character &rest more-characters

[Function]char>−− character &rest more-characters

The arguments must all be character objects. These functions compare the objects

using the implementationdependent total ordering on characters, in a manner anal

ogous to numeric comparisons by −− and related functions.

The total ordering on characters is guaranteed to have the following properties:

. The standard alphanumeric characters obey the following partial ordering:

A<B<C<D<E<F<G<H<I<J<K<L<M<N<O<P<Q<R<S<T<U<V<W<X<Y<Z

a<b<c<d<e<f<g<h<i<j<k<l<m<n<o<p<q<r<s<t<u<v<w<x<y<z

0<1<2<3<4<5<6<7<8<9

either 9<A or Z<0

either 9<a or z<0

378 COMMON LISP

This implies that alphabetic ordering holds within each case (upper and lower), and

that the digits as a group are not interleaved with letters. However, the ordering or

possible interleaving of uppercase letters and lowercase letters is unspecified. (Note

that both the ASCII and the EBCDIC character sets conform to this specification.

As it happens, neither ordering interleaves uppercase and lowercase letters: in the

ASCII ordering, 9<A and Z<a, whereas in the EBCDIC ordering z<A and Z<0.)

. If two characters have the same bits and font attributes, then their ordering by char<
...

is consistent with the numerical ordering by the predicate < on their code attributes.

. If two characters differ in any attribute (code, bits, or font), then they are different.

X3J13 voted in March 1989 〈11〉 to replace the notion of bits and font attributes

with that of implementationdefined attributes.

. If two characters have identical implementationdefined attributes, then their or

dering by char< is consistent with the numerical ordering by the predicate < on

their codes, and similarly for char>, char<−−, and char>−−.

. If two characters differ in any implementationdefined attribute, then they are not

char−−.

The total ordering is not necessarily the same as the total ordering on the inte

gers produced by applying char-int to the characters (although it is a reasonable

implementation technique to use that ordering).

While alphabetic characters of a given case must be properly ordered, they need not

be contiguous; thus (char<−− #--\a x #--\z) is not a valid way of determining whether or

not x is a lowercase letter. That is why a separate lower-case-p predicate is provided.

(char−− #--\d #--\d) is true.

(char/−− #--\d #--\d) is false.

(char−− #--\d #--\x) is false.

(char/−− #--\d #--\x) is true.

(char−− #--\d #--\D) is false.

(char/−− #--\d #--\D) is true.

(char−− #--\d #--\d #--\d #--\d) is true.

(char/−− #--\d #--\d #--\d #--\d) is false.

(char−− #--\d #--\d #--\x #--\d) is false.

(char/−− #--\d #--\d #--\x #--\d) is false.

(char−− #--\d #--\y #--\x #--\c) is false.

(char/−− #--\d #--\y #--\x #--\c) is true.

(char−− #--\d #--\c #--\d) is false.

(char/−− #--\d #--\c #--\d) is false.

(char< #--\d #--\x) is true.

CHARACTERS 379

(char<−− #--\d #--\x) is true.

(char< #--\d #--\d) is false.

(char<−− #--\d #--\d) is true.

(char< #--\a #--\e #--\y #--\z) is true.

(char<−− #--\a #--\e #--\y #--\z) is true.

(char< #--\a #--\e #--\e #--\y) is false.

(char<−− #--\a #--\e #--\e #--\y) is true.

(char> #--\e #--\d) is true.

(char>−− #--\e #--\d) is true.

(char> #--\d #--\c #--\b #--\a) is true.

(char>−− #--\d #--\c #--\b #--\a) is true.

(char> #--\d #--\d #--\c #--\a) is false.

(char>−− #--\d #--\d #--\c #--\a) is true.

(char> #--\e #--\d #--\b #--\c #--\a) is false.

(char>−− #--\e #--\d #--\b #--\c #--\a) is false.

(char> #--\z #--\A) may be true or false.

(char> #--\Z #--\a) may be true or false.

There is no requirement that (eq c1 c2) be true merely because (char−− c1 c2)

is true. While eq may distinguish two character objects that char−− does not, it is

distinguishing them not as characters, but in some sense on the basis of a lowerlevel

implementation characteristic. (Of course, if (eq c1 c2) is true, then one may expect

(char−− c1 c2) to be true.) However, eql and equal compare character objects in the

same way that char−− does.

[Function]char-equal character &rest more-characters

[Function]char-not-equal character &rest more-characters

[Function]char-lessp character &rest more-characters

[Function]char-greaterp character &rest more-characters

[Function]char-not-greaterp character &rest more-characters

[Function]char-not-lessp character &rest more-characters

The predicate char-equal is like char−−, and similarly for the others, except according
..

to a different ordering such that differences of bits attributes and case are ignored,

and font information is taken into account in an implementationdependent manner.

X3J13 voted in March 1989 〈11〉 to replace the notion of bits and font attributes

with that of implementationdefined attributes. The effect, if any, of each such

attribute on the behavior of char-equal, char-not-equal, char-lessp, char-greaterp,

char-not-greaterp, and char-not-lessp must be specified as part of the definition of

that attribute.

380 COMMON LISP

For the standard characters, the ordering is such that A−−a, B−−b, and so on, up to Z−−z,

and furthermore either 9<A or Z<0. For example:

(char-equal #--\A #--\a) is true.

(char−− #--\A #--\a) is false.

(char-equal #--\A #--\Control-A) is true.

The ordering may depend on the font information. For example, an implementation
..

might decree that (char-equal #--\p #--\p) be true, but that (char-equal #--\p #--\π) be false

(where #--\π is a lowercase p in some font). Assuming italics to be in font 1 and the

Greek alphabet in font 2, this is the same as saying that (char-equal #--0\p #--1\p) may

be true and at the same time (char-equal #--0\p #--2\p) may be false.

13.3. Character Construction and Selection

These functions may be used to extract attributes of a character and to construct new

characters.

[Function]char-code char

The argument char must be a character object. char-code returns the code attribute of

the character object; this will be a nonnegative integer less than the (normal) value

of the variable char-code-limit.

This is usually what you need in order to treat a character as an index into a vector.

The length of the vector should then be equal to char-code-limit. Be careful how you

initialize this vector; remember that you cannot necessarily expect all nonnegative

integers less than char-code-limit to be valid character codes.

[Function]char-bits char
..

The argument char must be a character object. char-bits returns the bits attribute of

the character object; this will be a nonnegative integer less than the (normal) value

of the variable char-bits-limit.

X3J13 voted in March 1989 〈11〉 to eliminate char-bits.

[Function]char-font char
..

The argument char must be a character object. char-font returns the font attribute of

the character object; this will be a nonnegative integer less than the (normal) value

of the variable char-font-limit.

CHARACTERS 381

X3J13 voted in March 1989 〈11〉 to eliminate char-font.

The references to the “normal” values of the “variables” char-code-limit, char-

bits-limit, and char-font-limit in the descriptions of char-code, char-bits, and

char-font were an oversight on my part. Early in the design of Common Lisp they

were indeed variables, but they are at present defined to be constants, and their values

therefore are always normal and should not change. But this point is now moot.

[Function]code-char code &optional (bits 0) (font 0)

All three arguments must be nonnegative integers. If it is possible in the imple
...

mentation to construct a character object whose code attribute is code, whose bits

attribute is bits, and whose font attribute is font, then such an object is returned;

otherwise nil is returned.

For any integers c, b, and f, if (code-char c b f) is not nil then

(char-code (code-char c b f)) ⇒ c

(char-bits (code-char c b f)) ⇒ b

(char-font (code-char c b f)) ⇒ f

If the font and bits attributes of a character object c are zero, then it is the case that

(char−− (code-char (char-code c)) c)

is true.

X3J13 voted in March 1989 〈11〉 to eliminate the bits and font arguments from the

specification of code-char.

[Function]make-char char &optional (bits 0) (font 0)
..

The argument char must be a character, and bits and font must be nonnegative

integers. If it is possible in the implementation to construct a character object whose

code attribute is the same as the code attribute of char, whose bits attribute is bits, and

whose font attribute is font, then such an object is returned; otherwise nil is returned.

If bits and font are zero, then make-char cannot fail. This implies that for every

character object one can “turn off” its bits and font attributes.

X3J13 voted in March 1989 〈11〉 to eliminate make-char.

382 COMMON LISP

13.4. Character Conversions

These functions perform various transformations on characters, including case con

versions.

[Function]character object

The function character coerces its argument to be a character if possible; see coerce.

(character x) ≡ (coerce x ´character)

[Function]char-upcase char

[Function]char-downcase char

The argument char must be a character object. char-upcase attempts to convert its

argument to an uppercase equivalent; char-downcase attempts to convert its argument

to a lowercase equivalent.

char-upcase returns a character object with the same font and bits attributes as
..

char, but with possibly a different code attribute. If the code is different from char’s,

then the predicate lower-case-p is true of char, and upper-case-p is true of the result

character. Moreover, if (char−− (char-upcase x) x) is not true, then it is true that

(char−− (char-downcase (char-upcase x)) x)

Similarly, char-downcase returns a character object with the same font and bits at

tributes as char, but with possibly a different code attribute. If the code is different

from char’s, then the predicate upper-case-p is true of char, and lower-case-p is true

of the result character. Moreover, if (char−− (char-downcase x) x) is not true, then it

is true that

(char−− (char-upcase (char-downcase x)) x)

Note that the action of char-upcase and char-downcase may depend on the bits and

font attributes of the character. In particular, they have no effect on a character with a

nonzero bits attribute, because such characters are by definition not alphabetic. See

alpha-char-p.

X3J13 voted in March 1989 〈11〉 to replace the notion of bits and font attributes

with that of implementationdefined attributes. The effect of char-upcase and char-

downcase is to preserve implementationdefined attributes.

[Function]digit-char weight &optional (radix 10) (font 0)

All arguments must be integers. digit-char determines whether or not it is possible

to construct a character object whose font attribute is font, and whose code is such

CHARACTERS 383

that the result character has the weight weight when considered as a digit of the radix

radix (see the predicate digit-char-p). It returns such a character if that is possible,

and otherwise returns nil.

digit-char cannot return nil if font is zero, radix is between 2 and 36 inclusive,

and weight is nonnegative and less than radix.

If more than one character object can encode such a weight in the given radix,

one will be chosen consistently by any given implementation; moreover, among the

standard characters, uppercase letters are preferred to lowercase letters. For example:

(digit-char 7) ⇒ #--\7

(digit-char 12) ⇒ nil

(digit-char 12 16) ⇒ #--\C ;not #--\c

(digit-char 6 2) ⇒ nil

(digit-char 1 2) ⇒ #--\1

Note that no argument is provided for specifying the bits component of the returned

character, because a digit cannot have a nonzero bits component. The reasoning is

that every digit is graphic (see digit-char-p) and no graphic character has a nonzero

bits component (see graphic-char-p).

X3J13 voted in March 1989 〈11〉 to eliminate the font argument from the specifi

cation of digit-char.

[Function]char-int char

The argument char must be a character object. char-int returns a nonnegative integer

encoding the character object.

If the font and bits attributes of char are zero, then char-int returns the same integer

char-code would. Also,

(char−− c1 c2) ≡ (−− (char-int c1) (char-int c2))

for characters c1 and c2.

This function is provided primarily for the purpose of hashing characters.

[Function]int-char integer
...

The argument must be a nonnegative integer. int-char returns a character object

c such that (char-int c) is equal to integer, if possible; otherwise int-char returns

false.

X3J13 voted in March 1989 〈11〉 to eliminate int-char.

384 COMMON LISP

[Function]char-name char

The argument char must be a character object. If the character has a name, then

that name (a string) is returned; otherwise nil is returned. All characters that have

zero font and bits attributes and that are nongraphic (do not satisfy the predicate

graphic-char-p) have names. Graphic characters may or may not have names.

The standard newline and space characters have the respective names Newline and

Space. The semistandard characters have the names Tab, Page, Rubout, Linefeed,

Return, and Backspace.

Characters that have names can be notated as #--\ followed by the name. (See

section 22.1.4.) Although the name may be written in any case, it is stylish to

capitalize it thus: #--\Space.

char-name will only locate “simple” character names; it will not construct names

such as Control-Space on the basis of the character’s bits attribute.

The easiest way to get a name that includes the bits attribute of a character c is

(format nil "˜:C" c).

[Function]name-char name

The argument name must be an object coerceable to a string as if by the function

string. If the name is the same as the name of a character object (as determined by

string-equal), that object is returned; otherwise nil is returned.

13.5. Character ControlBit Functions
...

Common Lisp provides explicit names for four bits of the bits attribute: Control,

Meta, Hyper, and Super. The following definitions are provided for manipulating

these. Each Common Lisp implementation provides these functions for compatibility,

even if it does not support any or all of the bits named below.

[Constant]char-control-bit
..

[Constant]char-meta-bit

[Constant]char-super-bit

[Constant]char-hyper-bit

The values of these named constants are the “weights” (as integers) for the four

named control bits. The weight of the control bit is 1; of the meta bit, 2; of the super

bit, 4; and of the hyper bit, 8.

If a given implementation of Common Lisp does not support a particular bit, then

the corresponding constant is zero instead.

CHARACTERS 385

X3J13 voted in March 1989 〈11〉 to eliminate all four of the constants char-control-

bit, char-meta-bit, char-super-bit, and char-hyper-bit.

When Common Lisp was first designed, keyboards with “extra bits” were relatively

rare. The bits attribute was originally designed to support input from keyboards in

use at Stanford and M.I.T. circa 1981.

Since that time such extended keyboards have come into wider use. Notable

here are the keyboards associated with certain personal computers and workstations.

For example, in some specific applications the command and option keys of Apple

Macintosh keyboards have had the connotations of control and meta. Macintosh II

extended keyboards also have keys marked control whose use is analogous to that of

hyper on the old M.I.T. keyboards. IBM PC personal computer keyboards have alt

keys that function much like meta keys; similarly, keyboards on Sun workstations

have keys very much like meta keys but labelled left and right.

[Function]char-bit char name
...

char-bit takes a character object char and the name of a bit, and returns nonnil if

the bit of that name is set in char, or nil if the bit is not set in char. For example:

(char-bit #--\Control-X :control) ⇒ true

Valid values for name are implementationdependent, but typically are :control,

:meta, :hyper, and :super. It is an error to give char-bit the name of a bit not

supported by the implementation.

If the argument char is specified by a form that is a place form acceptable to setf,

then setf may be used with char-bit to modify a bit of the character stored in that

place. The effect is to perform a set-char-bit operation and then store the result back

into the place.

X3J13 voted in March 1989 〈11〉 to eliminate char-bit.

[Function]set-char-bit char name newvalue
..

char-bit takes a character object char, the name of a bit, and a flag. A character

is returned that is just like char except that the named bit is set or reset according

to whether newvalue is nonnil or nil. Valid values for name are implementation

dependent, but typically are :control, :meta, :hyper, and :super. For example:

(set-char-bit #--\X :control t) ⇒ #--\Control-X

(set-char-bit #--\Control-X :control t) ⇒ #--\Control-X

(set-char-bit #--\Control-X :control nil) ⇒ #--\X

X3J13 voted in March 1989 〈11〉 to eliminate set-char-bit.

14

Sequences

The type sequence encompasses both lists and vectors (onedimensional arrays).

While these are different data structures with different structural properties leading

to different algorithmic uses, they do have a common property: each contains an

ordered set of elements. Note that nil is considered to be a sequence of length zero.

Some operations are useful on both lists and arrays because they deal with ordered

sets of elements. One may ask the number of elements, reverse the ordering, extract

a subsequence, and so on. For such purposes Common Lisp provides a set of generic

functions on sequences.

Note that this remark, predating the design of the Common Lisp Object System,

uses the term “generic” in a generic sense, and not necessarily in the technical sense

used by CLOS (see chapter 2).

elt reverse map remove

length nreverse some remove-duplicates

subseq concatenate every delete

copy-seq position notany delete-duplicates

fill find notevery substitute

replace sort reduce nsubstitute

count merge search mismatch

Some of these operations come in more than one version. Such versions are indicated

by adding a suffix (or occasionally a prefix) to the basic name of the operation. In

addition, many operations accept one or more optional keyword arguments that can

modify the operation in various ways.

If the operation requires testing sequence elements according to some criterion,

then the criterion may be specified in one of two ways. The basic operation accepts

an item, and elements are tested for being eql to that item. (A test other than eql can

be specified by the :test or :test-not keyword. It is an error to use both of these

keywords in the same call.) The variants formed by adding -if and -if-not to the

386

SEQUENCES 387

basic operation name do not take an item, but instead a oneargument predicate, and

elements are tested for satisfying or not satisfying the predicate. As an example,

(remove item sequence)

returns a copy of sequence from which all elements eql to item have been removed;

(remove item sequence :test #--´equal)

returns a copy of sequence from which all elements equal to item have been removed;

(remove-if #--´numberp sequence)

returns a copy of sequence from which all numbers have been removed.

If an operation tests elements of a sequence in any manner, the keyword argument

:key, if not nil, should be a function of one argument that will extract from an element

the part to be tested in place of the whole element. For example, the effect of the

MacLisp expression (assq item seq) could be obtained by

(find item sequence :test #--´eq :key #--´car)

This searches for the first element of sequence whose car is eq to item.

X3J13 voted in June 1988 〈90〉 to allow the :key function to be only of type symbolor

function; a lambdaexpression is no longer acceptable as a functional argument. One

must use the function special form or the abbreviation #--´ before a lambdaexpression

that appears as an explicit argument form.

For some operations it can be useful to specify the direction in which the sequence

is conceptually processed. In this case the basic operation normally processes the

sequence in the forward direction, and processing in the reverse direction is indicated

by a nonnil value for the keyword argument :from-end. (The processing order

specified by the :from-end is purely conceptual. Depending on the object to be

processed and on the implementation, the actual processing order may be different.

For this reason a usersupplied test function should be free of side effects.)

Many operations allow the specification of a subsequence to be operated upon.

Such operations have keyword arguments called :start and :end. These arguments

should be integer indices into the sequence, with start ≤ end (it is an error if

start > end). They indicate the subsequence starting with and including element

start and up to but excluding element end. The length of the subsequence is therefore

end − start. If start is omitted, it defaults to zero; and if end is omitted or nil, it

defaults to the length of the sequence. Therefore if both start and end are omitted, the

entire sequence is processed by default. For the most part, subsequence specification

is permitted purely for the sake of efficiency; one could simply call subseq instead to

388 COMMON LISP

extract the subsequence before operating on it. Note, however, that operations that

calculate indices return indices into the original sequence, not into the subsequence:

(position #--\b "foobar" :start 2 :end 5) ⇒ 3

(position #--\b (subseq "foobar" 2 5)) ⇒ 1

If two sequences are involved, then the keyword arguments :start1, :end1, :start2,

and :end2 are used to specify separate subsequences for each sequence.

X3J13 voted in June 1988 〈170〉 (and further clarification was voted in January

1989 〈149〉) to specify that these rules apply not only to all builtin functions that

have keyword parameters named :start, :start1, :start2, :end, :end1, or :end2 but

also to functions such as subseq that take required or optional parameters that are

documented as being named start or end.

. A “start” argument must always be a nonnegative integer and defaults to zero if

not supplied; it is not permissible to pass nil as a “start” argument.

. An “end” argument must be either a nonnegative integer or nil (which indicates

the end of the sequence) and defaults to nil if not supplied; therefore supplying

nil is equivalent to not supplying such an argument.

. If the “end” argument is an integer, it must be no greater than the active length of

the corresponding sequence (as returned by the function length).

. The default value for the “end” argument is the active length of the corresponding

sequence.

. The “start” value (after defaulting, if necessary) must not be greater than the

corresponding “end” value (after defaulting, if necessary).

This may be summarized as follows. Let x be the sequence within which indices are

to be considered. Let s be the “start” argument for that sequence of any standard

function, whether explicitly specified or defaulted, through omission, to zero. Let e

be the “end” argument for that sequence of any standard function, whether explicitly

specified or defaulted, through omission or an explicitly passed nil value, to the active

length of x, as returned by length. Then it is an error if the test (<−− 0 s e (length

x)) is not true.

For some functions, notably remove and delete, the keyword argument :count is

used to specify how many occurrences of the item should be affected. If this is nil

or is not supplied, all matching items are affected.

In the following function descriptions, an element x of a sequence “satisfies the

test” if any of the following holds:

SEQUENCES 389

. A basic function was called, testfn was specified by the keyword :test, and (funcall

testfn item (keyfn x)) is true.

. A basic function was called, testfn was specified by the keyword :test-not, and

(funcall testfn item (keyfn x)) is false.

. An -if function was called, and (funcall predicate (keyfn x)) is true.

. An -if-not function was called, and (funcall predicate (keyfn x)) is false.

In each case keyfn is the value of the :key keyword argument (the default being the

identity function). See, for example, remove.

In the following function descriptions, two elements x and y taken from sequences

“match” if either of the following holds:

. testfn was specified by the keyword :test, and (funcall testfn (keyfn x) (keyfn

y)) is true.

. testfn was specified by the keyword :test-not, and (funcall testfn (keyfn x)

(keyfn y)) is false.

See, for example, search.

X3J13 voted in June 1988 〈90〉 to allow the testfn or predicate to be only of

type symbol or function; a lambdaexpression is no longer acceptable as a functional

argument. One must use the function special form or the abbreviation #--´ before a

lambdaexpression that appears as an explicit argument form.

You may depend on the order in which arguments are given to testfn; this permits

the use of noncommutative test functions in a predictable manner. The order of

the arguments to testfn corresponds to the order in which those arguments (or the

sequences containing those arguments) were given to the sequence function in ques

tion. If a sequence function gives two elements from the same sequence argument to

testfn, they are given in the same order in which they appear in the sequence.

Whenever a sequence function must construct and return a new vector, it always

returns a simple vector (see section 2.5). Similarly, any strings constructed will be

simple strings.

X3J13 voted in January 1989 〈176〉 to deprecate the use of :test-not keyword

arguments and -if-not functions. This means that these features are very likely to be

retained in the forthcoming standard but are regarded as candidates for removal in a

future revision of the ANSI standard. X3J13 also voted in January 1989 〈87〉 to add

the complement function, intended to reduce or eliminate the need for these deprecated

features. Time will tell. I note that many features in Fortran have been deprecated

but very few indeed have actually been removed or altered incompatibly.

390 COMMON LISP

[Function]complement fn

Returns a function whose value is the same as that of not applied to the result of

applying the function fn to the same arguments. One could define complement as

follows:

(defun complement (fn)

#--´(lambda (&rest arguments)

(not (apply fn arguments))))

One intended use of complement is to supplant the use of :test-not arguments and

-if-not functions.

(remove-if-not #--´virtuous senators) ≡
(remove-if (complement #--´virtuous) senators)

(remove-duplicates telephone-book

:test-not #--´mismatch) ≡
(remove-duplicates telephone-book

:test (complement #--´mismatch))

14.1. Simple Sequence Functions

Most of the following functions perform simple operations on a single sequence;

make-sequence constructs a new sequence.

[Function]elt sequence index

This returns the element of sequence specified by index, which must be a nonnegative

integer less than the length of the sequence as returned by length. The first element

of a sequence has index 0.

(Note that elt observes the fill pointer in those vectors that have fill pointers. The

arrayspecific function aref may be used to access vector elements that are beyond

the vector’s fill pointer.)

setf may be used with elt to destructively replace a sequence element with a new

value.

[Function]subseq sequence start &optional end

This returns the subsequence of sequence specified by start and end. subseq always

allocates a new sequence for a result; it never shares storage with an old sequence.

The result subsequence is always of the same type as the argument sequence.

SEQUENCES 391

setf may be used with subseq to destructively replace a subsequence with a se

quence of new values; see also replace.

[Function]copy-seq sequence

A copy is made of the argument sequence; the result is equalp to the argument but

not eq to it.

(copy-seq x) ≡ (subseq x 0)

but the name copy-seq is more perspicuous when applicable.

[Function]length sequence

The number of elements in sequence is returned as a nonnegative integer. If the

sequence is a vector with a fill pointer, the “active length” as specified by the fill

pointer is returned (see section 17.5).

[Function]reverse sequence

The result is a new sequence of the same kind as sequence, containing the same

elements but in reverse order. The argument is not modified.

[Function]nreverse sequence

The result is a sequence containing the same elements as sequence but in reverse

order. The argument may be destroyed and reused to produce the result. The result

may or may not be eq to the argument, so it is usually wise to say something like (setq

x (nreverse x)), because simply (nreverse x) is not guaranteed to leave a reversed

value in x.

X3J13 voted in March 1989 〈153〉 to clarify the permissible side effects of certain

operations. When the sequence is a list, nreverse is permitted to perform a setf on

any part, car or cdr, of the toplevel list structure of that list. When the sequence is

an array, nreverse is permitted to reorder the elements of the given array in order to

produce the resulting array.

[Function]make-sequence type size &key :initial-element

This returns a sequence of type type and of length size, each of whose elements has

been initialized to the :initial-element argument. If specified, the :initial-element

argument must be an object that can be an element of a sequence of type type. For

example:

392 COMMON LISP

(make-sequence ´(vector double-float)

100

:initial-element 1d0)

If an :initial-element argument is not specified, then the sequence will be initialized

in an implementationdependent way.

X3J13 voted in January 1989 〈7〉 to clarify that the type argument must be a type

specifier, and the size argument must be a nonnegative integer less than the value of

array-dimension-limit.

X3J13 voted in June 1989 〈158〉 to specify that make-sequence should signal an

error if the sequence type specifies the number of elements and the size argument is

different.

X3J13 voted in March 1989 〈11〉 to specify that if type is string, the result is

the same as if make-string had been called with the same size and :initial-element

arguments.

14.2. Concatenating, Mapping, and Reducing Sequences

The functions in this section each operate on an arbitrary number of sequences

except for reduce, which is included here because of its conceptual relationship to the

mapping functions.

[Function]concatenate result-type &rest sequences

The result is a new sequence that contains all the elements of all the sequences in

order. All of the sequences are copied from; the result does not share any structure

with any of the argument sequences (in this concatenate differs from append). The

type of the result is specified by resulttype, which must be a subtype of sequence,

as for the function coerce. It must be possible for every element of the argument

sequences to be an element of a sequence of type resulttype.

If only one sequence argument is provided and it has the type specified by result

type, concatenate is required to copy the argument rather than simply returning it. If

a copy is not required, but only possibly type conversion, then the coerce function

may be appropriate.

X3J13 voted in June 1989 〈158〉 to specify that concatenate should signal an error

if the sequence type specifies the number of elements and the sum of the argument

lengths is different.

SEQUENCES 393

[Function]map result-type function sequence &rest more-sequences

The function must take as many arguments as there are sequences provided; at least

one sequence must be provided. The result of map is a sequence such that element j is

the result of applying function to element j of each of the argument sequences. The

result sequence is as long as the shortest of the input sequences.

If the function has side effects, it can count on being called first on all the elements

numbered 0, then on all those numbered 1, and so on.

The type of the result sequence is specified by the argument resulttype (which

must be a subtype of the type sequence), as for the function coerce. In addition, one

may specify nil for the result type, meaning that no result sequence is to be produced;

in this case the function is invoked only for effect, and map returns nil. This gives an

effect similar to that of mapc.

X3J13 voted in June 1989 〈158〉 to specify that map should signal an error if the

sequence type specifies the number of elements and the minimum of the argument

lengths is different.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

Compatibility note: In MacLisp, Lisp Machine Lisp, Interlisp, and indeed even Lisp 1.5, the

function map has always meant a nonvaluereturning version. However, standard computer

science literature, including in particular the recent wave of papers on “functional program

ming,” have come to use map to mean what in the past Lisp implementations have called mapcar.

To simplify things henceforth, Common Lisp follows current usage, and what was formerly

called map is named mapl in Common Lisp.

For example:

(map ´list #--´- ´(1 2 3 4)) ⇒ (-1 -2 -3 -4)

(map ´string

#--´(lambda (x) (if (oddp x) #--\1 #--\0))

´(1 2 3 4))

⇒ "1010"

[Function]map-into result-sequence function &rest sequences

X3J13 voted in June 1989 〈120〉 to add the function map-into. It destructively modifies

the resultsequence to contain the results of applying function to corresponding

elements of the argument sequences in turn; it then returns resultsequence.

The arguments resultsequence and each element of sequences can each be either

a list or a vector (onedimensional array). The function must accept at least as many

394 COMMON LISP

arguments as the number of argument sequences supplied to map-into. If result

sequence and the other argument sequences are not all the same length, the iteration

terminates when the shortest sequence is exhausted. If resultsequence is a vector

with a fill pointer, the fill pointer is ignored when deciding how many iterations to

perform, and afterwards the fill pointer is set to the number of times the function was

applied.

If the function has side effects, it can count on being called first on all the elements

numbered 0, then on all those numbered 1, and so on.

If resultsequence is longer than the shortest element of sequences, extra elements

at the end of resultsequence are unchanged.

The function map-into differs from map in that it modifies an existing sequence

rather than creating a new one. In addition, map-into can be called with only two

arguments (resultsequence and function), while map requires at least three arguments.

If resultsequence is nil, map-into immediately returns nil, because nil is a se

quence of length zero.

[Function]some predicate sequence &rest more-sequences

[Function]every predicate sequence &rest more-sequences

[Function]notany predicate sequence &rest more-sequences

[Function]notevery predicate sequence &rest more-sequences

These are all predicates. The predicate must take as many arguments as there are

sequences provided. The predicate is first applied to the elements with index 0 in

each of the sequences, and possibly then to the elements with index 1, and so on, until

a termination criterion is met or the end of the shortest of the sequences is reached.

If the predicate has side effects, it can count on being called first on all the elements

numbered 0, then on all those numbered 1, and so on.

some returns as soon as any invocation of predicate returns a nonnil value; some

returns that value. If the end of a sequence is reached, some returns nil. Thus,

considered as a predicate, it is true if some invocation of predicate is true.

every returns nil as soon as any invocation of predicate returns nil. If the end of a

sequence is reached, every returns a nonnil value. Thus, considered as a predicate,

it is true if every invocation of predicate is true.

notany returns nil as soon as any invocation of predicate returns a nonnil value.

If the end of a sequence is reached, notany returns a nonnil value. Thus, considered

as a predicate, it is true if no invocation of predicate is true.

notevery returns a nonnil value as soon as any invocation of predicate returns

nil. If the end of a sequence is reached, notevery returns nil. Thus, considered as a

predicate, it is true if not every invocation of predicate is true.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

SEQUENCES 395

Compatibility note: The order of the arguments here is not compatible with Interlisp and

Lisp Machine Lisp. This is to stress the similarity of these functions to map. The functions are

therefore extended here to functions of more than one argument, and to multiple sequences.

[Function]reduce function sequence &key :from-end :start :end :initial-value

The reduce function combines all the elements of a sequence using a binary operation;

for example, using + one can add up all the elements.

The specified subsequence of the sequence is combined or “reduced” using the

function, which must accept two arguments. The reduction is leftassociative, unless

the :from-end argument is true (it defaults to nil), in which case it is rightassociative.

If an :initial-value argument is given, it is logically placed before the subsequence

(after it if :from-end is true) and included in the reduction operation.

If the specified subsequence contains exactly one element and the keyword argu

ment :initial-value is not given, then that element is returned and the function is not

called. If the specified subsequence is empty and an :initial-value is given, then the

:initial-value is returned and the function is not called.

If the specified subsequence is empty and no :initial-value is given, then the

function is called with zero arguments, and reduce returns whatever the function does.

(This is the only case where the function is called with other than two arguments.)

(reduce #--´+ ´(1 2 3 4)) ⇒ 10

(reduce #--´- ´(1 2 3 4)) ≡ (- (- (- 1 2) 3) 4) ⇒ -8

(reduce #--´- ´(1 2 3 4) :from-end t) ;Alternating sum

≡ (- 1 (- 2 (- 3 4))) ⇒ -2

(reduce #--´+ ´()) ⇒ 0

(reduce #--´+ ´(3)) ⇒ 3

(reduce #--´+ ´(foo)) ⇒ foo

(reduce #--´list ´(1 2 3 4)) ⇒ (((1 2) 3) 4)

(reduce #--´list ´(1 2 3 4) :from-end t) ⇒ (1 (2 (3 4)))

(reduce #--´list ´(1 2 3 4) :initial-value ´foo)

⇒ ((((foo 1) 2) 3) 4)

(reduce #--´list ´(1 2 3 4)

:from-end t :initial-value ´foo)

⇒ (1 (2 (3 (4 foo))))

If the function produces side effects, the order of the calls to the function can be

correctly predicted from the reduction ordering demonstrated above.

The name “reduce” for this function is borrowed from APL.

396 COMMON LISP

X3J13 voted in March 1988 〈152〉 to extend the reduce function to take an additional

keyword argument named :key. As usual, this argument defaults to the identity

function. The value of this argument must be a function that accepts at least one

argument. This function is applied once to each element of the sequence that is to

participate in the reduction operation, in the order implied by the :from-end argument;

the values returned by this function are combined by the reduction function. However,

the :key function is not applied to the :initial-value argument (if any).

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

14.3. Modifying Sequences

Each of these functions alters the contents of a sequence or produces an altered copy

of a given sequence.

[Function]fill sequence item &key :start :end

The sequence is destructively modified by replacing each element of the subsequence

specified by the :start and :end parameters with the item. The item may be any

Lisp object but must be a suitable element for the sequence. The item is stored

into all specified components of the sequence, beginning at the one specified by the

:start index (which defaults to zero), up to but not including the one specified by the

:end index (which defaults to the length of the sequence). fill returns the modified

sequence. For example:

(setq x (vector ´a ´b ´c ´d ´e)) ⇒ #--(a b c d e)

(fill x ´z :start 1 :end 3) ⇒ #--(a z z d e)

and now x ⇒ #--(a z z d e)

(fill x ´p) ⇒ #--(p p p p p)

and now x ⇒ #--(p p p p p)

[Function]replace sequence1 sequence2 &key :start1 :end1 :start2 :end2

The sequence sequence1 is destructively modified by copying successive elements

into it from sequence2. The elements of sequence2 must be of a type that may

be stored into sequence1. The subsequence of sequence2 specified by :start2 and

:end2 is copied into the subsequence of sequence1 specified by :start1 and :end1.

(The arguments :start1 and :start2 default to zero. The arguments :end1 and :end2

default to nil, meaning the end of the appropriate sequence.) If these subsequences

are not of the same length, then the shorter length determines how many elements are

copied; the extra elements near the end of the longer subsequence are not involved

in the operation. The number of elements copied may be expressed as:

SEQUENCES 397

(min (- end1 start1) (- end2 start2))

The value returned by replace is the modified sequence1.

If sequence1 and sequence2 are the same (eq) object and the region being modified

overlaps the region being copied from, then it is as if the entire source region were

copied to another place and only then copied back into the target region. However,

if sequence1 and sequence2 are not the same, but the region being modified overlaps

the region being copied from (perhaps because of shared list structure or displaced

arrays), then after the replace operation the subsequence of sequence1 being modified

will have unpredictable contents.

[Function]remove item sequence &key :from-end :test :test-not :start :end

:count :key

[Function]remove-if predicate sequence &key :from-end :start :end :count :key

[Function]remove-if-not predicate sequence &key :from-end :start :end :count

:key

The result is a sequence of the same kind as the argument sequence that has the

same elements except that those in the subsequence delimited by :start and :end

and satisfying the test (see above) have been removed. This is a nondestructive

operation; the result is a copy of the input sequence, save that some elements are not

copied. Elements not removed occur in the same order in the result as they did in the

argument.

The :count argument, if supplied, limits the number of elements removed; if more

than :count elements satisfy the test, then of these elements only the leftmost are

removed, as many as specified by :count.

X3J13 voted in January 1989 〈148〉 to clarify that the :count argument must be

either nil or an integer, and that supplying a negative integer produces the same

behavior as supplying zero.

A nonnil :from-end specification matters only when the :count argument is pro

vided; in that case only the rightmost :count elements satisfying the test are removed.

For example:

(remove 4 ´(1 2 4 1 3 4 5)) ⇒ (1 2 1 3 5)

(remove 4 ´(1 2 4 1 3 4 5) :count 1) ⇒ (1 2 1 3 4 5)

(remove 4 ´(1 2 4 1 3 4 5) :count 1 :from-end t)

⇒ (1 2 4 1 3 5)

(remove 3 ´(1 2 4 1 3 4 5) :test #--´>) ⇒ (4 3 4 5)

(remove-if #--´oddp ´(1 2 4 1 3 4 5)) ⇒ (2 4 4)

(remove-if #--´evenp ´(1 2 4 1 3 4 5) :count 1 :from-end t)

⇒ (1 2 4 1 3 5)

398 COMMON LISP

The result of remove may share with the argument sequence; a list result may share a

tail with an input list, and the result may be eq to the input sequence if no elements

need to be removed.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

[Function]delete item sequence &key :from-end :test :test-not

:start :end :count :key

[Function]delete-if predicate sequence &key :from-end :start :end :count :key

[Function]delete-if-not predicate sequence &key :from-end

:start :end :count :key

This is the destructive counterpart to remove. The result is a sequence of the same

kind as the argument sequence that has the same elements except that those in the

subsequence delimited by :start and :end and satisfying the test (see above) have

been deleted. This is a destructive operation. The argument sequence may be

destroyed and used to construct the result; however, the result may or may not be eq

to sequence. Elements not deleted occur in the same order in the result as they did in

the argument.

The :count argument, if supplied, limits the number of elements deleted; if more

than :count elements satisfy the test, then of these elements only the leftmost are

deleted, as many as specified by :count.

X3J13 voted in January 1989 〈148〉 to clarify that the :count argument must be

either nil or an integer, and that supplying a negative integer produces the same

behavior as supplying zero.

A nonnil :from-end specification matters only when the :count argument is pro

vided; in that case only the rightmost :count elements satisfying the test are deleted.

For example:

(delete 4 ´(1 2 4 1 3 4 5)) ⇒ (1 2 1 3 5)

(delete 4 ´(1 2 4 1 3 4 5) :count 1) ⇒ (1 2 1 3 4 5)

(delete 4 ´(1 2 4 1 3 4 5) :count 1 :from-end t)

⇒ (1 2 4 1 3 5)

(delete 3 ´(1 2 4 1 3 4 5) :test #--´>) ⇒ (4 3 4 5)

(delete-if #--´oddp ´(1 2 4 1 3 4 5)) ⇒ (2 4 4)

(delete-if #--´evenp ´(1 2 4 1 3 4 5) :count 1 :from-end t)

⇒ (1 2 4 1 3 5)

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

X3J13 voted in March 1989 〈153〉 to clarify the permissible side effects of certain

operations. When the sequence is a list, delete is permitted to perform a setf on any

part, car or cdr, of the toplevel list structure of that list. When the sequence is an

SEQUENCES 399

array, delete is permitted to alter the dimensions of the given array and to slide some

of its elements into new positions without permuting them in order to produce the

resulting array.

Furthermore, (delete-if predicate sequence ...) is required to behave exactly

like

(delete nil sequence

:test #--´(lambda (unused item)

(declare (ignore unused))

(funcall predicate item))

...)

Compatibility note: In MacLisp, the delete function uses an equal comparison rather than

eql, which is the default test for delete in Common Lisp. Where in MacLisp one would

write (delete x y), one must in Common Lisp write (delete x y :test #--´equal) to get the

completely identical effect. Similarly, one can get the precise effect, and no more, of the

MacLisp (delq x y) by writing in Common Lisp (delete x y :test #--´eq).

[Function]remove-duplicates sequence &key :from-end :test :test-not :start

:end :key

[Function]delete-duplicates sequence &key :from-end :test :test-not :start

:end :key

The elements of sequence are compared pairwise, and if any two match, then the one

occurring earlier in the sequence is discarded (but if the :from-end argument is true,

then the one later in the sequence is discarded). The result is a sequence of the same

kind as the argument sequence with enough elements removed so that no two of the

remaining elements match. The order of the elements remaining in the result is the

same as the order in which they appear in sequence.

remove-duplicates is the nondestructive version of this operation. The result of

remove-duplicates may share with the argument sequence; a list result may share a

tail with an input list, and the result may be eq to the input sequence if no elements

need to be removed.

delete-duplicates may destroy the argument sequence.

Some examples:

(remove-duplicates ´(a b c b d d e)) ⇒ (a c b d e)

(remove-duplicates ´(a b c b d d e) :from-end t) ⇒ (a b c d e)

(remove-duplicates ´((foo #--\a) (bar #--\%) (baz #--\A))

:test #--´char-equal :key #--´cadr)

⇒ ((bar #--\%) (baz #--\A))

400 COMMON LISP

(remove-duplicates ´((foo #--\a) (bar #--\%) (baz #--\A))

:test #--´char-equal :key #--´cadr :from-end t)

⇒ ((foo #--\a) (bar #--\%))

These functions are useful for converting a sequence into a canonical form suitable

for representing a set.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

X3J13 voted in March 1989 〈153〉 to clarify the permissible side effects of certain

operations. When the sequence is a list, delete-duplicates is permitted to perform

a setf on any part, car or cdr, of the toplevel list structure of that list. When the

sequence is an array, delete-duplicates is permitted to alter the dimensions of the

given array and to slide some of its elements into new positions without permuting

them in order to produce the resulting array.

[Function]substitute newitem olditem sequence &key :from-end :test :test-not

:start :end :count :key

[Function]substitute-if newitem test sequence &key :from-end :start :end

:count :key

[Function]substitute-if-not newitem test sequence &key :from-end :start :end

:count :key

The result is a sequence of the same kind as the argument sequence that has the

same elements except that those in the subsequence delimited by :start and :end

and satisfying the test (see above) have been replaced by newitem. This is a non

destructive operation; the result is a copy of the input sequence, save that some

elements are changed.

The :count argument, if supplied, limits the number of elements altered; if more

than :count elements satisfy the test, then of these elements only the leftmost are

replaced, as many as specified by :count.

X3J13 voted in January 1989 〈148〉 to clarify that the :count argument must be

either nil or an integer, and that supplying a negative integer produces the same

behavior as supplying zero.

A nonnil :from-end specification matters only when the :count argument is pro

vided; in that case only the rightmost :count elements satisfying the test are replaced.

For example:

(substitute 9 4 ´(1 2 4 1 3 4 5)) ⇒ (1 2 9 1 3 9 5)

(substitute 9 4 ´(1 2 4 1 3 4 5) :count 1) ⇒ (1 2 9 1 3 4 5)

(substitute 9 4 ´(1 2 4 1 3 4 5) :count 1 :from-end t)

⇒ (1 2 4 1 3 9 5)

(substitute 9 3 ´(1 2 4 1 3 4 5) :test #--´>) ⇒ (9 9 4 9 3 4 5)

SEQUENCES 401

(substitute-if 9 #--´oddp ´(1 2 4 1 3 4 5)) ⇒ (9 2 4 9 9 4 9)

(substitute-if 9 #--´evenp ´(1 2 4 1 3 4 5) :count 1 :from-end t)

⇒ (1 2 4 1 3 9 5)

The result of substitute may share with the argument sequence; a list result may

share a tail with an input list, and the result may be eq to the input sequence if no

elements need to be changed.

See also subst, which performs substitutions throughout a tree.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

[Function]nsubstitute newitem olditem sequence &key :from-end :test

:test-not :start :end :count :key

[Function]nsubstitute-if newitem test sequence &key :from-end :start :end

:count :key

[Function]nsubstitute-if-not newitem test sequence &key :from-end :start

:end :count :key

This is the destructive counterpart to substitute. The result is a sequence of the same

kind as the argument sequence that has the same elements except that those in the

subsequence delimited by :start and :end and satisfying the test (see above) have

been replaced by newitem. This is a destructive operation. The argument sequence

may be destroyed and used to construct the result; however, the result may or may

not be eq to sequence.

See also nsubst, which performs destructive substitutions throughout a tree.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

X3J13 voted in March 1989 〈153〉 to clarify the permissible side effects of certain

operations. When the sequence is a list, nsubstitute or nsubstitute-if is required to

perform a setf on any car of the toplevel list structure of that list whose old contents

must be replaced with newitem but is forbidden to perform a setf on any cdr of the

list. When the sequence is an array, nsubstitute or nsubstitute-if is required to

perform a setf on any element of the array whose old contents must be replaced with

newitem. These functions, therefore, may successfully be used solely for effect, the

caller discarding the returned value (though some programmers find this stylistically

distasteful).

14.4. Searching Sequences for Items

Each of these functions searches a sequence to locate one or more elements satisfying

some test.

402 COMMON LISP

[Function]find item sequence &key :from-end :test :test-not :start :end :key

[Function]find-if predicate sequence &key :from-end :start :end :key

[Function]find-if-not predicate sequence &key :from-end :start :end :key

If the sequence contains an element satisfying the test, then the leftmost such element

is returned; otherwise nil is returned.

If :start and :end keyword arguments are given, only the specified subsequence

of sequence is searched.

If a nonnil:from-end keyword argument is specified, then the result is the rightmost

element satisfying the test.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

[Function]position item sequence &key :from-end :test :test-not

:start :end :key

[Function]position-if predicate sequence &key :from-end :start :end :key

[Function]position-if-not predicate sequence &key :from-end :start :end :key

If the sequence contains an element satisfying the test, then the index within the

sequence of the leftmost such element is returned as a nonnegative integer; otherwise

nil is returned.

If :start and :end keyword arguments are given, only the specified subsequence of

sequence is searched. However, the index returned is relative to the entire sequence,

not to the subsequence.

If a nonnil :from-end keyword argument is specified, then the result is the index of

the rightmost element satisfying the test. (The index returned, however, is an index

from the lefthand end, as usual.)

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

Here is a simple piece of code that uses several of the sequence functions, notably

position-if and find-if, to process strings. Note one use of loop as well.

(defun debug-palindrome (s)

(flet ((match (x) (char-equal (first x) (third x))))

(let* ((pairs (loop for c across s

for j from 0

when (alpha-char-p c)

collect (list c j)))

(quads (mapcar #--´append pairs (reverse pairs)))

(diffpos (position-if (complement #--´match) quads)))

SEQUENCES 403

(when diffpos

(let* ((diff (elt quads diffpos))

(same (find-if #--´match quads

:start (+ diffpos 1))))

(if same

(format nil

"/˜A/ (at ˜D) is not the reverse of /˜A/"

(subseq s (second diff) (second same))

(second diff)

(subseq s (+ (fourth same) 1)

(+ (fourth diff) 1)))

"This palindrome is completely messed up!"))))))

Here is an example of its behavior.

(setq panama ;A putative palindrome?

"A man, a plan, a canoe, pasta, heros, rajahs,

a coloratura, maps, waste, percale, macaroni, a gag,

a banana bag, a tan, a tag, a banana bag again

(or a camel), a crepe, pins, Spam, a rut, a Rolo,

cash, a jar, sore hats, a peon, a canal--Panama!")

(debug-palindrome panama)

⇒ "/wast/ (at 73) is not the reverse of /, pins/"

(replace panama "snipe" :start1 73) ;Repair it

⇒ "A man, a plan, a canoe, pasta, heros, rajahs,

a coloratura, maps, snipe, percale, macaroni, a gag,

a banana bag, a tan, a tag, a banana bag again

(or a camel), a crepe, pins, Spam, a rut, a Rolo,

cash, a jar, sore hats, a peon, a canal--Panama!"

(debug-palindrome panama) ⇒ nil ;Copacetic—a true palindrome

(debug-palindrome "Rubber baby buggy bumpers")

⇒ "/Rubber / (at 0) is not the reverse of /umpers/"

(debug-palindrome "Common Lisp: The Language")

⇒ "/Commo/ (at 0) is not the reverse of /guage/"

404 COMMON LISP

(debug-palindrome "Complete mismatches are hard to find")

⇒
"/Complete mism/ (at 0) is not the reverse of /re hard to find/"

(debug-palindrome "Waltz, nymph, for quick jigs vex Bud")

⇒ "This palindrome is completely messed up!"

(debug-palindrome "Doc, note: I dissent. A fast never

prevents a fatness. I diet on cod.")

⇒nil ;Another winner

(debug-palindrome "Top step´s pup´s pet spot") ⇒ nil

[Function]count item sequence &key :from-end :test :test-not

:start :end :key

[Function]count-if predicate sequence &key :from-end :start :end :key

[Function]count-if-not predicate sequence &key :from-end :start :end :key

The result is always a nonnegative integer, the number of elements in the specified

subsequence of sequence satisfying the test.

The :from-end argument does not affect the result returned; it is accepted purely

for compatibility with other sequence functions.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

[Function]mismatch sequence1 sequence2 &key :from-end :test :test-not :key

:start1 :start2 :end1 :end2

The specified subsequences of sequence1 and sequence2 are compared elementwise.

If they are of equal length and match in every element, the result is nil. Otherwise,

the result is a nonnegative integer. This result is the index within sequence1 of the

leftmost position at which the two subsequences fail to match; or, if one subsequence

is shorter than and a matching prefix of the other, the result is the index relative to

sequence1 beyond the last position tested.

If a nonnil :from-end keyword argument is given, then one plus the index of

the rightmost position in which the sequences differ is returned. In effect, the

(sub)sequences are aligned at their righthand ends; then, the last elements are com

pared, the penultimate elements, and so on. The index returned is again an index

relative to sequence1.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

SEQUENCES 405

[Function]search sequence1 sequence2 &key :from-end :test :test-not :key

:start1 :start2 :end1 :end2

A search is conducted for a subsequence of sequence2 that elementwise matches

sequence1. If there is no such subsequence, the result is nil; if there is, the result

is the index into sequence2 of the leftmost element of the leftmost such matching

subsequence.

If a nonnil :from-end keyword argument is given, the index of the leftmost element

of the rightmost matching subsequence is returned.

The implementation may choose to search the sequence in any order; there is no

guarantee on the number of times the test is made. For example, search with a non

nil :from-end argument might actually search a list from left to right instead of from

right to left (but in either case would return the rightmost matching subsequence, of

course). Therefore it is a good idea for a usersupplied predicate to be free of side

effects.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

14.5. Sorting and Merging

These functions may destructively modify argument sequences in order to put a

sequence into sorted order or to merge two already sorted sequences.

[Function]sort sequence predicate &key :key

[Function]stable-sort sequence predicate &key :key

The sequence is destructively sorted according to an order determined by the predi

cate. The predicate should take two arguments, and return nonnil if and only if the

first argument is strictly less than the second (in some appropriate sense). If the first

argument is greater than or equal to the second (in the appropriate sense), then the

predicate should return nil.

The sort function determines the relationship between two elements by giving

keys extracted from the elements to the predicate. The :key argument, when applied

to an element, should return the key for that element. The :key argument defaults to

the identity function, thereby making the element itself be the key.

The :key function should not have any side effects. A useful example of a :key

function would be a component selector function for a defstruct structure, used in

sorting a sequence of structures.

(sort a p :key s) ≡ (sort a #--´(lambda (x y) (p (s x) (s y))))

406 COMMON LISP

While the above two expressions are equivalent, the first may be more efficient in some

implementations for certain types of arguments. For example, an implementation

may choose to apply s to each item just once, putting the resulting keys into a separate

table, and then sort the parallel tables, as opposed to applying s to an item every time

just before applying the predicate.

If the :key and predicate functions always return, then the sorting operation will

always terminate, producing a sequence containing the same elements as the original

sequence (that is, the result is a permutation of sequence). This is guaranteed even

if the predicate does not really consistently represent a total order (in which case

the elements will be scrambled in some unpredictable way, but no element will be

lost). If the :key function consistently returns meaningful keys, and the predicate

does reflect some total ordering criterion on those keys, then the elements of the result

sequence will be properly sorted according to that ordering.

The sorting operation performed by sort is not guaranteed stable. Elements

considered equal by the predicate may or may not stay in their original order. (The

predicate is assumed to consider two elements x and y to be equal if (funcall

predicate x y) and (funcall predicate y x) are both false.) The function stable-

sort guarantees stability but may be slower than sort in some situations.

The sorting operation may be destructive in all cases. In the case of an array

argument, this is accomplished by permuting the elements in place. In the case of a

list, the list is destructively reordered in the same manner as for nreverse. Thus if the

argument should not be destroyed, the user must sort a copy of the argument.

Should execution of the :key function or the predicate cause an error, the state of

the list or array being sorted is undefined. However, if the error is corrected, the sort

will, of course, proceed correctly.

Note that since sorting requires many comparisons, and thus many calls to the

predicate, sorting will be much faster if the predicate is a compiled function rather

than interpreted.

An example:

(setq foovector (sort foovector #--´string-lessp :key #--´car))

If foovector contained these items before the sort

("Tokens" "The Lion Sleeps Tonight")

("Carpenters" "Close to You")

("Rolling Stones" "Brown Sugar")

("Beach Boys" "I Get Around")

("Mozart" "Eine Kleine Nachtmusik" (K 525))

("Beatles" "I Want to Hold Your Hand")

SEQUENCES 407

then after the sort foovector would contain

("Beach Boys" "I Get Around")

("Beatles" "I Want to Hold Your Hand")

("Carpenters" "Close to You")

("Mozart" "Eine Kleine Nachtmusik" (K 525))

("Rolling Stones" "Brown Sugar")

("Tokens" "The Lion Sleeps Tonight")

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

[Function]merge result-type sequence1 sequence2 predicate &key :key

The sequences sequence1 and sequence2 are destructively merged according to an

order determined by the predicate. The result is a sequence of type resulttype, which

must be a subtype of sequence, as for the function coerce. The predicate should take

two arguments and return nonnil if and only if the first argument is strictly less than

the second (in some appropriate sense). If the first argument is greater than or equal

to the second (in the appropriate sense), then the predicate should return nil.

The merge function determines the relationship between two elements by giving

keys extracted from the elements to the predicate. The :key function, when applied

to an element, should return the key for that element; the :key function defaults to

the identity function, thereby making the element itself be the key.

The :key function should not have any side effects. A useful example of a :key

function would be a component selector function for a defstruct structure, used to

merge a sequence of structures.

If the :key and predicate functions always return, then the merging operation will

always terminate. The result of merging two sequences x and y is a new sequence z,

such that the length of z is the sum of the lengths of x and y, and z contains all the

elements of x and y. If x1 and x2 are two elements of x, and x1 precedes x2 in x, then

x1 precedes x2 in z, and similarly for elements of y. In short, z is an interleaving of x

and y.

Moreover, if x and y were correctly sorted according to the predicate, then z will

also be correctly sorted, as shown in this example.

(merge ´list ´(1 3 4 6 7) ´(2 5 8) #--´<) ⇒ (1 2 3 4 5 6 7 8)

If x or y is not so sorted then z will not be sorted, but will nevertheless be an

interleaving of x and y.

The merging operation is guaranteed stable; if two or more elements are considered

equal by the predicate, then the elements from sequence1 will precede those from

sequence2 in the result. (The predicate is assumed to consider two elements x and y

408 COMMON LISP

to be equal if (funcall predicate x y) and (funcall predicate y x) are both false.)

For example:

(merge ´string "BOY" "nosy" #--´char-lessp) ⇒ "BnOosYy"

The result can not be "BnoOsYy", "BnOosyY", or "BnoOsyY". The function char-lessp

ignores case, and so considers the characters Y and y to be equal, for example; the

stability property then guarantees that the character from the first argument (Y) must

precede the one from the second argument (y).

X3J13 voted in June 1989 〈158〉 to specify that merge should signal an error if the

sequence type specifies the number of elements and the sum of the lengths of the two

sequence arguments is different.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

15

Lists

A cons, or dotted pair, is a compound data object having two components called the

car and cdr. Each component may be any Lisp object. A list is a chain of conses

linked by cdr fields; the chain is terminated by some atom (a noncons object). An

ordinary list is terminated by nil, the empty list (also written ()). A list whose cdr

chain is terminated by some nonnil atom is called a dotted list.

The recommended predicate for testing for the end of a list is endp.

15.1. Conses

These are the basic operations on conses viewed as pairs rather than as the constituents

of a list.

[Function]car list

This returns the car of list, which must be a cons or (); that is, list must satisfy the

predicate listp. By definition, the car of () is (). If the cons is regarded as the first

cons of a list, then car returns the first element of the list. For example:

(car ´(a b c)) ⇒ a

See first. The car of a cons may be altered by using rplaca or setf.

[Function]cdr list

This returns the cdr of list, which must be a cons or (); that is, list must satisfy the

predicate listp. By definition, the cdr of () is (). If the cons is regarded as the first

cons of a list, then cdr returns the rest of the list, which is a list with all elements but

the first of the original list. For example:

(cdr ´(a b c)) ⇒ (b c)

409

410 COMMON LISP

See rest. The cdr of a cons may be altered by using rplacd or setf.

[Function]caar list

[Function]cadr list

[Function]cdar list

[Function]cddr list

[Function]caaar list

[Function]caadr list

[Function]cadar list

[Function]caddr list

[Function]cdaar list

[Function]cdadr list

[Function]cddar list

[Function]cdddr list

[Function]caaaar list

[Function]caaadr list

[Function]caadar list

[Function]caaddr list

[Function]cadaar list

[Function]cadadr list

[Function]caddar list

[Function]cadddr list

[Function]cdaaar list

[Function]cdaadr list

[Function]cdadar list

[Function]cdaddr list

[Function]cddaar list

[Function]cddadr list

[Function]cdddar list

[Function]cddddr list

All of the compositions of up to four car and cdr operations are defined as separate

Common Lisp functions. The names of these functions begin with c and end with

r, and in between is a sequence of a and d letters corresponding to the composition

performed by the function. For example:

(cddadr x) is the same as (cdr (cdr (car (cdr x))))

If the argument is regarded as a list, then cadr returns the second element of the list,

caddr the third, and cadddr the fourth. If the first element of a list is a list, then caar is

LISTS 411

the first element of the sublist, cdar is the rest of that sublist, and cadar is the second

element of the sublist, and so on.

As a matter of style, it is often preferable to define a function or macro to access

part of a complicated data structure, rather than to use a long car/cdr string. For

example, one might define a macro to extract the list of parameter variables from a

lambdaexpression:

(defmacro lambda-vars (lambda-exp) ‘(cadr ,lambda-exp))

and then use lambda-vars for this purpose instead of cadr. See also defstruct, which

will automatically define new record data types and access functions for instances of

them.

Any of these functions may be used to specify a place for setf.

[Function]cons x y

cons is the primitive function to create a new cons whose car is x and whose cdr is y.

For example:

(cons ´a ´b) ⇒ (a . b)

(cons ´a (cons ´b (cons ´c ´()))) ⇒ (a b c)

(cons ´a ´(b c d)) ⇒ (a b c d)

cons may be thought of as creating a cons, or as adding a new element to the front of

a list.

[Function]tree-equal x y &key :test :test-not

This is a predicate that is true if x and y are isomorphic trees with identical leaves,

that is, if x and y are atoms that satisfy the test (by default eql), or if they are both

conses and their car’s are tree-equal and their cdr’s are tree-equal. Thus tree-

equal recursively compares conses (but not any other objects that have components).

See equal, which does recursively compare certain other structured objects, such as

strings.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

15.2. Lists

The following functions perform various operations on lists.

The list is one of the original Lisp data types. The very name “Lisp” is an

abbreviation for “LISt Processing.”

412 COMMON LISP

[Function]endp object

The predicate endp is the recommended way to test for the end of a list. It is false of

conses, true of nil, and an error for all other arguments.

Implementation note: Implementations are encouraged to signal an error, especially in the

interpreter, for a nonlist argument. The endp function is defined so as to allow compiled code

to perform simply an atom check or a null check if speed is more important than safety.

[Function]list-length list

list-length returns, as an integer, the length of list. list-length differs from length

when the list is circular; length may fail to return, whereas list-length will return

nil. For example:

(list-length ´()) ⇒ 0

(list-length ´(a b c d)) ⇒ 4

(list-length ´(a (b c) d)) ⇒ 3

(let ((x (list ´a b c)))

(rplacd (last x) x)

(list-length x)) ⇒ nil

list-length could be implemented as follows:

(defun list-length (x)

(do ((n 0 (+ n 2)) ;Counter

(fast x (cddr fast)) ;Fast pointer: leaps by 2

(slow x (cdr slow))) ;Slow pointer: leaps by 1

(nil)

;; If fast pointer hits the end, return the count.

(when (endp fast) (return n))

(when (endp (cdr fast)) (return (+ n 1)))

;; If fast pointer eventually equals slow pointer,

;; then we must be stuck in a circular list.

;; (A deeper property is the converse: if we are

;; stuck in a circular list, then eventually the

;; fast pointer will equal the slow pointer.

;; That fact justifies this implementation.)

(when (and (eq fast slow) (> n 0)) (return nil))))

See length, which will return the length of any sequence.

LISTS 413

[Function]nth n list

(nth n list) returns the nth element of list, where the car of the list is the “zeroth”

element. The argument n must be a nonnegative integer. If the length of the list is

not greater than n, then the result is (), that is, nil. (This is consistent with the idea

that the car and cdr of () are each ().) For example:

(nth 0 ´(foo bar gack)) ⇒ foo

(nth 1 ´(foo bar gack)) ⇒ bar

(nth 3 ´(foo bar gack)) ⇒ ()

Compatibility note: This is not the same as the Interlisp function called nth, which is similar

to but not exactly the same as the Common Lisp function nthcdr. This definition of nth is

compatible with Lisp Machine Lisp and NIL (New Implementation of Lisp). Also, some

people have used macros and functions called nth of their own in their old MacLisp programs,

which may not work the same way.

nth may be used to specify a place to setf; when nth is used in this way, the

argument n must be less than the length of the list.

Note that the arguments to nth are reversed from the order used by most other

sequence selector functions such as elt.

[Function]first list

[Function]second list

[Function]third list

[Function]fourth list

[Function]fifth list

[Function]sixth list

[Function]seventh list

[Function]eighth list

[Function]ninth list

[Function]tenth list

These functions are sometimes convenient for accessing particular elements of a list.

first is the same as car, second is the same as cadr, third is the same as caddr, and

so on. Note that the ordinal numbering used here is oneorigin, as opposed to the

zeroorigin numbering used by nth:

(fifth x) ≡ (nth 4 x)

setf may be used with each of these functions to store into the indicated position

of a list.

414 COMMON LISP

[Function]rest list

rest means the same as cdr but mnemonically complements first. setf may be used

with rest to replace the cdr of a list with a new value.

[Function]nthcdr n list

(nthcdr n list) performs the cdr operation n times on list, and returns the result. For

example:

(nthcdr 0 ´(a b c)) ⇒ (a b c)

(nthcdr 2 ´(a b c)) ⇒ (c)

(nthcdr 4 ´(a b c)) ⇒ ()

In other words, it returns the nth cdr of the list.

Compatibility note: This is similar to the Interlisp function nth, except that the Interlisp

function is onebased instead of zerobased.

(car (nthcdr n x)) ≡ (nth n x)

X3J13 voted in January 1989 〈7〉 to clarify that the argument n must be a non

negative integer.

[Function]last list
..

last returns the last cons (not the last element!) of list. If list is (), it returns (). For

example:

(setq x ´(a b c d))

(last x) ⇒ (d)

(rplacd (last x) ´(e f))

x ⇒ ´(a b c d e f)

(last ´(a b c . d)) ⇒ (c . d)

X3J13 voted in June 1988 〈106〉 to extend the last function to accept an optional

second argument. The effect is to make last complementary in operation to butlast.

The new description (with some additional examples) would be as follows.

[Function]last list &optional (n 1)

last returns the tail of the list consisting of the last n conses of list. The list may be

a dotted list. It is an error if the list is circular.

LISTS 415

The argument n must be a nonnegative integer. If n is zero, then the atom that

terminates the list is returned. If n is not less than the number of cons cells making

up the list, then the list itself is returned.

For example:

(setq x ´(a b c d))

(last x) ⇒ (d)

(rplacd (last x) ´(e f))

x ⇒ ´(a b c d e f)

(last x 3) ⇒ (d e f)

(last ´()) ⇒ ()

(last ´(a b c . d)) ⇒ (c . d)

(last ´(a b c . d) 0) ⇒ d

(last ´(a b c . d) 2) ⇒ (b c . d)

(last ´(a b c . d) 1729) ⇒ (a b c . d)

[Function]list &rest args

list constructs and returns a list of its arguments. For example:

(list 3 4 ´a (car ´(b . c)) (+ 6 -2)) ⇒ (3 4 a b 4)

(list) ⇒ ()

(list (list ´a ´b) (list ´c ´d ´e)) ⇒ ((a b) (c d e))

[Function]list* arg &rest others

list* is like list except that the last cons of the constructed list is “dotted.” The last

argument to list* is used as the cdr of the last cons constructed; this need not be an

atom. If it is not an atom, then the effect is to add several new elements to the front

of a list. For example:

(list* ´a ´b ´c ´d) ⇒ (a b c . d)

This is like

(cons ´a (cons ´b (cons ´c ´d)))

Also:

(list* ´a ´b ´c ´(d e f)) ⇒ (a b c d e f)

(list* x) ≡ x

416 COMMON LISP

[Function]make-list size &key :initial-element

This creates and returns a list containing size elements, each of which is initialized to

the :initial-element argument (which defaults to nil). size should be a nonnegative

integer. For example:

(make-list 5) ⇒ (nil nil nil nil nil)

(make-list 3 :initial-element ´rah) ⇒ (rah rah rah)

[Function]append &rest lists

The arguments to append are lists. The result is a list that is the concatenation of the

arguments. The arguments are not destroyed. For example:

(append ´(a b c) ´(d e f) ´() ´(g)) ⇒ (a b c d e f g)

Note that append copies the toplevel list structure of each of its arguments except the

last. The function concatenate can perform a similar operation, but always copies all

its arguments. See also nconc, which is like append but destroys all arguments but the

last.

The last argument actually need not be a list but may be any Lisp object, which

becomes the tail end of the constructed list. For example, (append ´(a b c) ´d) ⇒
(a b c . d).

(append x ´()) is an idiom once frequently used to copy the list x, but the copy-list

function is more appropriate to this task.

[Function]copy-list list

This returns a list that is equal to list, but not eq. Only the top level of list structure

is copied; that is, copy-list copies in the cdr direction but not in the car direction. If

the list is “dotted,” that is, (cdr (last list)) is a nonnil atom, this will be true of the

returned list also. See also copy-seq and copy-tree.

[Function]copy-alist list

copy-alist is for copying association lists. The top level of list structure of list is

copied, just as for copy-list. In addition, each element of list that is a cons is replaced

in the copy by a new cons with the same car and cdr.

[Function]copy-tree object

copy-tree is for copying trees of conses. The argument object may be any Lisp object.

If it is not a cons, it is returned; otherwise the result is a new cons of the results of

LISTS 417

calling copy-tree on the car and cdr of the argument. In other words, all conses

in the tree are copied recursively, stopping only when nonconses are encountered.

Circularities and the sharing of substructure are not preserved.

Compatibility note: This function is called copy in Interlisp.

[Function]revappend x y

(revappend x y) is exactly the same as (append (reverse x) y) except that it is po

tentially more efficient. Both x and y should be lists. The argument x is copied, not

destroyed. Compare this with nreconc, which destroys its first argument.

[Function]nconc &rest lists

nconc takes lists as arguments. It returns a list that is the arguments concatenated

together. The arguments are changed rather than copied. (Compare this with append,

which copies arguments rather than destroying them.) For example:

(setq x ´(a b c))

(setq y ´(d e f))

(nconc x y) ⇒ (a b c d e f)

x ⇒ (a b c d e f)

Note, in the example, that the value of x is now different, since its last cons has

been rplacd’d to the value of y. If one were then to evaluate (nconc x y) again, it

would yield a piece of “circular” list structure, whose printed representation would be

(a b c d e f d e f d e f ...), repeating forever; if the *print-circle* switch were

nonnil, it would be printed as (a b c . #--1−−(d e f . #--1#--)).

X3J13 voted in March 1989 〈153〉 to clarify the permissible side effects of certain

operations. The sideeffect behavior of nconc is specified by a recursive relation

ship outlined in the following table, in which a call to nconc matching the earliest

possible pattern on the left is required to have sideeffect behavior equivalent to the

corresponding expression on the right.

(nconc) nil ;No side effects

(nconc nil . r) (nconc . r)

(nconc x) x

(nconc x y) (let ((p x) (q y))

(rplacd (last p) q)

p)

(nconc x y . r) (nconc (nconc x y) . r)

418 COMMON LISP

[Function]nreconc x y

(nreconc x y) is exactly the same as (nconc (nreverse x) y) except that it is poten

tially more efficient. Both x and y should be lists. The argument x is destroyed.

Compare this with revappend.

(setq planets ´(jupiter mars earth venus mercury))

(setq more-planets ´(saturn uranus pluto neptune))

(nreconc more-planets planets)

⇒ (neptune pluto uranus saturn jupiter mars earth venus mercury)

and now the value of more-planets is not well defined

X3J13 voted in March 1989 〈153〉 to clarify the permissible side effects of certain

operations; (nreconc x y) is permitted and required to have sideeffect behavior

equivalent to that of (nconc (nreverse x) y).

[Macro]push item place

The form place should be the name of a generalized variable containing a list; item

may refer to any Lisp object. The item is consed onto the front of the list, and the

augmented list is stored back into place and returned. The form place may be any

form acceptable as a generalized variable to setf. If the list held in place is viewed

as a pushdown stack, then push pushes an element onto the top of the stack. For

example:

(setq x ´(a (b c) d))

(push 5 (cadr x)) ⇒ (5 b c) and now x ⇒ (a (5 b c) d)

The effect of (push item place) is roughly equivalent to

(setf place (cons item place))

except that the latter would evaluate any subforms of place twice, while push takes

care to evaluate them only once. Moreover, for certain place forms push may be

significantly more efficient than the setf version.

X3J13 voted in March 1988 〈146〉 to clarify order of evaluation (see section 7.2).

Note that item is fully evaluated before any part of place is evaluated.

[Macro]pushnew item place &key :test :test-not :key

The form place should be the name of a generalized variable containing a list; item

may refer to any Lisp object. If the item is not already a member of the list (as

determined by comparisons using the :test predicate, which defaults to eql), then

LISTS 419

the item is consed onto the front of the list, and the augmented list is stored back into

place and returned; otherwise the unaugmented list is returned. The form place may

be any form acceptable as a generalized variable to setf. If the list held in place is

viewed as a set, then pushnew adjoins an element to the set; see adjoin.

The keyword arguments to pushnew follow the conventions for the generic sequence

functions. See chapter 14. In effect, these keywords are simply passed on to the

adjoin function.

pushnew returns the new contents of the place. For example:

(setq x ´(a (b c) d))

(pushnew 5 (cadr x)) ⇒ (5 b c) and now x ⇒ (a (5 b c) d)

(pushnew ´b (cadr x)) ⇒ (5 b c) and x is unchanged

The effect of

(pushnew item place :test p)

is roughly equivalent to

(setf place (adjoin item place :test p))

except that the latter would evaluate any subforms of place twice, while pushnew takes

care to evaluate them only once. Moreover, for certain place forms pushnew may be

significantly more efficient than the setf version.

X3J13 voted in March 1988 〈146〉 to clarify order of evaluation (see section 7.2).

Note that item is fully evaluated before any part of place is evaluated.

[Macro]pop place

The form place should be the name of a generalized variable containing a list. The

result of pop is the car of the contents of place, and as a side effect the cdr of the

contents is stored back into place. The form place may be any form acceptable as a

generalized variable to setf. If the list held in place is viewed as a pushdown stack,

then pop pops an element from the top of the stack and returns it. For example:

(setq stack ´(a b c))

(pop stack) ⇒ a and now stack ⇒ (b c)

The effect of (pop place) is roughly equivalent to

(prog1 (car place) (setf place (cdr place)))

420 COMMON LISP

except that the latter would evaluate any subforms of place three times, while pop

takes care to evaluate them only once. Moreover, for certain place forms pop may be

significantly more efficient than the setf version.

X3J13 voted in March 1988 〈146〉 to clarify order of evaluation (see section 7.2).

[Function]butlast list &optional n

This creates and returns a list with the same elements as list, excepting the last n

elements. n defaults to 1. The argument is not destroyed. If the list has fewer than n

elements, then () is returned. For example:

(butlast ´(a b c d)) ⇒ (a b c)

(butlast ´((a b) (c d))) ⇒ ((a b))

(butlast ´(a)) ⇒ ()

(butlast nil) ⇒ ()

The name is from the phrase “all elements but the last.”

[Function]nbutlast list &optional n

This is the destructive version of butlast; it changes the cdr of the cons n+1 from

the end of the list to nil. n defaults to 1. If the list has fewer than n elements,

then nbutlast returns (), and the argument is not modified. (Therefore one normally

writes (setq a (nbutlast a)) rather than simply (nbutlast a).) For example:

(setq foo ´(a b c d))

(nbutlast foo) ⇒ (a b c)

foo ⇒ (a b c)

(nbutlast ´(a)) ⇒ ()

(nbutlast ´nil) ⇒ ()

[Function]ldiff list sublist

list should be a list, and sublist should be a sublist of list, that is, one of the conses

that make up list. ldiff (meaning “list difference”) will return a new (freshly consed)

list, whose elements are those elements of list that appear before sublist. If sublist

is not a tail of list (and in particular if sublist is nil), then a copy of the entire list is

returned. The argument list is not destroyed. For example:

(setq x ´(a b c d e))

(setq y (cdddr x)) ⇒ (d e)

(ldiff x y) ⇒ (a b c)

LISTS 421

but (ldiff ´(a b c d) ´(c d)) ⇒ (a b c d)

since the sublist was not eq to any part of the list.

15.3. Alteration of List Structure

The functions rplaca and rplacd may be used to make alterations in already existing

list structure, that is, to change the car or cdr of an existing cons. One may also use

setf in conjunction with car and cdr.

The structure is not copied but is destructively altered; hence caution should be

exercised when using these functions, as strange side effects can occur if portions of

list structure become shared. The nconc, nreverse, nreconc, and nbutlast functions,

already described, have the same property, as do certain of the generic sequence

functions such as delete. However, they are normally not used for this side effect;

rather, the liststructure modification is purely for efficiency, and compatible non

modifying functions are provided.

[Function]rplaca x y

(rplaca x y) changes the car of x to y and returns (the modified) x. x must be a cons,

but y may be any Lisp object. For example:

(setq g ´(a b c))

(rplaca (cdr g) ´d) ⇒ (d c)

Now g ⇒ (a d c)

[Function]rplacd x y

(rplacd x y) changes the cdr of x to y and returns (the modified) x. x must be a cons,

but y may be any Lisp object. For example:

(setq x ´(a b c))

(rplacd x ´d) ⇒ (a . d)

Now x ⇒ (a . d)

The functions rplaca and rplacd go back to the earliest origins of Lisp, along with

car, cdr, and cons. Nowadays, however, they seem to be falling by the wayside. More

and more Common Lisp programmers use setf for nearly all structure modifications:

(rplaca x y) is rendered as (setf (car x) y) or perhaps as (setf (first x) y). Even

more likely is that a defstruct structure or a CLOS class is used in place of a list, if

the data structure is at all complicated; in this case setf is used with a slot accessor.

422 COMMON LISP

15.4. Substitution of Expressions

A number of functions are provided for performing substitutions within a tree. All

take a tree and a description of old subexpressions to be replaced by new ones. They

come in nondestructive and destructive varieties and specify substitution either by

two arguments or by an association list.

The naming conventions for these functions and for their keyword arguments

generally follow the conventions for the generic sequence functions. See chapter 14.

[Function]subst new old tree &key :test :test-not :key

[Function]subst-if new test tree &key :key

[Function]subst-if-not new test tree &key :key

(subst new old tree) makes a copy of tree, substituting new for every subtree or leaf

of tree (whether the subtree or leaf is a car or a cdr of its parent) such that old and

the subtree or leaf satisfy the test. It returns the modified copy of tree. The original

tree is unchanged, but the result tree may share with parts of the argument tree.

Compatibility note: In MacLisp, subst is guaranteed not to share with the tree argument, and

the idiom (subst nil nil x) was used to copy a tree x. In Common Lisp, the function copy-tree

should be used to copy a tree, as the subst idiom will not work.

For example:

(subst ´tempest ´hurricane

´(shakespeare wrote (the hurricane)))

⇒ (shakespeare wrote (the tempest))

(subst ´foo ´nil ´(shakespeare wrote (twelfth night)))

⇒ (shakespeare wrote (twelfth night . foo) . foo)

(subst ´(a . cons) ´(old . pair)

´((old . spice) ((old . shoes) old . pair) (old . pair))

:test #--´equal)

⇒ ((old . spice) ((old . shoes) a . cons) (a . cons))

This function is not destructive; that is, it does not change the car or cdr of any

already existing list structure. One possible definition of subst:

LISTS 423

(defun subst (old new tree &rest x &key test test-not key)

(cond ((satisfies-the-test old tree :test test

:test-not test-not :key key)

new)

((atom tree) tree)

(t (let ((a (apply #--´subst old new (car tree) x))

(d (apply #--´subst old new (cdr tree) x)))

(if (and (eql a (car tree))

(eql d (cdr tree)))

tree

(cons a d))))))

See also substitute, which substitutes for toplevel elements of a sequence.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

[Function]nsubst new old tree &key :test :test-not :key

[Function]nsubst-if new test tree &key :key

[Function]nsubst-if-not new test tree &key :key

nsubst is a destructive version of subst. The list structure of tree is altered by

destructively replacing with new each leaf or subtree of the tree such that old and the

leaf or subtree satisfy the test.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

[Function]sublis alist tree &key :test :test-not :key

sublis makes substitutions for objects in a tree (a structure of conses). The first

argument to sublis is an association list. The second argument is the tree in which

substitutions are to be made, as for subst. sublis looks at all subtrees and leaves of

the tree; if a subtree or leaf appears as a key in the association list (that is, the key

and the subtree or leaf satisfy the test), it is replaced by the object with which it is

associated. This operation is nondestructive. In effect, sublis can perform several

subst operations simultaneously. For example:

(sublis ´((x . 100) (z . zprime))

´(plus x (minus g z x p) 4 . x))

⇒ (plus 100 (minus g zprime 100 p) 4 . 100)

(sublis ´(((+ x y) . (- x y)) ((- x y) . (+ x y)))

´(* (/ (+ x y) (+ x p)) (- x y))

:test #--´equal)

⇒ (* (/ (- x y) (+ x p)) (+ x y))

424 COMMON LISP

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

[Function]nsublis alist tree &key :test :test-not :key

nsublis is like sublis but destructively modifies the relevant parts of the tree.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

15.5. Using Lists as Sets

Common Lisp includes functions that allow a list of items to be treated as a set. There

are functions to add, remove, and search for items in a list, based on various criteria.

There are also set union, intersection, and difference functions.

The naming conventions for these functions and for their keyword arguments

generally follow the conventions that apply to the generic sequence functions. See

chapter 14.

[Function]member item list &key :test :test-not :key

[Function]member-if predicate list &key :key

[Function]member-if-not predicate list &key :key

The list is searched for an element that satisfies the test. If none is found, nil is

returned; otherwise, the tail of list beginning with the first element that satisfied the

test is returned. The list is searched on the top level only. These functions are suitable

for use as predicates.

For example:

(member ´snerd ´(a b c d)) ⇒ nil

(member-if #--´numberp ´(a #--\Space 5/3 foo)) ⇒ (5/3 foo)

(member ´a ´(g (a y) c a d e a f)) ⇒ (a d e a f)

Note, in the last example, that the value returned by member is eq to the portion of the

list beginning with a. Thus rplaca on the result of member may be used to alter the

found list element, if a check is first made that member did not return nil.

See also find and position.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

Compatibility note: In MacLisp, the member function uses an equal comparison rather than

eql, which is the default test for member in Common Lisp. Where in MacLisp one would write

(member x y), in Common Lisp one must write (member x y :test #--´equal) to get a completely

LISTS 425

identical effect. Similarly, one can get the precise effect, and no more, of the MacLisp (memq

x y) by writing in Common Lisp (member x y :test #--´eq).

[Function]tailp sublist list

This predicate is true if sublist is a sublist of list (that is, one of the conses that makes

up list); otherwise it is false. Another way to look at this is that tailp is true if (nthcdr

n list) is sublist, for some value of n. See ldiff.

X3J13 voted in January 1989 〈175〉 to strike the parenthetical remark that suggests

that the sublist must be a cons, to clarify that tailp is true if and only if there exists

an integer n such that

(eql sublist (nthcdr n list))

and to specify that list may be a dotted list (implying that implementations must use

atom and not endp to check for the end of the list).

[Function]adjoin item list &key :test :test-not :key

adjoin is used to add an element to a set, provided that it is not already a member.

The equality test defaults to eql.

(adjoin item list) ≡ (if (member item list) list (cons item list))

In general, the test may be any predicate; the item is added to the list only if there is

no element of the list that “satisfies the test.”

adjoin deviates from the usual rules described in chapter 14 for the treatment of

arguments named item and :key. If a :key function is specified, it is applied to item

as well as to each element of the list. The rationale is that if the item is not yet in

the list, it soon will be, and so the test is more properly viewed as being between two

elements rather than between a separate item and an element.

(adjoin item list :key fn)

≡ (if (member (funcall fn item) list :key fn) list (cons item list))

See pushnew.

Notice of correction. In the first edition, the form (fn item) appeared in this

example without the required funcall.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

426 COMMON LISP

[Function]union list1 list2 &key :test :test-not :key

[Function]nunion list1 list2 &key :test :test-not :key

union takes two lists and returns a new list containing everything that is an element of

either of the lists. If there is a duplication between two lists, only one of the duplicate

instances will be in the result. If either of the arguments has duplicate entries within

it, the redundant entries may or may not appear in the result. For example:

(union ´(a b c) ´(f a d))

⇒ (a b c f d) or (b c f a d) or (d f a b c) or ...

(union ´((x 5) (y 6)) ´((z 2) (x 4)) :key #--´car)

⇒ ((x 5) (y 6) (z 2)) or ((x 4) (y 6) (z 2)) or ...

There is no guarantee that the order of elements in the result will reflect the ordering

of the arguments in any particular way. The implementation is therefore free to use

any of a variety of strategies. The result list may share cells with, or be eq to, either

of the arguments if appropriate.

In general, the test may be any predicate, and the union operation may be described

as follows. For all possible ordered pairs consisting of one element from list1 and

one element from list2, the test is used to determine whether they “match.” For

every matching pair, at least one of the two elements of the pair will be in the result.

Moreover, any element from either list that matches no element of the other will

appear in the result. All this is very general, but probably not particularly useful

unless the test is an equivalence relation.

The :test-not argument can be useful when the test function is the logical negation

of an equivalence test. A good example of this is the function mismatch, which is

logically inverted so that possibly useful information can be returned if the arguments

do not match. This additional “useful information” is discarded in the following

example; mismatch is used purely as a predicate.

(union ´(#--(a b) #--(5 0 6) #--(f 3))

´(#--(5 0 6) (a b) #--(g h))

:test-not

#--´mismatch)

⇒ (#--(a b) #--(5 0 6) #--(f 3) #--(g h)) ;One possible result

⇒ ((a b) #--(f 3) #--(5 0 6) #--(g h)) ;Another possible result

Using :test-not #--´mismatch differs from using :test #--´equalp, for example, because

mismatch will determine that #--(a b) and (a b) are the same, while equalp would regard

them as not the same.

LISTS 427

nunion is the destructive version of union. It performs the same operation but may

destroy the argument lists, perhaps in order to use their cells to construct the result.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

X3J13 voted in March 1989 〈153〉 to clarify the permissible side effects of certain

operations; nunion is permitted to perform a setf on any part, car or cdr, of the

toplevel list structure of any of the argument lists.

[Function]intersection list1 list2 &key :test :test-not :key

[Function]nintersection list1 list2 &key :test :test-not :key

intersection takes two lists and returns a new list containing everything that is an

element of both argument lists. If either list has duplicate entries, the redundant

entries may or may not appear in the result. For example:

(intersection ´(a b c) ´(f a d)) ⇒ (a)

There is no guarantee that the order of elements in the result will reflect the ordering

of the arguments in any particular way. The implementation is therefore free to use

any of a variety of strategies. The result list may share cells with, or be eq to, either

of the arguments if appropriate.

In general, the test may be any predicate, and the intersection operation may be

described as follows. For all possible ordered pairs consisting of one element from

list1 and one element from list2, the test is used to determine whether they “match.”

For every matching pair, exactly one of the two elements of the pair will be put in

the result. No element from either list appears in the result that does not match an

element from the other list. All this is very general, but probably not particularly

useful unless the test is an equivalence relation.

nintersection is the destructive version of intersection. It performs the same

operation, but may destroy list1, perhaps in order to use its cells to construct the

result. (The argument list2 is not destroyed.)

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

X3J13 voted in March 1989 〈153〉 to clarify the permissible side effects of certain

operations; nintersection is permitted to perform a setf on any part, car or cdr, of

the toplevel list structure of any of the argument lists.

[Function]set-difference list1 list2 &key :test :test-not :key

[Function]nset-difference list1 list2 &key :test :test-not :key

set-difference returns a list of elements of list1 that do not appear in list2. This

operation is not destructive.

428 COMMON LISP

There is no guarantee that the order of elements in the result will reflect the ordering

of the arguments in any particular way. The implementation is therefore free to use

any of a variety of strategies. The result list may share cells with, or be eq to, either

of the arguments if appropriate.

In general, the test may be any predicate, and the set difference operation may be

described as follows. For all possible ordered pairs consisting of one element from

list1 and one element from list2, the test is used to determine whether they “match.”

An element of list1 appears in the result if and only if it does not match any element

of list2. This is very general and permits interesting applications. For example, one

can remove from a list of strings all those strings containing one of a given list of

characters:

;; Remove all flavor names that contain "c" or "w".

(set-difference ´("strawberry" "chocolate" "banana"

"lemon" "pistachio" "rhubarb")

´(#--\c #--\w)

:test

#--´(lambda (s c) (find c s)))

⇒ ("banana" "rhubarb" "lemon") ;One possible ordering

nset-difference is the destructive version of set-difference. This operation may

destroy list1.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

Compatibility note: An approximately equivalent Interlisp function is ldifference.

[Function]set-exclusive-or list1 list2 &key :test :test-not :key

[Function]nset-exclusive-or list1 list2 &key :test :test-not :key

set-exclusive-or returns a list of elements that appear in exactly one of list1 and list2.

This operation is not destructive.

There is no guarantee that the order of elements in the result will reflect the ordering

of the arguments in any particular way. The implementation is therefore free to use

any of a variety of strategies. The result list may share cells with, or be eq to, either

of the arguments if appropriate.

In general, the test may be any predicate, and the setexclusiveor operation may

be described as follows. For all possible ordered pairs consisting of one element

from list1 and one element from list2, the test is used to determine whether they

“match.” The result contains precisely those elements of list1 and list2 that appear in

no matching pair.

LISTS 429

nset-exclusive-or is the destructive version of set-exclusive-or. Both lists may

be destroyed in producing the result.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

X3J13 voted in March 1989 〈153〉 to clarify the permissible side effects of certain

operations; nset-exclusive-or is permitted to perform a setf on any part, car or cdr,

of the toplevel list structure of any of the argument lists.

[Function]subsetp list1 list2 &key :test :test-not :key

subsetp is a predicate that is true if every element of list1 appears in (“matches” some

element of) list2, and false otherwise.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

15.6. Association Lists

An association list, or alist, is a data structure used very frequently in Lisp. An alist

is a list of pairs (conses); each pair is an association. The car of a pair is called the

key, and the cdr is called the datum.

An advantage of the alist representation is that an alist can be incrementally aug

mented simply by adding new entries to the front. Moreover, because the searching

function assoc searches the alist in order, new entries can “shadow” old entries. If

an alist is viewed as a mapping from keys to data, then the mapping can be not only

augmented but also altered in a nondestructive manner by adding new entries to the

front of the alist.

Sometimes an alist represents a bijective mapping, and it is desirable to retrieve

a key given a datum. For this purpose, the “reverse” searching function rassoc is

provided. Other variants of alist searches can be constructed using the function find

or member.

It is permissible to let nil be an element of an alist in place of a pair. Such an

element is not considered to be a pair but is simply passed over when the alist is

searched by assoc.

[Function]acons key datum a-list

acons constructs a new association list by adding the pair (key . datum) to the old

alist.

(acons x y a) ≡ (cons (cons x y) a)

This is a trivial convenience function, but I find I use it a lot.

430 COMMON LISP

[Function]pairlis keys data &optional a-list

pairlis takes two lists and makes an association list that associates elements of the

first list to corresponding elements of the second list. It is an error if the two lists

keys and data are not of the same length. If the optional argument alist is provided,

then the new pairs are added to the front of it.

The new pairs may appear in the resulting alist in any order; in particular, either

forward or backward order is permitted. Therefore the result of the call

(pairlis ´(one two) ´(1 2) ´((three . 3) (four . 19)))

might be

((one . 1) (two . 2) (three . 3) (four . 19))

but could equally well be

((two . 2) (one . 1) (three . 3) (four . 19))

[Function]assoc item a-list &key :test :test-not :key

[Function]assoc-if predicate a-list

[Function]assoc-if-not predicate a-list

X3J13 voted in March 1988 〈9〉 to allow assoc-if and assoc-if-not also to take a

keyword argument named :key, to be used to determine whether a pair “satisfies the

test” in the same manner as for sequence functions. The new function descriptions

are therefore as follows:

[Function]assoc-if predicate a-list &key :key

[Function]assoc-if-not predicate a-list &key :key

The omission of :key arguments for these functions in the first edition was probably

an oversight.

Each of these searches the association list alist. The value is the first pair in the

alist such that the car of the pair satisfies the test, or nil if there is no such pair in

the alist. For example:

(assoc ´r ´((a . b) (c . d) (r . x) (s . y) (r . z)))

⇒ (r . x)

(assoc ´goo ´((foo . bar) (zoo . goo))) ⇒ nil

(assoc ´2 ´((1 a b c) (2 b c d) (-7 x y z))) ⇒ (2 b c d)

LISTS 431

It is possible to rplacd the result of assoc provided that it is not nil, in order to

“update” the “table” that was assoc’s second argument. (However, it is often better

to update an alist by adding new pairs to the front, rather than altering old pairs.)

For example:

(setq values ´((x . 100) (y . 200) (z . 50)))

(assoc ´y values) ⇒ (y . 200)

(rplacd (assoc ´y values) 201)

(assoc ´y values) ⇒ (y . 201) now

A typical trick is to say (cdr (assoc x y)). Because the cdr of nil is guaranteed to

be nil, this yields nil if no pair is found or if a pair is found whose cdr is nil. This

is useful if nil serves its usual role as a “default value.”

The two expressions

(assoc item list :test fn)

and

(find item list :test fn :key #--´car)

are equivalent in meaning with one important exception: if nil appears in the alist

in place of a pair, and the item being searched for is nil, find will blithely compute

the car of the nil in the alist, find that it is equal to the item, and return nil, whereas

assoc will ignore the nil in the alist and continue to search for an actual pair (cons)

whose car is nil. See find and position.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

Compatibility note: In MacLisp, the assoc function uses an equal comparison rather than

eql, which is the default test for assoc in Common Lisp. Where in MacLisp one would write

(assoc x y), in Common Lisp one must write (assoc x y :test #--´equal) to get the completely

identical effect. Similarly, one can get the precise effect, and no more, of the MacLisp (assq

x y) by writing in Common Lisp (assoc x y :test #--´eq).

In Interlisp, assoc uses an eq test, and sassoc uses an Interlisp equal test.

[Function]rassoc item a-list &key :test :test-not :key

[Function]rassoc-if predicate a-list

[Function]rassoc-if-not predicate a-list

X3J13 voted in March 1988 〈9〉 to allow rassoc-if and rassoc-if-not also to take

a keyword argument named :key, to be used to determine whether a pair “satisfies the

test” in the same manner as for sequence functions. The new function descriptions

are therefore as follows:

432 COMMON LISP

[Function]rassoc-if predicate a-list &key :key

[Function]rassoc-if-not predicate a-list &key :key

The omission of :key arguments for these functions in the first edition was probably

an oversight.

rassoc is the reverse form of assoc; it searches for a pair whose cdr satisfies the

test, rather than the car. If the alist is considered to be a mapping, then rassoc treats

the alist as representing the inverse mapping. For example:

(rassoc ´a ´((a . b) (b . c) (c . a) (z . a))) ⇒ (c . a)

The expressions

(rassoc item list :test fn)

and

(find item list :test fn :key #--´cdr)

are equivalent in meaning, except when the item is nil and nil appears in place of a

pair in the alist. See the discussion of the function assoc.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

16

Hash Tables

A hash table is a Lisp object that can efficiently map a given Lisp object to another

Lisp object. Each hash table has a set of entries, each of which associates a particular

key with a particular value. The basic functions that deal with hash tables can create

entries, delete entries, and find the value that is associated with a given key. Finding

the value is very fast, even if there are many entries, because hashing is used; this is

an important advantage of hash tables over property lists.

A given hash table can associate only one value with a given key; if you try to

add a second value, it will replace the first. Also, adding a value to a hash table is

a destructive operation; the hash table is modified. By contrast, association lists can

be augmented nondestructively.

Hash tables come in three kinds, the difference being whether the keys are com

pared with eq, eql, or equal. In other words, there are hash tables that hash on Lisp

objects (using eq or eql) and there are hash tables that hash on tree structure (using

equal).

Hash tables are created with the function make-hash-table, which takes various

options, including which kind of hash table to make (the default being the eql kind).

To look up a key and find the associated value, use gethash. New entries are added

to hash tables using setf with gethash. To remove an entry, use remhash. Here is a

simple example.

(setq a (make-hash-table))

(setf (gethash ´color a) ´brown)

(setf (gethash ´name a) ´fred)

(gethash ´color a) ⇒ brown

(gethash ´name a) ⇒ fred

(gethash ´pointy a) ⇒ nil

In this example, the symbols color and name are being used as keys, and the symbols

brown and fred are being used as the associated values. The hash table has two items

433

434 COMMON LISP

in it, one of which associates from color to brown, and the other of which associates

from name to fred.

Keys do not have to be symbols; they can be any Lisp object. Similarly, values

can be any Lisp object.

When a hash table is first created, it has a size, which is the maximum number of
...

entries it can hold. Usually the actual capacity of the table is somewhat less, since

the hashing is not perfectly collisionfree. With the maximum possible bad luck, the

capacity could be very much less, but this rarely happens. If so many entries are

added that the capacity is exceeded, the hash table will automatically grow, and the

entries will be rehashed (new hash values will be recomputed, and everything will be

rearranged so that the fast hash lookup still works). This is transparent to the caller;

it all happens automatically.

There is a discrepancy between the preceding description of the size of a hash table

and the description of the :size argument in the specification below of make-hash-

table.

X3J13 voted in June 1989 〈99〉 to regard the latter description as definitive: the

:size argument is approximately the number of entries that can be inserted without

having to enlarge the hash table. This definition is certainly more convenient for the

user.

Compatibility note: This hash table facility is compatible with Lisp Machine Lisp. It is

similar to the hasharray facility of Interlisp, and some of the function names are the same.

However, it is not compatible with Interlisp. The exact details and the order of arguments are

designed to be consistent with the rest of MacLisp rather than with Interlisp. For instance, the

order of arguments to maphash is different, there is no “system hash table,” and there is not the

Interlisp restriction that keys and values may not be nil.

16.1. Hash Table Functions

This section documents the functions for hash tables, which use objects as keys and

associate other objects with them.

[Function]make-hash-table &key :test :size :rehash-size :rehash-threshold

This function creates and returns a new hash table. The :test argument determines

how keys are compared; it must be one of the three values #--´eq, #--´eql, or #--´equal, or

one of the three symbols eq, eql, or equal. If no test is specified, eql is assumed.

X3J13 voted in January 1989 〈100〉 to add a fourth type of hash table: the value of

#--´equalp and the symbol equalp are to be additional valid possibilities for the :test

argument.

HASH TABLES 435

Note that one consequence of the vote to change the rules of floatingpoint con

tagion 〈37〉 (described in section 12.1) is to require −−, and therefore also equalp, to

compare the values of numbers exactly and not approximately, making equalp a true

equivalence relation on numbers.

Another valuable use of equalp hash tables is caseinsensitive comparison of keys

that are strings.

The :size argument sets the initial size of the hash table, in entries. (The actual

size may be rounded up from the size you specify to the next “good” size, for example

to make it a prime number.) You won’t necessarily be able to store precisely this

many entries into the table before it overflows and becomes bigger, but this argument

does serve as a hint to the implementation of approximately how many entries you

intend to store.

X3J13 voted in January 1989 〈7〉 to clarify that the :size argument must be a

nonnegative integer.

X3J13 voted in June 1989 〈99〉 to regard the preceding description of the :size

argument as definitive: it is approximately the number of entries that can be inserted

without having to enlarge the hash table.

The :rehash-size argument specifies how much to increase the size of the hash

table when it becomes full. This can be an integer greater than zero, which is the

number of entries to add, or it can be a floatingpoint number greater than 1, which

is the ratio of the new size to the old size. The default value for this argument is

implementationdependent.

The :rehash-threshold argument specifies how full the hash table can get before
...

it must grow. This can be an integer greater than zero and less than the :rehash-

size (in which case it will be scaled whenever the table is grown), or it can be a

floatingpoint number between zero and 1. The default value for this argument is

implementationdependent.

X3J13 voted in June 1989 〈99〉 to replace the preceding specification of the :rehash-

threshold argument with the following: The :rehash-threshold argument specifies

how full the hash table can get before it must grow. It may be any real number

between 0 and 1, inclusive. It indicates the maximum desired level of hash table

occupancy. An implementation is permitted to ignore this argument. The default

value for this argument is implementationdependent.

An example of the use of make-hash-table:

(make-hash-table :rehash-size 1.5

:size (* number-of-widgets 43))

[Function]hash-table-p object

hash-table-p is true if its argument is a hash table, and otherwise is false.

436 COMMON LISP

(hash-table-p x) ≡ (typep x ´hash-table)

[Function]gethash key hash-table &optional default

gethash finds the entry in hashtable whose key is key and returns the associated

value. If there is no such entry, gethash returns default, which is nil if not specified.

gethash actually returns two values, the second being a predicate value that is true

if an entry was found, and false if no entry was found.

setf may be used with gethash to make new entries in a hash table. If an entry

with the specified key already exists, it is removed before the new entry is added. The

default argument may be specified to gethash in this context; it is ignored by setf but

may be useful in such macros as incf that are related to setf:

(incf (gethash a-key table 0))

means approximately the same as

(setf (gethash a-key table 0)

(+ (gethash a-key table 0) 1))

which in turn would be treated as simply

(setf (gethash a-key table)

(+ (gethash a-key table 0) 1))

[Function]remhash key hash-table

remhash removes any entry for key in hashtable. This is a predicate that is true if

there was an entry or false if there was not.

[Function]maphash function hash-table

For each entry in hashtable, maphash calls function on two arguments: the key of the

entry and the value of the entry; maphash then returns nil. If entries are added to or

deleted from the hash table while a maphash is in progress, the results are unpredictable,

with one exception: if the function calls remhash to remove the entry currently being

processed by the function, or performs a setf of gethash on that entry to change the

associated value, then those operations will have the intended effect. For example:

;;; Alter every entry in MY-HASH-TABLE, replacing the value with

;;; its square root. Entries with negative values are removed.

(maphash #--´(lambda (key val)

HASH TABLES 437

(if (minusp val)

(remhash key my-hash-table)

(setf (gethash key my-hash-table) (sqrt val))))

my-hash-table)

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

[Function]clrhash hash-table

This removes all the entries from hashtable and returns the hash table itself.

[Function]hash-table-count hash-table

This returns the number of entries in the hashtable. When a hash table is first created

or has been cleared, the number of entries is zero.

[Macro]with-hash-table-iterator (mname hashtable) { form}∗

X3J13 voted in January 1989 〈98〉 to add the macro with-hash-table-iterator.

The name mname is bound and defined as if by macrolet, with the body forms as its

lexical scope, to be a “generator macro” such that successive invocations (mname)

will return entries, one by one, from the hash table that is the value of the expression

hashtable (which is evaluated exactly once).

At each invocation of the generator macro, there are two possibilities. If there is

yet another unprocessed entry in the hash table, then three values are returned: t, the

key of the hash table entry, and the associated value of the hash table entry. On the

other hand, if there are no more unprocessed entries in the hash table, then one value

is returned: nil.

The implicit interior state of the iteration over the hash table entries has dynamic

extent. While the name mname has lexical scope, it is an error to invoke the generator

macro once the with-hash-table-iterator form has been exited.

Invocations of with-hash-table-iterator and related macros may be nested, and the

generator macro of an outer invocation may be called from within an inner invocation

(assuming that its name is visible or otherwise made available).

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

Rationale: This facility is a bit more flexible than maphash. It makes possible a portable and

efficient implementation of loop clauses for iterating over hash tables (see chapter 26).

438 COMMON LISP

(setq turtles (make-hash-table :size 9 :test ´eq))

(setf (gethash ´howard-kaylan turtles) ´(musician lead-singer))

(setf (gethash ´john-barbata turtles) ´(musician drummer))

(setf (gethash ´leonardo turtles) ´(ninja leader blue))

(setf (gethash ´donatello turtles) ´(ninja machines purple))

(setf (gethash ´al-nichol turtles) ´(musician guitarist))

(setf (gethash ´mark-volman turtles) ´(musician great-hair))

(setf (gethash ´raphael turtles) ´(ninja cool rude red))

(setf (gethash ´michaelangelo turtles) ´(ninja party-dude orange))

(setf (gethash ´jim-pons turtles) ´(musician bassist))

(with-hash-table-iterator (get-turtle turtles)

(labels ((try (got-one &optional key value)

(when got-one ;Remember, keys may show up in any order

(when (eq (first value) ´ninja)

(format t "˜%˜:(˜A˜): ˜{˜A˜ˆ, ˜}"

key (rest value)))

(multiple-value-call #--´try (get-turtle)))))

(multiple-value-call #--´try (get-turtle)))) ;Prints 4 lines

Michaelangelo: PARTY-DUDE, ORANGE

Leonardo: LEADER, BLUE

Raphael: COOL, RUDE, RED

Donatello: MACHINES, PURPLE

⇒ nil

[Function]hash-table-rehash-size hash-table

[Function]hash-table-rehash-threshold hash-table

[Function]hash-table-size hash-table

[Function]hash-table-test hash-table

X3J13 voted in March 1989 〈97〉 to add four accessor functions that return values

suitable for use in a call to make-hash-table in order to produce a new hash table with

state corresponding to the current state of the argument hash table.

hash-table-rehash-size returns the current rehash size of a hash table.

hash-table-rehash-threshold returns the current rehash threshold.

hash-table-size returns the current size of a hash table.

hash-table-test returns the test used for comparing keys. If the test is one of the

standard test functions, then the result will always be a symbol, even if the function

itself was specified when the hashtable was created. For example:

(hash-table-test (make-hash-table :test #--´equal)) ⇒ equal

HASH TABLES 439

Implementations that extend make-hash-table by providing additional possibilities

for the :test argument may determine how the value returned by hash-table-test is

related to such additional tests.

16.2. Primitive Hash Function

The function sxhash is a convenient tool for the user who needs to create more

complicated hashed data structures than are provided by hash-table objects.

[Function]sxhash object

sxhash computes a hash code for an object and returns the hash code as a nonnegative

fixnum. A property of sxhash is that (equal x y) implies (−− (sxhash x) (sxhash y)).

The manner in which the hash code is computed is implementationdependent but

independent of the particular “incarnation” or “core image.” Hash values produced

by sxhash may be written out to files, for example, and meaningfully read in again

into an instance of the same implementation.

17

Arrays

An array is an object with components arranged according to a rectilinear coordinate

system. In principle, an array in Common Lisp may have any number of dimensions,

including zero. (A zerodimensional array has exactly one element.) In practice, an

implementation may limit the number of dimensions supported, but every Common

Lisp implementation must support arrays of up to seven dimensions. Each dimension

is a nonnegative integer; if any dimension of an array is zero, the array has no

elements.

An array may be a general array, meaning each element may be any Lisp object, or

it may be a specialized array, meaning that each element must be of a given restricted

type.

Onedimensional arrays are called vectors. General vectors may contain any Lisp
...

object. Vectors whose elements are restricted to type string-char are called strings.

Vectors whose elements are restricted to type bit are called bitvectors.

X3J13 voted in March 1989 〈11〉 to eliminate the type string-char and to redefine

the type string to be the union of one or more specialized vector types, the types of

whose elements are subtypes of the type character.

17.1. Array Creation

Do not be daunted by the many options of the function make-array. All that is required

to construct an array is a list of the dimensions; most of the options are for relatively

esoteric applications.

[Function]make-array dimensions &key :element-type :initial-element

:initial-contents :adjustable :fill-pointer :displaced-to

:displaced-index-offset

This is the primitive function for making arrays. The dimensions argument should

be a list of nonnegative integers that are to be the dimensions of the array; the length

440

ARRAYS 441

of the list will be the dimensionality of the array. Each dimension must be smaller

than array-dimension-limit, and the product of all the dimensions must be smaller

than array-total-size-limit. Note that if dimensions is nil, then a zerodimensional

array is created. For convenience when making a onedimensional array, the single

dimension may be provided as an integer rather than as a list of one integer.

An implementation of Common Lisp may impose a limit on the rank of an array,

but this limit may not be smaller than 7. Therefore, any Common Lisp program may

assume the use of arrays of rank 7 or less. The implementationdependent limit on

array rank is reflected in array-rank-limit.

The keyword arguments for make-array are as follows:

:element-type

This argument should be the name of the type of the elements of the array; an array is

constructed of the most specialized type that can nevertheless accommodate elements

of the given type. The type t specifies a general array, one whose elements may be

any Lisp object; this is the default type.

X3J13 voted in January 1989 〈8〉 to change typep and subtypep so that the spe

cialized array type specifier means the same thing for discrimination purposes as

for declaration purposes: it encompasses those arrays that can result by specifying

elementtype as the element type to the function make-array. Therefore we may say

that if type is the :element-type argument, then the result will be an array of type

(array type); put another way, for any type A,

(typep (make-array ... :element-type ´A ...)

´(array A)))

is always true. See upgraded-array-element-type.

:initial-element

This argument may be used to initialize each element of the array. The value must be

of the type specified by the :element-type argument. If the :initial-element option

is omitted, the initial values of the array elements are undefined (unless the :initial-

contents or :displaced-to option is used). The :initial-element option may not be

used with the :initial-contents or :displaced-to option.

:initial-contents

This argument may be used to initialize the contents of the array. The value is a nested

structure of sequences. If the array is zerodimensional, then the value specifies the

single element. Otherwise, the value must be a sequence whose length is equal

442 COMMON LISP

to the first dimension; each element must be a nested structure for an array whose

dimensions are the remaining dimensions, and so on. For example:

(make-array ´(4 2 3)

:initial-contents

´(((a b c) (1 2 3))

((d e f) (3 1 2))

((g h i) (2 3 1))

((j k l) (0 0 0))))

The numbers of levels in the structure must equal the rank of the array. Each leaf of

the nested structure must be of the type specified by the :type option. If the :initial-

contents option is omitted, the initial values of the array elements are undefined

(unless the :initial-element or :displaced-to option is used). The :initial-contents

option may not be used with the :initial-element or :displaced-to option.

:adjustable

This argument, if specified and not nil, indicates that it must be possible to alter the

array’s size dynamically after it is created. This argument defaults to nil.

X3J13 voted in June 1989 〈3〉 to clarify that if this argument is nonnil then the

predicate adjustable-array-p will necessarily be true when applied to the resulting

array; but if this argument is nil (or omitted) then the resulting array may or may not

be adjustable, depending on the implementation, and therefore adjustable-array-p

may be correspondingly true or false of the resulting array. Common Lisp provides no

portable way to create a nonadjustable array, that is, an array for which adjustable-

array-p is guaranteed to be false.

:fill-pointer

This argument specifies that the array should have a fill pointer. If this option is

specified and not nil, the array must be onedimensional. The value is used to

initialize the fill pointer for the array. If the value t is specified, the length of the

array is used; otherwise the value must be an integer between 0 (inclusive) and the

length of the array (inclusive). This argument defaults to nil.

:displaced-to

This argument, if specified and not nil, specifies that the array will be a displaced

array. The argument must then be an array; make-array will create an indirect

or shared array that shares its contents with the specified array. In this case the

:displaced-index-offset option may be useful. It is an error if the array given as

the :displaced-to argument does not have the same :element-type as the array being

ARRAYS 443

created. The :displaced-to option may not be used with the :initial-element or

:initial-contents option. This argument defaults to nil.

:displaced-index-offset

This argument may be used only in conjunction with the displaced-to option. It must

be a nonnegative integer (it defaults to zero); it is made to be the indexoffset of the

created shared array.

When an array A is given as the :displaced-to argument to make-array when

creating array B, then array B is said to be displaced to array A. Now the total

number of elements in an array, called the total size of the array, is calculated as the

product of all the dimensions (see array-total-size). It is required that the total size

of A be no smaller than the sum of the total size of B plus the offset n specified by

the :displaced-index-offset argument. The effect of displacing is that array B does

not have any elements of its own but instead maps accesses to itself into accesses to

array A. The mapping treats both arrays as if they were onedimensional by taking

the elements in rowmajor order, and then maps an access to element k of array B to

an access to element k+n of array A.

If make-array is called with each of the :adjustable, :fill-pointer, and :displaced-

to arguments either unspecified or nil, then the resulting array is guaranteed to be a

simple array (see section 2.5).

X3J13 voted in June 1989 〈3〉 to clarify that if one or more of the :adjustable,

:fill-pointer, and :displaced-to arguments is true, then whether the resulting array

is simple is unspecified.

Here are some examples of the use of make-array:

;;; Create a one-dimensional array of five elements.

(make-array 5)

;;; Create a two-dimensional array, 3 by 4, with four-bit elements.

(make-array ´(3 4) :element-type ´(mod 16))

;;; Create an array of single-floats.

(make-array 5 :element-type ´single-float))

;;; Making a shared array.

(setq a (make-array ´(4 3)))

(setq b (make-array 8 :displaced-to a

:displaced-index-offset 2))

444 COMMON LISP

;;; Now it is the case that:

(aref b 0) ≡ (aref a 0 2)

(aref b 1) ≡ (aref a 1 0)

(aref b 2) ≡ (aref a 1 1)

(aref b 3) ≡ (aref a 1 2)

(aref b 4) ≡ (aref a 2 0)

(aref b 5) ≡ (aref a 2 1)

(aref b 6) ≡ (aref a 2 2)

(aref b 7) ≡ (aref a 3 0)

The last example depends on the fact that arrays are, in effect, stored in rowmajor

order for purposes of sharing. Put another way, the indices for the elements of an

array are ordered lexicographically.

Compatibility note: Both Lisp Machine Lisp, as described in reference [55], and Fortran [15,

3] store arrays in columnmajor order.

[Constant]array-rank-limit

The value of array-rank-limit is a positive integer that is the upper exclusive bound

on the rank of an array. This bound depends on the implementation but will not be

smaller than 8; therefore every Common Lisp implementation supports arrays whose

rank is between 0 and 7 (inclusive). (Implementors are encouraged to make this limit

as large as practicable without sacrificing performance.)

[Constant]array-dimension-limit

The value of array-dimension-limit is a positive integer that is the upper exclusive

bound on each individual dimension of an array. This bound depends on the imple

mentation but will not be smaller than 1024. (Implementors are encouraged to make

this limit as large as practicable without sacrificing performance.)

X3J13 voted in January 1989 〈76〉 to specify that the value of array-dimension-

limit must be of type fixnum. This in turn implies that all valid array indices will be

fixnums.

[Constant]array-total-size-limit

The value of array-total-size-limit is a positive integer that is the upper exclusive

bound on the total number of elements in an array. This bound depends on the

implementation but will not be smaller than 1024. (Implementors are encouraged to

make this limit as large as practicable without sacrificing performance.)

ARRAYS 445

The actual limit on array size imposed by the implementation may vary according

to the :element-type of the array; in this case the value of array-total-size-limit will

be the smallest of these individual limits.

[Function]vector &rest objects

The function vector is a convenient means for creating a simple general vector with

specified initial contents. It is analogous to the function list.

(vector a1 a2 ... an)

≡ (make-array (list n) :element-type t

:initial-contents (list a1 a2 ... an))

17.2. Array Access

The function aref is normally used for accessing an element of an array. Other

access functions, such as svref, char, and bit, may be more efficient in specialized

circumstances.

[Function]aref array &rest subscripts

This accesses and returns the element of array specified by the subscripts. The

number of subscripts must equal the rank of the array, and each subscript must be a

nonnegative integer less than the corresponding array dimension.

aref is unusual among the functions that operate on arrays in that it completely

ignores fill pointers. aref can access without error any array element, whether

active or not. The generic sequence function elt, however, observes the fill pointer;

accessing an element beyond the fill pointer with elt is an error.

Note that this remark, predating the design of the Common Lisp Object System,

uses the term “generic” in a generic sense and not necessarily in the technical sense

used by CLOS (see chapter 2).

setf may be used with aref to destructively replace an array element with a new

value.

Under some circumstances it is desirable to write code that will extract an element

from an array a given a list z of the indices, in such a way that the code works

regardless of the rank of the array. This is easy using apply:

(apply #--´aref a z)

(The length of the list must of course equal the rank of the array.) This construction

may be used with setf to alter the element so selected to some new value w:

446 COMMON LISP

(setf (apply #--´aref a z) w)

[Function]svref simple-vector index

The first argument must be a simple general vector, that is, an object of type simple-

vector. The element of the simplevector specified by the integer index is returned.

The index must be nonnegative and less than the length of the vector.

setf may be used with svref to destructively replace a simplevector element with

a new value.

svref is identical to aref except that it requires its first argument to be a simple

vector. In some implementations of Common Lisp, svref may be faster than aref in

situations where it is applicable. See also schar and sbit.

17.3. Array Information

The following functions extract from an array interesting information other than the

elements.

[Function]array-element-type array

array-element-type returns a type specifier for the set of objects that can be stored in

the array. This set may be larger than the set requested when the array was created;

for example, the result of

(array-element-type (make-array 5 :element-type ´(mod 5)))

could be (mod 5), (mod 8), fixnum, t, or any other type of which (mod 5) is a subtype.

See subtypep.

[Function]array-rank array

This returns the number of dimensions (axes) of array. This will be a nonnegative

integer. See array-rank-limit.

Compatibility note: In Lisp Machine Lisp, this is called array-#---dims. This name causes

problems in other Lisp dialects because of the #-- character.

[Function]array-dimension array axis-number

The length of dimension number axisnumber of the array is returned. array may

be any kind of array, and axisnumber should be a nonnegative integer less than the

ARRAYS 447

rank of array. If the array is a vector with a fill pointer, array-dimension returns the

total size of the vector, including inactive elements, not the size indicated by the fill

pointer. (The function length will return the size indicated by the fill pointer.)

Compatibility note: This is similar to the Lisp Machine Lisp function array-dimension-n, but

takes its arguments in the other order, and is zeroorigin for consistency instead of oneorigin.

In Lisp Machine Lisp (array-dimension-n 0) returns the length of the array leader.

[Function]array-dimensions array

array-dimensions returns a list whose elements are the dimensions of array.

[Function]array-total-size array

array-total-size returns the total number of elements in the array, calculated as the

product of all the dimensions.

(array-total-size x)

≡ (apply #--´* (array-dimensions x))

≡ (reduce #--´* (array-dimensions x))

Note that the total size of a zerodimensional array is 1. The total size of a one

dimensional array is calculated without regard for any fill pointer.

[Function]array-in-bounds-p array &rest subscripts

This predicate checks whether the subscripts are all legal subscripts for array. The

predicate is true if they are all legal; otherwise it is false. The subscripts must be

integers. The number of subscripts supplied must equal the rank of the array. Like

aref, array-in-bounds-p ignores fill pointers.

[Function]array-row-major-index array &rest subscripts

This function takes an array and valid subscripts for the array and returns a single

nonnegative integer less than the total size of the array that identifies the accessed

element in the rowmajor ordering of the elements. The number of subscripts supplied

must equal the rank of the array. Each subscript must be a nonnegative integer less

than the corresponding array dimension. Like aref, array-row-major-index ignores

fill pointers.

A possible definition of array-row-major-index, with no error checking, would be

448 COMMON LISP

(defun array-row-major-index (a &rest subscripts)

(apply #--´+ (maplist #--´(lambda (x y)

(* (car x) (apply #--´* (cdr y))))

subscripts

(array-dimensions a))))

For a onedimensional array, the result of array-row-major-index always equals the

supplied subscript.

[Function]row-major-aref array index

X3J13 voted in March 1988 〈6〉 to add the function row-major-aref. This allows any

array element to be accessed as if the containing array were onedimensional. The

index must be a nonnegative integer less than the total size of the array. It indexes

into the array as if its elements were arranged onedimensionally in rowmajor order.

It may be understood in terms of aref as follows:

(row-major-aref array index) ≡
(aref (make-array (array-total-size array))

:displaced-to array

:element-type (array-element-type array))

index)

In other words, one may treat an array as onedimensional by creating a new one

dimensional array that is displaced to the old one and then accessing the new array.

Alternatively, aref may be understood in terms of row-major-aref:

(aref array i0 i1 ... in−1) ≡
(row-major-aref array

(array-row-major-index array i0 i1 ... in−1)

That is, a multidimensional array access is equivalent to a rowmajor access using an

equivalent rowmajor index.

Like aref, row-major-aref completely ignores fill pointers. A call to row-major-setf

is suitable for use as a place for setf.

This operation makes it easier to write code that efficiently processes arrays of

any rank. Suppose, for example, that one wishes to set every element of an array

tennis-scores to zero. One might write

(fill (make-array (array-total-size tennis-scores)

:element-type (array-element-type tennis-scores)

:displaced-to tennis-scores)

0)

ARRAYS 449

Unfortunately, this incurs the overhead of creating a displaced array, and fill cannot

be applied to multidimensional arrays. Another approach would be to handle each

possible rank separately:

(ecase (array-rank tennis-scores)

(0 (setf (aref tennis-scores) 0))

(1 (dotimes (i0 (array-dimension tennis-scores 0))

(setf (aref tennis-scores i0) 0)))

(2 (dotimes (i0 (array-dimension tennis-scores 0))

(dotimes (i1 (array-dimension tennis-scores 1))

(setf (aref tennis-scores i0 i1) 0))))

...

(7 (dotimes (i0 (array-dimension tennis-scores 0))

(dotimes (i1 (array-dimension tennis-scores 1))

(dotimes (i2 (array-dimension tennis-scores 1))

(dotimes (i3 (array-dimension tennis-scores 1))

(dotimes (i4 (array-dimension tennis-scores 1))

(dotimes (i5 (array-dimension tennis-scores 1))

(dotimes (i6 (array-dimension tennis-scores 1))

(setf (aref tennis-scores i0 i1 i2 i3 i4 i5 i6)

0)))))))))

)

It is easy to get tired of writing such code. Furthermore, this approach is undesirable

because some implementations of Common Lisp will in fact correctly support arrays

of rank greater than 7 (though no implementation is required to do so). A recursively

nested loop does the job, but it is still pretty hairy:

(labels

((grok-any-rank (&rest indices)

(let ((d (- (array-rank tennis-scores) (length indices)))

(if (−− d 0)

(setf (apply #--´row-major-aref indices) 0)

(dotimes (i (array-dimension tennis-scores (- d 1)))

(apply #--´grok-any-rank i indices))))))

(grok-any-rank))

Whether this code is particularly efficient depends on many implementation param

eters, such as how &rest arguments are handled and how cleverly calls to apply are

compiled. How much easier it is to use row-major-aref!

450 COMMON LISP

(dotimes (i (array-total-size tennis-scores))

(setf (row-major-aref tennis-scores i) 0))

Surely this code is sweeter than the honeycomb.

[Function]adjustable-array-p array

This predicate is true if the argument (which must be an array) is adjustable, and

otherwise is false.

X3J13 voted in June 1989 〈3〉 to clarify that adjustable-array-p is true of an array

if and only if adjust-array, when applied to that array, will return the same array,

that is, an array eq to the original array. If the :adjustable argument to make-array is

nonnil when an array is created, then adjustable-array-p must be true of that array.

If an array is created with the :adjustable argument nil (or omitted), then adjustable-

array-p may be true or false of that array, depending on the implementation. X3J13

further voted to define the terminology “adjustable array” to mean precisely “an array

of which adjustable-array-p is true.” See make-array and adjust-array.

17.4. Functions on Arrays of Bits

The functions described in this section operate only on arrays of bits, that is, special

ized arrays whose elements are all 0 or 1.

[Function]bit bit-array &rest subscripts

[Function]sbit simple-bit-array &rest subscripts

bit is exactly like aref but requires an array of bits, that is, one of type (array bit).

The result will always be 0 or 1. sbit is like bit but additionally requires that the first

argument be a simple array (see section 2.5). Note that bit and sbit, unlike char and

schar, allow the first argument to be an array of any rank.

setf may be used with bit or sbit to destructively replace a bitarray element with

a new value.

bit and sbit are identical to aref except for the more specific type requirements

on the first argument. In some implementations of Common Lisp, bit may be faster

than aref in situations where it is applicable, and sbit may similarly be faster than

bit.

ARRAYS 451

[Function]bit-and bit-array1 bit-array2 &optional result-bit-array

[Function]bit-ior bit-array1 bit-array2 &optional result-bit-array

[Function]bit-xor bit-array1 bit-array2 &optional result-bit-array

[Function]bit-eqv bit-array1 bit-array2 &optional result-bit-array

[Function]bit-nand bit-array1 bit-array2 &optional result-bit-array

[Function]bit-nor bit-array1 bit-array2 &optional result-bit-array

[Function]bit-andc1 bit-array1 bit-array2 &optional result-bit-array

[Function]bit-andc2 bit-array1 bit-array2 &optional result-bit-array

[Function]bit-orc1 bit-array1 bit-array2 &optional result-bit-array

[Function]bit-orc2 bit-array1 bit-array2 &optional result-bit-array

These functions perform bitwise logical operations on bitarrays. All of the argu

ments to any of these functions must be bitarrays of the same rank and dimensions.

The result is a bitarray of matching rank and dimensions, such that any given bit of

the result is produced by operating on corresponding bits from each of the arguments.

If the third argument is nil or omitted, a new array is created to contain the result.

If the third argument is a bitarray, the result is destructively placed into that array.

If the third argument is t, then the first argument is also used as the third argument;

that is, the result is placed back in the first array.

The following table indicates what the result bit is for each operation as a function

of the two corresponding argument bits.

argument1 0 0 1 1

argument2 0 1 0 1 Operation name

bit-and 0 0 0 1 and

bit-ior 0 1 1 1 inclusive or

bit-xor 0 1 1 0 exclusive or

bit-eqv 1 0 0 1 equivalence (exclusive nor)

bit-nand 1 1 1 0 notand

bit-nor 1 0 0 0 notor

bit-andc1 0 1 0 0 and complement of argument1 with argument2

bit-andc2 0 0 1 0 and argument1 with complement of argument2

bit-orc1 1 1 0 1 or complement of argument1 with argument2

bit-orc2 1 0 1 1 or argument1 with complement of argument2

For example:

(bit-and #--*1100 #--*1010) ⇒ #--*1000

(bit-xor #--*1100 #--*1010) ⇒ #--*0110

(bit-andc1 #--*1100 #--*1010) ⇒ #--*0100

See logand and related functions.

452 COMMON LISP

[Function]bit-not bit-array &optional result-bit-array

The first argument must be an array of bits. A bitarray of matching rank and

dimensions is returned that contains a copy of the argument with all the bits inverted.

See lognot.

If the second argument is nil or omitted, a new array is created to contain the

result. If the second argument is a bitarray, the result is destructively placed into that

array. If the second argument is t, then the first argument is also used as the second

argument; that is, the result is placed back in the first array.

17.5. Fill Pointers

Several functions for manipulating a fill pointer are provided in Common Lisp to

make it easy to incrementally fill in the contents of a vector and, more generally, to

allow efficient varying of the length of a vector. For example, a string with a fill

pointer has most of the characteristics of a PL/I varying string.

The fill pointer is a nonnegative integer no larger than the total number of elements

in the vector (as returned by array-dimension); it is the number of “active” or “filled

in” elements in the vector. The fill pointer constitutes the “active length” of the

vector; all vector elements whose index is less than the fill pointer are active, and the

others are inactive. Nearly all functions that operate on the contents of a vector will

operate only on the active elements. An important exception is aref, which can be

used to access any vector element whether in the active region of the vector or not. It

is important to note that vector elements not in the active region are still considered

part of the vector.

Implementation note: An implication of this rule is that vector elements outside the active

region may not be garbagecollected.

Only vectors (onedimensional arrays) may have fill pointers; multidimensional

arrays may not. (Note, however, that one can create a multidimensional array that is

displaced to a vector that has a fill pointer.)

[Function]array-has-fill-pointer-p array

The argument must be an array. array-has-fill-pointer-p returns t if the array has

a fill pointer, and otherwise returns nil. Note that array-has-fill-pointer-p always

returns nil if the array is not onedimensional.

ARRAYS 453

[Function]fill-pointer vector

The fill pointer of vector is returned. It is an error if the vector does not have a fill

pointer.

setf may be used with fill-pointer to change the fill pointer of a vector. The fill

pointer of a vector must always be an integer between zero and the size of the vector

(inclusive).

[Function]vector-push new-element vector

vector must be a onedimensional array that has a fill pointer, and newelement may

be any object. vector-push attempts to store newelement in the element of the vector

designated by the fill pointer, and to increase the fill pointer by 1. If the fill pointer

does not designate an element of the vector (specifically, when it gets too big), it

is unaffected and vector-push returns nil. Otherwise, the store and increment take

place and vector-push returns the former value of the fill pointer (1 less than the one

it leaves in the vector); thus the value of vector-push is the index of the new element

pushed.

It is instructive to compare vector-push, which is a function, with push, which is a

macro that requires a place suitable for setf. A vector with a fill pointer effectively

contains the place to be modified in its fill-pointer slot.

[Function]vector-push-extend new-element vector &optional extension

vector-push-extend is just like vector-push except that if the fill pointer gets too large,

the vector is extended (using adjust-array) so that it can contain more elements. If,

however, the vector is not adjustable, then vector-push-extend signals an error.

X3J13 voted in June 1989 〈3〉 to clarify that vector-push-extend regards an array

as not adjustable if and only if adjustable-array-p is false of that array.

The optional argument extension, which must be a positive integer, is the minimum

number of elements to be added to the vector if it must be extended; it defaults to a

“reasonable” implementationdependent value.

[Function]vector-pop vector

vector must be a onedimensional array that has a fill pointer. If the fill pointer is

zero, vector-pop signals an error. Otherwise the fill pointer is decreased by 1, and the

vector element designated by the new value of the fill pointer is returned.

454 COMMON LISP

17.6. Changing the Dimensions of an Array

This function may be used to resize or reshape an array. Its options are similar to

those of make-array.

[Function]adjust-array array new-dimensions &key :element-type

:initial-element :initial-contents :fill-pointer :displaced-to

:displaced-index-offset

adjust-array takes an array and a number of other arguments as for make-array. The

number of dimensions specified by newdimensions must equal the rank of array.

adjust-array returns an array of the same type and rank as array, with the specified

newdimensions. In effect, the array argument itself is modified to conform to the

new specifications, but this may be achieved either by modifying the array or by

creating a new array and modifying the array argument to be displaced to the new

array.

In the simplest case, one specifies only the newdimensions and possibly an

:initial-element argument. Those elements of array that are still in bounds ap

pear in the new array. The elements of the new array that are not in the bounds of

array are initialized to the :initial-element; if this argument is not provided, then

the initial contents of any new elements are undefined.

If :element-type is specified, then array must be such that it could have been

originally created with that type; otherwise an error is signaled. Specifying :element-

type to adjust-array serves only to require such an error check.

If :initial-contents or :displaced-to is specified, then it is treated as for make-

array. In this case none of the original contents of array appears in the new array.

If :fill-pointer is specified, the fill pointer of the array is reset as specified. An

error is signaled if array had no fill pointer already.

X3J13 voted in June 1988 〈2〉 to clarify the treatment of the :fill-pointer argument

as follows.

If the :fill-pointer argument is not supplied, then the fill pointer of the array is

left alone. It is an error to try to adjust the array to a total size that is smaller than its

fill pointer.

If the :fill-pointer argument is supplied, then its value must be either an integer,

t, or nil. If it is an integer, then it is the new value for the fill pointer; it must be

nonnegative and no greater than the new size to which the array is being adjusted.

If it is t, then the fill pointer is set equal to the new size for the array. If it is nil, then

the fill pointer is left alone; it is as if the argument had not been supplied. Again, it

is an error to try to adjust the array to a total size that is smaller than its fill pointer.

An error is signaled if a nonnil :fill-pointer value is supplied and the array to

be adjusted does not already have a fill pointer.

ARRAYS 455

This extended treatment of the :fill-pointerargument to adjust-array is consistent

with the previously existing treatment of the :fill-pointer argument to make-array.

adjust-array may, depending on the implementation and the arguments, simply

alter the given array or create and return a new one. In the latter case the given

array will be altered so as to be displaced to the new array and have the given new

dimensions.

It is not permitted to call adjust-array on an array that was not created with the
...

:adjustable option. The predicate adjustable-array-p may be used to determine

whether or not an array is adjustable.

X3J13 voted in January 1989 〈3〉 to allow adjust-array to be applied to any array.

If adjust-array is applied to an array that was originally created with :adjustable true,

the array returned is eq to its first argument. It is not specified whether adjust-array

returns an array eq to its first argument for any other arrays. If the array returned by

adjust-array is not eq to its first argument, the original array is unchanged and does

not share storage with the new array.

Under this new definition, it is wise to treat adjust-array in the same manner as

delete and nconc: one should carefully retain the returned value, for example by

writing

(setq my-array (adjust-array my-array ...))

rather than relying solely on a side effect.

If adjust-array is applied to an array that is displaced to another array x, then after

wards neither array nor the returned result is displaced to x unless such displacement

is explicitly respecified in the call to adjust-array.

For example, suppose that the 4by4 array m looks like this:

#--2A((alpha beta gamma delta)

(epsilon zeta eta theta)

(iota kappa lambda mu)

(nu xi omicron pi))

Then the result of

(adjust-array m ´(3 5) :initial-element ´baz)

is a 3by5 array with contents

#--2A((alpha beta gamma delta baz)

(epsilon zeta eta theta baz)

(iota kappa lambda mu baz))

456 COMMON LISP

Note that if array a is created displaced to array b and subsequently array b is given to

adjust-array, array a will still be displaced to array b; the effects of this displacement

and the rule of rowmajor storage order must be taken into account.

X3J13 voted in June 1988 〈1〉 to clarify the interaction of adjust-array with array

displacement.

Suppose that an array A is to be adjusted. There are four cases according to whether

or not A was displaced before adjustment and whether or not the result is displaced

after adjustment.

. Suppose A is not displaced either before or after. The dimensions of A are altered,

and the contents are rearranged as appropriate. Additional elements of A are taken

from the :initial-element argument. However, the use of the :initial-contents

argument causes all old contents to be discarded.

. Suppose A is not displaced before, but is displaced to array C after. None of

the original contents of A appears in A afterwards; A now contains (some of) the

contents of C, without any rearrangement of C.

. Suppose A is displaced to array B before the call, and is displaced to array C after

the call. (Note that B and C may be the same array.) The contents of B do not

appear in A afterwards (unless such contents also happen to be in C, as when B

and C are the same, for example). If :displaced-index-offset is not specified in

the call to adjust-array, it defaults to zero; the old offset (into B) is not retained.

. Suppose A is displaced to array B before the call, but is not displaced afterwards.

In this case A gets a new “data region” and (some of) the contents of B are copied

into it as appropriate to maintain the existing old contents. Additional elements

of A are taken from the :initial-element argument. However, the use of the

:initial-contents argument causes all old contents to be discarded.

If array X is displaced to array Y, and array Y is displaced to array Z, and array

Y is altered by adjust-array, array X must now refer to the adjusted contents of Y.

This means that an implementation may not collapse the chain to make X refer to

Z directly and forget that the chain of reference passes through array Y. (Caching

techniques are of course permitted, as long as they preserve the semantics specified

here.)

If X is displaced to Y, it is an error to adjust Y in such a way that it no longer has

enough elements to satisfy X. This error may be signaled at the time of the adjustment,

but this is not required.

Note that omitting the :displaced-to argument to adjust-array is equivalent to

specifying :displaced-to nil; in either case, the array is not displaced after the call

regardless of whether it was displaced before the call.

18

Strings

A string is a specialized vector (onedimensional array) whose elements are charac

ters.

Specifically, the type string is identical to the type (vector string-char), which
...

in turn is the same as (array string-char (*)).

X3J13 voted in March 1989 〈11〉 to eliminate the type string-char and to redefine

the type string to be the union of one or more specialized vector types, the types of

whose elements are subtypes of the type character.

Any stringspecific function defined in this chapter whose name begins with the

prefix string will accept a symbol instead of a string as an argument provided that

the operation never modifies that argument; the print name of the symbol is used.

In this respect the stringspecific sequence operations are not simply specializations

of generic versions; the generic sequence operations described in chapter 14 never

accept symbols as sequences. This slight inelegance is permitted in Common Lisp in

the name of pragmatic utility. One may get the effect of having a generic sequence

function operate on either symbols or strings by applying the coercion function string

to any argument whose data type is in doubt.

Note that this remark, predating the design of the Common Lisp Object System,

uses the term “generic” in a generic sense and not necessarily in the technical sense

used by CLOS (see chapter 2).

Also, there is a slight nonparallelism in the names of string functions. Where the

suffixes equalp and eql would be more appropriate, for historical compatibility the

suffixes equal and −− are used instead to indicate caseinsensitive and casesensitive

character comparison, respectively.

Any Lisp object may be tested for being a string by the predicate stringp.

Note that strings, like all vectors, may have fill pointers (though such strings are not

necessarily simple). String operations generally operate only on the active portion of

the string (below the fill pointer). See fill-pointer and related functions.

457

458 COMMON LISP

18.1. String Access

The following functions access a single character element of a string.

[Function]char string index

[Function]schar simple-string index

The given index must be a nonnegative integer less than the length of string, which

must be a string. The character at position index of the string is returned as a character

object.

(This character will necessarily satisfy the predicate string-char-p.)
...

X3J13 voted in March 1989 〈11〉 to eliminate string-char-p.

As with all sequences in Common Lisp, indexing is zeroorigin. For example:

(char "Floob-Boober-Bab-Boober-Bubs" 0) ⇒ #--\F

(char "Floob-Boober-Bab-Boober-Bubs" 1) ⇒ #--\l

See aref and elt. In effect,

(char s j) ≡ (aref (the string s) j)

setf may be used with char to destructively replace a character within a string.

For char, the string may be any string; for schar, it must be a simple string. In

some implementations of Common Lisp, the function schar may be faster than char

when it is applicable.

18.2. String Comparison

The naming conventions for these functions and for their keyword arguments gener

ally follow the conventions for the generic sequence functions (see chapter 14).

Note that this remark, predating the design of the Common Lisp Object System,

uses the term “generic” in a generic sense and not necessarily in the technical sense

used by CLOS (see chapter 2).

[Function]string−− string1 string2 &key :start1 :end1 :start2 :end2

string−− compares two strings and is true if they are the same (corresponding characters

are identical) but is false if they are not. The function equal calls string−− if applied

to two strings.

The keyword arguments :start1 and :start2 are the places in the strings to start

the comparison. The arguments :end1 and :end2 are the places in the strings to

stop comparing; comparison stops just before the position specified by a limit. The

STRINGS 459

“start” arguments default to zero (beginning of string), and the “end” arguments (if

either omitted or nil) default to the lengths of the strings (end of string), so that by

default the entirety of each string is examined. These arguments are provided so that

substrings can be compared efficiently.

string−− is necessarily false if the (sub)strings being compared are of unequal

length; that is, if

(not (−− (- end1 start1) (- end2 start2)))

is true, then string−− is false.

(string−− "foo" "foo") is true

(string−− "foo" "Foo") is false

(string−− "foo" "bar") is false

(string−− "together" "frog" :start1 1 :end1 3 :start2 2)

is true

X3J13 voted in June 1989 〈169〉 to clarify string coercion (see string).

Compatibility note: string−− is called strequal in Interlisp.

[Function]string-equal string1 string2 &key :start1 :end1 :start2 :end2

string-equal is just like string−− except that differences in case are ignored; two

characters are considered to be the same if char-equal is true of them. For example:

(string-equal "foo" "Foo") is true

X3J13 voted in June 1989 〈169〉 to clarify string coercion (see string).

[Function]string< string1 string2 &key :start1 :end1 :start2 :end2

[Function]string> string1 string2 &key :start1 :end1 :start2 :end2

[Function]string<−− string1 string2 &key :start1 :end1 :start2 :end2

[Function]string>−− string1 string2 &key :start1 :end1 :start2 :end2

[Function]string/−− string1 string2 &key :start1 :end1 :start2 :end2

These functions compare the two string arguments lexicographically, and the result is

nil unless string1 is respectively less than, greater than, less than or equal to, greater

than or equal to, or not equal to string2. If the condition is satisfied, however, then

the result is the index within the strings of the first character position at which the

strings fail to match; put another way, the result is the length of the longest common

prefix of the strings.

460 COMMON LISP

A string a is less than a string b if in the first position in which they differ the

character of a is less than the corresponding character of b according to the function

char<, or if string a is a proper prefix of string b (of shorter length and matching in

all the characters of a).

The keyword arguments :start1 and :start2 are the places in the strings to start

the comparison. The keyword arguments :end1 and :end2 are the places in the strings

to stop comparing; comparison stops just before the position specified by a limit. The

“start” arguments default to zero (beginning of string), and the “end” arguments (if

either omitted or nil) default to the lengths of the strings (end of string), so that by

default the entirety of each string is examined. These arguments are provided so that

substrings can be compared efficiently. The index returned in case of a mismatch is

an index into string1.

X3J13 voted in June 1989 〈169〉 to clarify string coercion (see string).

[Function]string-lessp string1 string2 &key :start1 :end1 :start2 :end2

[Function]string-greaterp string1 string2 &key :start1 :end1 :start2 :end2

[Function]string-not-greaterp string1 string2 &key :start1 :end1 :start2 :end2

[Function]string-not-lessp string1 string2 &key :start1 :end1 :start2 :end2

[Function]string-not-equal string1 string2 &key :start1 :end1 :start2 :end2

These are exactly like string<, string>, string<−−, string>−−, and string/−−, respectively,

except that distinctions between uppercase and lowercase letters are ignored. It is as

if char-lessp were used instead of char< for comparing characters.

X3J13 voted in June 1989 〈169〉 to clarify string coercion (see string).

18.3. String Construction and Manipulation

Most of the interesting operations on strings may be performed with the generic se

quence functions described in chapter 14. The following functions perform additional

operations that are specific to strings.

Note that this remark, predating the design of the Common Lisp Object System,

uses the term “generic” in a generic sense and not necessarily in the technical sense

used by CLOS (see chapter 2).

[Function]make-string size &key :initial-element
..

This returns a string (in fact a simple string) of length size, each of whose charac

ters has been initialized to the :initial-element argument. If an :initial-element

argument is not specified, then the string will be initialized in an implementation

dependent way.

...

STRINGS 461

Implementation note: It may be convenient to initialize the string to null characters, or to

spaces, or to garbage (“whatever was there”).

A string is really just a onedimensional array of “string characters” (that is, those

characters that are members of type string-char). More complex character arrays

may be constructed using the function make-array.

X3J13 voted in March 1989 〈11〉 to eliminate the type string-char and to add a

keyword argument :element-type to make-string. The new function description is as

follows.

[Function]make-string size &key :initial-element :element-type

This returns a simple string of length size, each of whose characters has been ini

tialized to the :initial-element argument. If an :initial-element argument is not

specified, then the string will be initialized in an implementationdependent way.

The :element-type argument names the type of the elements of the string; a string

is constructed of the most specialized type that can accommodate elements of the

given type. If :element-type is omitted, the type character is the default.

X3J13 voted in January 1989 〈7〉 to clarify that the size argument must be a

nonnegative integer less than the value of array-dimension-limit.

[Function]string-trim character-bag string

[Function]string-left-trim character-bag string

[Function]string-right-trim character-bag string

string-trim returns a substring of string, with all characters in characterbag stripped

off the beginning and end. The function string-left-trim is similar but strips charac

ters off only the beginning; string-right-trim strips off only the end. The argument

characterbag may be any sequence containing characters. For example:

(string-trim ´(#--\Space #--\Tab #--\Newline) " garbanzo beans

") ⇒ "garbanzo beans"

(string-trim " (*)" " (*three (silly) words*) ")

⇒ "three (silly) words"

(string-left-trim " (*)" " (*three (silly) words*) ")

⇒ "three (silly) words*) "

(string-right-trim " (*)" " (*three (silly) words*) ")

⇒ " (*three (silly) words"

462 COMMON LISP

If no characters need to be trimmed from the string, then either the argument string

itself or a copy of it may be returned, at the discretion of the implementation.

X3J13 voted in June 1989 〈169〉 to clarify string coercion (see string).

[Function]string-upcase string &key :start :end

[Function]string-downcase string &key :start :end

[Function]string-capitalize string &key :start :end

string-upcase returns a string just like string with all lowercase characters replaced

by the corresponding uppercase characters. More precisely, each character of the

result string is produced by applying the function char-upcase to the corresponding

character of string.

string-downcase is similar, except that uppercase characters are converted to low

ercase characters (using char-downcase).

The keyword arguments :start and :end delimit the portion of the string to be

affected. The result is always of the same length as string, however.

The argument is not destroyed. However, if no characters in the argument require

conversion, the result may be either the argument or a copy of it, at the implementa

tion’s discretion. For example:

(string-upcase "Dr. Livingstone, I presume?")

⇒ "DR. LIVINGSTONE, I PRESUME?"

(string-downcase "Dr. Livingstone, I presume?")

⇒ "dr. livingstone, i presume?"

(string-upcase "Dr. Livingstone, I presume?" :start 6 :end 10)

⇒ "Dr. LiVINGstone, I presume?"

string-capitalize produces a copy of string such that, for every word in the

copy, the first character of the word, if casemodifiable, is uppercase and any other

casemodifiable characters in the word are lowercase. For the purposes of string-

capitalize, a word is defined to be a consecutive subsequence consisting of al

phanumeric characters or digits, delimited at each end either by a nonalphanumeric

character or by an end of the string. For example:

(string-capitalize " hello ") ⇒ " Hello "

(string-capitalize

"occlUDeD cASEmenTs FOreSTAll iNADVertent DEFenestraTION")

⇒ "Occluded Casements Forestall Inadvertent Defenestration"

(string-capitalize ´kludgy-hash-search) ⇒ "Kludgy-Hash-Search"

(string-capitalize "DON´T!") ⇒ "Don´T!" ;not "Don´t!"

(string-capitalize "pipe 13a, foo16c") ⇒ "Pipe 13a, Foo16c"

STRINGS 463

X3J13 voted in June 1989 〈169〉 to clarify string coercion (see string).

Compatibility note: Some very approximate Interlisp equivalents to string-upcase, string-

downcase, and string-capitalize are u-case, l-case with second argument nil, and l-case with

second argument t.

[Function]nstring-upcase string &key :start :end

[Function]nstring-downcase string &key :start :end

[Function]nstring-capitalize string &key :start :end

These three functions are just like string-upcase, string-downcase, and string-

capitalize but destructively modify the argument string by altering casemodifiable

characters as necessary.

The keyword arguments :start and :end delimit the portion of the string to be

affected. The argument string is returned as the result.

[Function]string x

Most of the string functions effectively apply string to such of their arguments as are

supposed to be strings. If x is a string, it is returned. If x is a symbol, its print name

is returned.

If x is a string character (a character of type string-char), then a string containing
...

that one character is returned.

X3J13 voted in March 1989 〈11〉 to eliminate the type string-char and to redefine

the type string to be the union of one or more specialized vector types, the types

of whose elements are subtypes of the type character. Presumably converting a

character to a string always works according to this vote.

In any other situation, an error is signaled.

To convert a sequence of characters to a string, use coerce. (Note that (coerce x

´string) will not succeed if x is a symbol. Conversely, string will not convert a list

or other sequence to be a string.)

To get the string representation of a number or any other Lisp object, use prin1-

to-string, princ-to-string, or format.

X3J13 voted in June 1989 〈169〉 to specify that the following functions perform

coercion on their string arguments identical to that performed by the function string.

464 COMMON LISP

string−− string-equal string-trim

string< string-lessp string-left-trim

string> string-greaterp string-right-trim

string<−− string-not-greaterp string-upcase

string>−− string-not-lessp string-downcase

string/−− string-not-equal string-capitalize

Note that nstring-upcase, nstring-downcase, and nstring-capitalize are absent from

this list; because they modify destructively, the argument must be a string.

As part of the same vote X3J13 specified that string may perform additional

implementationdependent coercions but the returned value must be of type string.

Only when no coercion is defined, whether standard or implementationdependent,

is string required to signal an error, in which case the error condition must be of type

type-error.

19

Structures

Common Lisp provides a facility for creating named record structures with named

components. In effect, the user can define a new data type; every data structure of

that type has components with specified names. Constructor, access, and assignment

constructs are automatically defined when the data type is defined.

This chapter is divided into two parts. The first part discusses the basics of the

structure facility, which is very simple and allows the user to take advantage of the

typechecking, modularity, and convenience of userdefined record data types. The

second part, beginning with section 19.5,discusses a number of specialized features of

the facility that have advanced applications. These features are completely optional,

and you needn’t even know they exist in order to take advantage of the basics.

19.1. Introduction to Structures

The structure facility is embodied in the defstruct macro, which allows the user to

create and use aggregate data types with named elements. These are like “structures”

in PL/I, or “records” in Pascal.

As an example, assume you are writing a Lisp program that deals with space ships

in a twodimensional plane. In your program, you need to represent a space ship by

a Lisp object of some kind. The interesting things about a space ship, as far as your

program is concerned, are its position (represented as x and y coordinates), velocity

(represented as components along the x and y axes), and mass.

A ship might therefore be represented as a record structure with five components:

xposition, yposition, xvelocity, yvelocity, and mass. This structure could in turn

be implemented as a Lisp object in a number of ways. It could be a list of five

elements; the xposition could be the car, the yposition the cadr, and so on. Equally

well it could be a vector of five elements: the xposition could be element 0, the

yposition element 1, and so on. The problem with either of these representations is

that the components occupy places in the object that are quite arbitrary and hard to

465

466 COMMON LISP

remember. Someone looking at (cadddr ship1) or (aref ship1 3) in a piece of code

might find it difficult to determine that this is accessing the yvelocity component of

ship1. Moreover, if the representation of a ship should have to be changed, it would

be very difficult to find all the places in the code to be changed to match (not all

occurrences of cadddr are intended to extract the yvelocity from a ship).

Ideally components of record structures should have names. One would like to

write something like (ship-y-velocity ship1) instead of (cadddr ship1). One would

also like a more mnemonic way to create a ship than this:

(list 0 0 0 0 0)

Indeed, one would like ship to be a new data type, just like other Lisp data types, that

one could test with typep, for example. The defstruct facility provides all of this.

defstruct itself is a macro that defines a structure. For the space ship example, one

might define the structure by saying:

(defstruct ship

x-position

y-position

x-velocity

y-velocity

mass)

This declares that every ship is an object with five named components. The evaluation

of this form does several things:

. It defines ship-x-position to be a function of one argument, a ship, that returns the

xposition of the ship; ship-y-position and the other components are given similar

function definitions. These functions are called the access functions, as they are

used to access elements of the structure.

. The symbol ship becomes the name of a data type of which instances of ships are

elements. This name becomes acceptable to typep, for example; (typep x ´ship)

is true if x is a ship and false if x is any object other than a ship.

. A function named ship-p of one argument is defined; it is a predicate that is true if

its argument is a ship and is false otherwise.

. A function called make-ship is defined that, when invoked, will create a data

structure with five components, suitable for use with the access functions. Thus

executing

(setq ship2 (make-ship))

STRUCTURES 467

sets ship2 to a newly created ship object. One can specify the initial values of any

desired component in the call to make-ship by using keyword arguments in this

way:

(setq ship2 (make-ship :mass *default-ship-mass*

:x-position 0

:y-position 0))

This constructs a new ship and initializes three of its components. This function

is called the constructor function because it constructs a new structure.

. The #--S syntax can be used to read instances of ship structures, and a printer function

is provided for printing out ship structures. For example, the value of the variable

ship2 shown above might be printed as

#--S(ship x-position 0 y-position 0 x-velocity nil

y-velocity nil mass 170000.0)

. A function called copy-ship of one argument is defined that, when given a ship

object, will create a new ship object that is a copy of the given one. This function

is called the copier function.

. One may use setf to alter the components of a ship:

(setf (ship-x-position ship2) 100)

This alters the xposition of ship2 to be 100. This works because defstruct behaves

as if it generates an appropriate defsetf form for each access function.

This simple example illustrates the power of defstruct to provide abstract record

structures in a convenient manner. defstruct has many other features as well for

specialized purposes.

19.2. How to Use Defstruct

All structures are defined through the defstruct construct. A call to defstruct defines

a new data type whose instances have named slots.

[Macro]defstruct nameandoptions [docstring] {slotdescription}+

X3J13 voted in June 1988 〈58〉 to allow a defstruct definition to have no slot

description at all; in other words, the occurrence of {slotdescription}+ in the

preceding header line would be replaced by {slotdescription}∗ .

468 COMMON LISP

Such structure definitions are particularly useful if the :include option is used,

perhaps with other options; for example, one can have two structures that are exactly

alike except that they print differently (having different :print-function options).

Implementors are encouraged to permit this simple extension as soon as convenient.

Users, however, may wish to maximize portability of their code by avoiding the use

of this extension unless and until it is adopted as part of the ANSI standard.

This defines a recordstructure data type. A general call to defstruct looks like the

following example.

(defstruct (name option1 option2 ... optionm)

docstring

slotdescription1

slotdescription2

...

slotdescriptionn)

The name must be a symbol; it becomes the name of a new data type consisting of

all instances of the structure. The function typep will accept and use this name as

appropriate. The name is returned as the value of the defstruct form.

Usually no options are needed at all. If no options are specified, then one may

write simply name instead of (name) after the word defstruct. The syntax of options

and the options provided are discussed in section 19.5.

If the optional documentation string docstring is present, then it is attached to the

name as a documentation string of type structure; see documentation.

Each slotdescriptionj is of the form

(slotname defaultinit

slotoptionname1 slotoptionvalue1

slotoptionname2 slotoptionvalue2

...

slotoptionnamekj slotoptionvaluekj)

Each slotname must be a symbol; an access function is defined for each slot. If

no options and no defaultinit are specified, then one may write simply slotname

instead of (slot-name) as the slot description.

The defaultinit is a form that is evaluated each time a structure is to be constructed;
..

the value is used as the initial value of the slot.

X3J13 voted in October 1988 〈54〉 to clarify that a defaultinit form is evaluated

only if the corresponding argument is not supplied to the constructor function. The

preceding sentence should therefore read as follows:

STRUCTURES 469

The defaultinit is a form that is evaluated each time its value is to be used as the

initial value of the slot.

If no defaultinit is specified, then the initial contents of the slot are undefined and

implementationdependent. The available slotoptions are described in section 19.4.

Compatibility note: Slotoptions are not currently provided in Lisp Machine Lisp, but this is

an upwardcompatible extension.

X3J13 voted in January 1989 〈57〉 to specify that it is an error for two slots to have

the same name; more precisely, no two slots may have names for whose print names

string−− would be true. Under this interpretation

(defstruct lotsa-slots slot slot)

obviously is incorrect but the following one is also in error, even assuming that the

symbols coin:slot and blot:slot really are distinct (noneql) symbols:

(defstruct no-dice coin:slot blot:slot)

To illustrate another case, the first defstruct form below is correct, but the second

one is in error.

(defstruct one-slot slot)

(defstruct (two-slots (:include one-slot)) slot)

Rationale: Print names are the criterion for slotnames being the same, rather than the symbols

themselves, because defstruct constructs names of accessor functions from the print names

and interns the resulting new names in the current package.

X3J13 recommended that expanding a defstruct form violating this restriction

should signal an error and noted, with an eye to the Common Lisp Object System

〈12〉, that the restriction applies only to the operation of the defstruct macro as such

and not to the structure-class or structures defined with defclass.

X3J13 voted in March 1989 〈50〉 to clarify that, while defining forms normally

appear at top level, it is meaningful to place them in nontoplevel contexts; defstruct

must treat slot defaultinit forms and any initialization forms within the specifica

470 COMMON LISP

tion of a byposition constructor function as occurring within the enclosing lexical

environment, not within the global environment.

defstruct not only defines an access function for each slot, but also arranges for

setf to work properly on such access functions, defines a predicate named name-p,

defines a constructor function named make-name, and defines a copier function named

copy-name. All names of automatically created functions are interned in whatever

package is current at the time the defstruct form is processed (see *package*). Also,

all such functions may be declared inline at the discretion of the implementation

to improve efficiency; if you do not want some function declared inline, follow

the defstruct form with a notinline declaration to override any automatic inline

declaration.

X3J13 voted in January 1989 〈56〉 to specify that the results of redefining a

defstruct structure (that is, evaluating more than one defstruct structure for the same

name) are undefined.

The problem is that if instances have been created under the old definition and

then remain accessible after the new definition has been evaluated, the accessors and

other functions for the new definition may be incompatible with the old instances.

Conversely, functions associated with the old definition may have been declared

inline and compiled into code that remains accessible after the new definition has

been evaluated; such code may be incompatible with the new instances.

In practice this restriction affects the development and debugging process rather

than production runs of fully developed code. The defstruct feature is intended to

provide “the most efficient” structure class. CLOS classes defined by defclass allow

much more flexible structures to be defined and redefined.

Programming environments are allowed and encouraged to permit defstruct redef

inition, perhaps with warning messages about possible interactions with other parts

of the programming environment or memory state. It is beyond the scope of the

Common Lisp language standard to define those interactions except to note that they

are not portable.

19.3. Using the Automatically Defined Constructor Function

After you have defined a new structure with defstruct, you can create instances of this

structure by using the constructor function. By default, defstruct defines this function

automatically. For a structure named foo, the constructor function is normally named

make-foo; you can specify a different name by giving it as the argument to the

:constructor option, or specify that you don’t want a normal constructor function at

all by using nil as the argument (in which case one or more “byposition” constructors

should be requested; see section 19.6).

A call to a constructor function, in general, has the form

STRUCTURES 471

(nameofconstructorfunction

slotkeyword1 form1

slotkeyword2 form2

...)

All arguments are keyword arguments. Each slotkeyword should be a keyword

whose name matches the name of a slot of the structure (defstruct determines the

possible keywords simply by interning each slotname in the keyword package). All

the keywords and forms are evaluated. In short, it is just as if the constructor function

took all its arguments as &key parameters. For example, the ship structure shown in

section 19.1 has a constructor function that takes arguments roughly as if its definition

were

(defun make-ship (&key x-position y-position

x-velocity y-velocity mass)

...)

If slotkeywordj names a slot, then that element of the created structure will be

initialized to the value of formj. If no pair slotkeywordj and formj is present for a

given slot, then the slot will be initialized by evaluating the defaultinit form specified

for that slot in the call to defstruct. (In other words, the initialization specified in

the defstruct defers to any specified in a call to the constructor function.) If the

default initialization form is used, it is evaluated at construction time, but in the

lexical environment of the defstruct form in which it appeared. If the defstruct itself

also did not specify any initialization, the element’s initial value is undefined. You

should always specify the initialization, either in the defstruct or in the call to the

constructor function, if you care about the initial value of the slot.

Each initialization form specified for a defstruct component, when used by the

constructor function for an otherwise unspecified component, is reevaluated on every

call to the constructor function. It is as if the initialization forms were used as init

forms for the keyword parameters of the constructor function. For example, if the

form (gensym) were used as an initialization form, either in the constructorfunction

call or as the default initialization form in the defstruct form, then every call to the

constructor function would call gensym once to generate a new symbol.

X3J13 voted in October 1988 〈54〉 to clarify that the default value in a defstruct slot

is not evaluated unless it is needed in the creation of a particular structure instance.

If it is never needed, there can be no typemismatch error, even if the type of the slot

is specified, and no warning should be issued.

For example, in the following sequence only the last form is in error.

472 COMMON LISP

(defstruct person (name .007 :type string))

(make-person :name "James")

(make-person) ;Error to give name the value .007

19.4. Defstruct SlotOptions

Each slotdescription in a defstruct form may specify one or more slotoptions. A

slotoption consists of a pair of a keyword and a value (which is not a form to be

evaluated, but the value itself). For example:

(defstruct ship

(x-position 0.0 :type short-float)

(y-position 0.0 :type short-float)

(x-velocity 0.0 :type short-float)

(y-velocity 0.0 :type short-float)

(mass *default-ship-mass* :type short-float :read-only t))

This specifies that each slot will always contain a shortformat floatingpoint number,

and that the last slot may not be altered once a ship is constructed.

The available slotoptions are as follows.

:type

The option :type type specifies that the contents of the slot will always be of the

specified data type. This is entirely analogous to the declaration of a variable or

function; indeed, it effectively declares the result type of the access function. An

implementation may or may not choose to check the type of the new object when

initializing or assigning to a slot. Note that the argument form type is not evaluated;

it must be a valid type specifier.

:read-only

The option :read-only x, where x is not nil, specifies that this slot may not be altered;

it will always contain the value specified at construction time. setf will not accept

the access function for this slot. If x is nil, this slotoption has no effect. Note that

the argument form x is not evaluated.

Note that it is impossible to specify a slotoption unless a default value is specified

first.

STRUCTURES 473

19.5. Defstruct Options

The preceding description of defstruct is all that the average user will need (or want)

to know in order to use structures. The remainder of this chapter discusses more

complex features of the defstruct facility.

This section explains each of the options that can be given to defstruct. A

defstruct option may be either a keyword or a list of a keyword and arguments for

that keyword. (Note that the syntax for defstruct options differs from the pair syntax

used for slotoptions. No part of any of these options is evaluated.)

:conc-name

This provides for automatic prefixing of names of access functions. It is conventional

to begin the names of all the access functions of a structure with a specific prefix, the

name of the structure followed by a hyphen. This is the default behavior.

The argument to the :conc-name option specifies an alternative prefix to be used.

(If a hyphen is to be used as a separator, it must be specified as part of the prefix.) If

nil is specified as an argument, then no prefix is used; then the names of the access

functions are the same as the slotnames, and it is up to the user to name the slots

reasonably.

Note that no matter what is specified for :conc-name, with a constructor function

one uses slot keywords that match the slotnames, with no prefix attached. On the

other hand, one uses the accessfunction name when using setf. Here is an example:

(defstruct door knob-color width material)

(setq my-door

(make-door :knob-color ´red :width 5.0))

(door-width my-door) ⇒ 5.0

(setf (door-width my-door) 43.7)

(door-width my-door) ⇒ 43.7

(door-knob-color my-door) ⇒ red

:constructor

This option takes one argument, a symbol, which specifies the name of the constructor

function. If the argument is not provided or if the option itself is not provided, the

name of the constructor is produced by concatenating the string "MAKE-" and the name

of the structure, putting the name in whatever package is current at the time the

defstruct form is processed (see *package*). If the argument is provided and is nil,

no constructor function is defined.

This option actually has a more general syntax that is explained in section 19.6.

474 COMMON LISP

:copier

This option takes one argument, a symbol, which specifies the name of the copier

function. If the argument is not provided or if the option itself is not provided, the

name of the copier is produced by concatenating the string "COPY-" and the name

of the structure, putting the name in whatever package is current at the time the

defstruct form is processed (see *package*). If the argument is provided and is nil,

no copier function is defined.

The automatically defined copier function simply makes a new structure and trans

fers all components verbatim from the argument into the newly created structure. No

attempt is made to make copies of the components. Corresponding components of

the old and new structures will therefore be eql.

:predicate

This option takes one argument, which specifies the name of the type predicate. If

the argument is not provided or if the option itself is not provided, the name of

the predicate is made by concatenating the name of the structure to the string "-P",

putting the name in whatever package is current at the time the defstruct form is

processed (see *package*). If the argument is provided and is nil, no predicate is

defined. A predicate can be defined only if the structure is “named”; if the :type

option is specified and the :named option is not specified, then the :predicate option

must either be unspecified or have the value nil.

:include

This option is used for building a new structure definition as an extension of an old

structure definition. As an example, suppose you have a structure called person that

looks like this:

(defstruct person name age sex)

Now suppose you want to make a new structure to represent an astronaut. Since

astronauts are people too, you would like them also to have the attributes of name,

age, and sex, and you would like Lisp functions that operate on person structures to

operate just as well on astronaut structures. You can do this by defining astronaut

with the :include option, as follows:

(defstruct (astronaut (:include person)

(:conc-name astro-))

helmet-size

(favorite-beverage ´tang))

STRUCTURES 475

The :include option causes the structure being defined to have the same slots as

the included structure. This is done in such a way that the access functions for the

included structure will also work on the structure being defined. In this example,

an astronaut will therefore have five slots: the three defined in person and the two

defined in astronaut itself. The access functions defined by the person structure

can be applied to instances of the astronaut structure, and they will work correctly.

Moreover, astronaut will have its own access functions for components defined by

the person structure. The following examples illustrate how you can use astronaut

structures:

(setq x (make-astronaut :name ´buzz

:age 45

:sex t

:helmet-size 17.5))

(person-name x) ⇒ buzz

(astro-name x) ⇒ buzz

(astro-favorite-beverage x) ⇒ tang

The difference between the access functions person-nameand astro-name is that person-

name may be correctly applied to any person, including an astronaut, while astro-name

may be correctly applied only to an astronaut. (An implementation may or may not

check for incorrect use of access functions.)

At most one :include option may be specified in a single defstruct form. The

argument to the :include option is required and must be the name of some previously

defined structure. If the structure being defined has no :type option, then the included

structure must also have had no :type option specified for it. If the structure being

defined has a :type option, then the included structure must have been declared with

a :type option specifying the same representation type.

If no :type option is involved, then the structure name of the including structure

definition becomes the name of a data type, of course, and therefore a valid type

specifier recognizable by typep; moreover, it becomes a subtype of the included

structure. In the above example, astronaut is a subtype of person; hence

(typep (make-astronaut) ´person)

is true, indicating that all operations on persons will also work on astronauts.

The following is an advanced feature of the :include option. Sometimes, when one

structure includes another, the default values or slotoptions for the slots that came

476 COMMON LISP

from the included structure are not what you want. The new structure can specify

default values or slotoptions for the included slots different from those the included

structure specifies, by giving the :include option as

(:include name slotdescription1 slotdescription2 ...)

Each slotdescriptionj must have a slotname or slotkeyword that is the same as that

of some slot in the included structure. If slotdescriptionj has no defaultinit, then in

the new structure the slot will have no initial value. Otherwise its initial value form

will be replaced by the defaultinit in slotdescriptionj. A normally writable slot

may be made readonly. If a slot is readonly in the included structure, then it must

also be so in the including structure. If a type is specified for a slot, it must be the

same as, or a subtype of, the type specified in the included structure. If it is a strict

subtype, the implementation may or may not choose to errorcheck assignments.

For example, if we had wanted to define astronaut so that the default age for an

astronaut is 45, then we could have said:

(defstruct (astronaut (:include person (age 45)))

helmet-size

(favorite-beverage ´tang))

X3J13 voted in June 1988 〈41〉 to require any structure type created by defstruct

(or defclass) to be disjoint from any of the types cons, symbol, array, number, character,

hash-table, readtable, package, pathname, stream, and random-state. A consequence

of this requirement is that it is an error to specify any of these types, or any of their

subtypes, to the defstruct :include option. (The first edition said nothing explicitly

about this. Inasmuch as using such a type with the :include option was not defined

to work, one might argue that such use was an error in Common Lisp as defined by

the first edition.)

:print-function

This option may be used only if the :type option is not specified. The argument to the

:print-function option should be a function of three arguments, in a form acceptable

to the function special form, to be used to print structures of this type. When a

structure of this type is to be printed, the function is called on three arguments: the

structure to be printed, a stream to print to, and an integer indicating the current depth

(to be compared against *print-level*). The printing function should observe the

values of such printercontrol variables as *print-escape* and *print-pretty*.

If the :print-function option is not specified and the :type option also not specified,

then a default printing function is provided for the structure that will print out all its

slots using #--S syntax (see section 22.1.4).

STRUCTURES 477

X3J13 voted in January 1989 〈143〉 to specify that userdefined printing functions

for the defstruct :print-function option may print objects to the supplied stream

using write, print1, princ, format, or print-object and expect circularities to be

detected and printed using #--n#-- syntax (when *print-circle* is nonnil, of course).

See *print-circle*.

X3J13 voted in January 1989 〈55〉 to clarify that if the :print-function option is

not specified but the :include option is specified, then the print function is inherited

from the included structure type. Thus, for example, an astronaut will be printed by

the same printing function that is used for person.

X3J13 in the same vote extended the print-function option as follows: If the print-

function option is specified but with no argument, then the standard default printing

function (that uses #--S syntax) will be used. This provides a means of overriding the

inheritance rule. For example, if person and astronaut had been defined as

(defstruct (person

(:print-function ;Special print function

(lambda (p s k)

(format s "<˜A, age ˜D>"

(person-name p)

(person-age p)))))

name age sex)

(defstruct (astronaut

(:include person)

(:conc-name astro-)

(:print-function)) ;Use default print function

helmet-size

(favorite-beverage ´tang))

then an ordinary person would be printed as “<Joe Schmoe, age 27>” but an astronaut

would be printed as, for example,

#--S(ASTRONAUT NAME BUZZ AGE 45 SEX T

HELMET-SIZE 17.5 FAVORITE-BEVERAGE TANG)

using the default #--S syntax (yuk).

These changes make the behavior of defstruct with respect to the :include option

a bit more like the behavior of classes in CLOS.

:type

478 COMMON LISP

The :type option explicitly specifies the representation to be used for the structure.

It takes one argument, which must be one of the types enumerated below.

Specifying this option has the effect of forcing a specific representation and of

forcing the components to be stored in the order specified in the defstruct form in

corresponding successive elements of the specified representation. It also prevents

the structure name from becoming a valid type specifier recognizable by typep (see

section 19.7).

Normally this option is not specified, in which case the structure is represented in

an implementationdependent manner.

vector

This produces the same result as specifying (vector t). The structure is represented

as a general vector, storing components as vector elements. The first component

is vector element 1 if the structure is :named, and element 0 otherwise.

(vector elementtype)

The structure is represented as a (possibly specialized) vector, storing components

as vector elements. Every component must be of a type that can be stored in a

vector of the type specified. The first component is vector element 1 if the structure

is :named, and element 0 otherwise. The structure may be :named only if the type

symbol is a subtype of the specified element-type.

list

The structure is represented as a list. The first component is the cadr if the structure

is :named, and the car if it is :unnamed.

:named

The :named option specifies that the structure is “named”; this option takes no ar

gument. If no :type option is specified, then the structure is always named; so this

option is useful only in conjunction with the :type option. See section 19.7 for a

further description of this option.

:initial-offset

This allows you to tell defstruct to skip over a certain number of slots before it

starts allocating the slots described in the body. This option requires an argument, a

nonnegative integer, which is the number of slots you want defstruct to skip. The

:initial-offset option may be used only if the :type option is also specified. See

section 19.7.3 for a further description of this option.

STRUCTURES 479

19.6. ByPosition Constructor Functions

If the :constructor option is given as (:constructor name arglist), then instead of

making a keyworddriven constructor function, defstruct defines a “positional” con

structor function, taking arguments whose meaning is determined by the argument’s

position rather than by a keyword. The arglist is used to describe what the arguments

to the constructor will be. In the simplest case something like (:constructor make-

foo (a b c)) defines make-foo to be a threeargument constructor function whose

arguments are used to initialize the slots named a, b, and c.

In addition, the keywords &optional, &rest, and &aux are recognized in the argument

list. They work in the way you might expect, but there are a few fine points worthy

of explanation. Consider this example:

(:constructor create-foo

(a &optional b (c ´sea) &rest d &aux e (f ´eff)))

This defines create-foo to be a constructor of one or more arguments. The first

argument is used to initialize the a slot. The second argument is used to initialize the

b slot. If there isn’t any second argument, then the default value given in the body of

the defstruct (if given) is used instead. The third argument is used to initialize the

c slot. If there isn’t any third argument, then the symbol sea is used instead. Any

arguments following the third argument are collected into a list and used to initialize

the d slot. If there are three or fewer arguments, then nil is placed in the d slot. The

e slot is not initialized; its initial value is undefined. Finally, the f slot is initialized

to contain the symbol eff.

The actions taken in the b and e cases were carefully chosen to allow the user

to specify all possible behaviors. Note that the &aux “variables” can be used to

completely override the default initializations given in the body.

With this definition, one can write

(create-foo 1 2)

instead of

(make-foo :a 1 :b 2)

and of course create-foo provides defaulting different from that of make-foo.

It is permissible to use the :constructor option more than once, so that you can

define several different constructor functions, each taking different parameters.

Because a constructor of this type operates By Order of Arguments, it is sometimes

known as a BOA constructor.

X3J13 voted in January 1989 〈53〉 to allow &key and &allow-other-keys in the

parameter list of a “positional” constructor. The initialization of slots corresponding

480 COMMON LISP

to keyword parameters is performed in the same manner as for &optional parameters.

A variant of the example shown above illustrates this:

(:constructor create-foo

(a &optional b (c ´sea)

&key p (q ´cue) ((:why y)) ((:you u) ´ewe)

&aux e (f ´eff)))

The treatment of slots a, b, c, e, and f is the same as in the original example. In

addition, if there is a :p keyword argument, it is used to initialize the p slot; if

there isn’t any :p keyword argument, then the default value given in the body of the

defstruct (if given) is used instead. Similarly, if there is a :q keyword argument, it is

used to initialize the q slot; if there isn’t any :q keyword argument, then the symbol

cue is used instead.

In order thoroughly to flog this presumably already dead horse, we further observe

that if there is a :why keyword argument, it is used to initialize the y slot; otherwise the

default value for slot y is used instead. Similarly, if there is a :you keyword argument,

it is used to initialize the u slot; otherwise the symbol ewe is used instead.

If memory serves me correctly, defstruct was included in the original design for

Common Lisp some time before keyword arguments were approved. The failure of

positional constructors to accept keyword arguments may well have been an oversight

on my part; there is no logical reason to exclude them. I am grateful to X3J13 for

rectifying this.

A remaining difficulty is that the possibility of keyword arguments renders the term

“positional constructor” a misnomer. Worse yet, it ruins the term “BOA constructor.”

I suggest that they continue to be called BOA constructors, as I refuse to abandon a

good pun. (I regret appearing to have more compassion for puns than for horses.)

As part of the same vote X3J13 also changed defstruct to allow BOA constructors

to have parameters (including suppliedp parameters) that do not correspond to any

slot. Such parameters may be used in subsequent initialization forms in the parameter

list. Consider this example:

(defstruct (ice-cream-factory

(:constructor fabricate-factory

(&key (capacity 5)

location

STRUCTURES 481

(local-flavors

(case location

((hawaii) ´(pineapple macadamia guava))

((massachusetts) ´(lobster baked-bean))

((california) ´(ginger lotus avocado

bean-sprout garlic))

((texas) ´(jalapeno barbecue))))

(flavors (subseq (append local-flavors

´(vanilla

chocolate

strawberry

pistachio

maple-walnut

peppermint))

0 capacity)))))

(capacity 3)

(flavors ´(vanilla chocolate strawberry mango)))

The structure type ice-cream-factory has two constructors. The standard con

structor, make-ice-cream-factory, takes two keyword arguments named :capacity and

:flavors. For this constructor, the default for the capacity slot is 3 and the default list

of flavors is America’s favorite threesome and a dark horse (not a dead one). The

BOA constructor fabricate-factory accepts four different keyword arguments. The

:capacity argument defaults to 5, and the :flavors argument defaults in a complicated

manner based on the other three. The :local-flavors argument may be specified di

rectly, or may be allowed to default based on the :location of the factory. Here are

examples of various factories:

(setq houston (fabricate-factory :capacity 4 :location ´texas))

(setq cambridge (fabricate-factory :location ´massachusetts))

(setq seattle (fabricate-factory :local-flavors ´(salmon)))

(setq wheaton (fabricate-factory :capacity 4 :location ´illinois))

(setq pittsburgh (fabricate-factory :capacity 4))

(setq cleveland (make-factory :capacity 4))

(ice-cream-factory-flavors houston)

⇒ (jalapeno barbecue vanilla chocolate)

482 COMMON LISP

(ice-cream-factory-flavors cambridge)

⇒ (lobster baked-bean vanilla chocolate strawberry)

(ice-cream-factory-flavors seattle)

⇒ (salmon vanilla chocolate strawberry pistachio)

(ice-cream-factory-flavors wheaton)

⇒ (vanilla chocolate strawberry pistachio)

(ice-cream-factory-flavors pittsburgh)

⇒ (vanilla chocolate strawberry pistachio)

(ice-cream-factory-flavors cleveland)

⇒ (vanilla chocolate strawberry mango)

19.7. Structures of Explicitly Specified Representational Type

Sometimes it is important to have explicit control over the representation of a struc

ture. The :type option allows one to specify that a structure must be implemented

in a particular way, using a list or a specific kind of vector, and to specify the exact

allocation of structure slots to components of the representation. A structure may

also be “unnamed” or “named,” according to whether the structure name is stored in

(and thus recoverable from) the structure.

19.7.1. Unnamed Structures

Sometimes a particular data representation is imposed by external requirements, and

yet it is desirable to document the data format as a defstructstyle structure. For

example, consider expressions built up from numbers, symbols, and binary operations

such as + and *. An operation might be represented as it is in Lisp, as a list of the

operator and the two operands. This fact can be expressed succinctly with defstruct

in this manner:

(defstruct (binop (:type list))

(operator ´? :type symbol)

operand-1

operand-2)

This will define a constructor function make-binopand three selector functions,namely

binop-operator, binop-operand-1, and binop-operand-2. (It will not, however, define a

predicate binop-p, for reasons explained below.)

STRUCTURES 483

The effect of make-binop is simply to construct a list of length 3:

(make-binop :operator ´+ :operand-1 ´x :operand-2 5)

⇒ (+ x 5)

(make-binop :operand-2 4 :operator ´*)

⇒ (* nil 4)

It is just like the function list except that it takes keyword arguments and performs

slot defaulting appropriate to the binop conceptual data type. Similarly, the selector

functions binop-operator, binop-operand-1, and binop-operand-2 are essentially equiv

alent to car, cadr, and caddr, respectively. (They might not be completely equivalent

because, for example, an implementation would be justified in adding errorchecking

code to ensure that the argument to each selector function is a length3 list.)

We speak of binop as being a “conceptual” data type because binop is not made a

part of the Common Lisp type system. The predicate typep will not recognize binop

as a type specifier, and type-of will return list when given a binop structure. Indeed,

there is no way to distinguish a data structure constructed by make-binop from any

other list that happens to have the correct structure.

There is not even any way to recover the structure name binop from a structure

created by make-binop. This can be done, however, if the structure is “named.”

19.7.2. Named Structures

A “named” structure has the property that, given an instance of the structure, the

structure name (that names the type) can be reliably recovered. For structures defined

with no :type option, the structure name actually becomes part of the Common Lisp

datatype system. The function type-of, when applied to such a structure, will return

the structure name as the type of the object; the predicate typep will recognize the

structure name as a valid type specifier.

For structures defined with a :type option, type-of will return a type specifier

such as list or (vector t), depending on the type specified to the :type option.

The structure name does not become a valid type specifier. However, if the :named

option is also specified, then the first component of the structure (as created by a

defstruct constructor function) will always contain the structure name. This allows

the structure name to be recovered from an instance of the structure and allows a

reasonable predicate for the conceptual type to be defined: the automatically defined

name-p predicate for the structure operates by first checking that its argument is of

the proper type (list, (vector t), or whatever) and then checking whether the first

component contains the appropriate type name.

484 COMMON LISP

Consider the binop example shown above, modified only to include the :named

option:

(defstruct (binop (:type list) :named)

(operator ´? :type symbol)

operand-1

operand-2)

As before, this will define a constructor function make-binop and three selector func

tions binop-operator, binop-operand-1, and binop-operand-2. It will also define a

predicate binop-p.

The effect of make-binop is now to construct a list of length 4:

(make-binop :operator ´+ :operand-1 ´x :operand-2 5)

⇒ (binop + x 5)

(make-binop :operand-2 4 :operator ´*)

⇒ (binop * nil 4)

The structure has the same layout as before except that the structure name binop

is included as the first list element. The selector functions binop-operator, binop-

operand-1, and binop-operand-2 are essentially equivalent to cadr, caddr, and cadddr,

respectively. The predicate binop-p is more or less equivalent to the following

definition.

(defun binop-p (x)

(and (consp x) (eq (car x) ´binop)))

The name binop is still not a valid type specifier recognizable to typep, but at least there

is a way of distinguishing binop structures from other similarly defined structures.

19.7.3. Other Aspects of Explicitly Specified Structures

The :initial-offset option allows one to specify that slots be allocated beginning at

a representational element other than the first. For example, the form

(defstruct (binop (:type list) (:initial-offset 2))

(operator ´? :type symbol)

operand-1

operand-2)

would result in the following behavior for make-binop:

STRUCTURES 485

(make-binop :operator ´+ :operand-1 ´x :operand-2 5)

⇒ (nil nil + x 5)

(make-binop :operand-2 4 :operator ´*)

⇒ (nil nil * nil 4)

The selectors binop-operator, binop-operand-1, and binop-operand-2 would be essen

tially equivalent to caddr, cadddr, and car of cddddr, respectively. Similarly, the

form

(defstruct (binop (:type list) :named (:initial-offset 2))

(operator ´? :type symbol)

operand-1

operand-2)

would result in the following behavior for make-binop:

(make-binop :operator ´+ :operand-1 ´x :operand-2 5)

⇒ (nil nil binop + x 5)

(make-binop :operand-2 4 :operator ´*)

⇒ (nil nil binop * nil 4)

If the :include is used with the :type option, then the effect is first to skip over as

many representation elements as needed to represent the included structure, then to

skip over any additional elements specified by the :initial-offset option, and then

to begin allocation of elements from that point. For example:

(defstruct (binop (:type list) :named (:initial-offset 2))

(operator ´? :type symbol)

operand-1

operand-2)

(defstruct (annotated-binop (:type list)

(:initial-offset 3)

(:include binop))

commutative associative identity)

(make-annotated-binop :operator ´*
:operand-1 ´x

:operand-2 5

:commutative t

486 COMMON LISP

:associative t

:identity 1)

⇒ (nil nil binop * x 5 nil nil nil t t 1)

The first two nil elements stem from the :initial-offset of 2 in the definition of

binop. The next four elements contain the structure name and three slots for binop.

The next three nil elements stem from the :initial-offset of 3 in the definition

of annotated-binop. The last three list elements contain the additional slots for an

annotated-binop.

20

The Evaluator

The mechanism that executes Lisp programs is called the evaluator. More precisely,

the evaluator accepts a form and performs the computation specified by the form.

This mechanism is made available to the user through the function eval.

The evaluator is typically implemented as an interpreter that traverses the given

form recursively, performing each step of the computation as it goes. An interpretive

implementation is not required, however. A permissible alternative approach is for

the evaluator first to completely compile the form into machineexecutable code and

then invoke the resulting code. This technique virtually eliminates incompatibilities

between interpreted and compiled code but also renders the evalhook mechanism

relatively useless. Various mixed strategies are also possible. All of these approaches

should produce the same results when executing a correct program but may produce

different results for incorrect programs. For example, the approaches may differ as

to when macro calls are expanded; macro definitions should not depend on the time

at which they are expanded. Implementors should document the evaluation strategy

for each implementation.

20.1. RunTime Evaluation of Forms

The function eval is the main user interface to the evaluator. Hooks are provided

for usersupplied debugging routines to obtain control during the execution of an

interpretive evaluator. The functions evalhook and applyhook provide alternative

interfaces to the evaluator mechanism for use by these debugging routines.

[Function]eval form

The form is evaluated in the current dynamic environment and a null lexical environ

ment. Whatever results from the evaluation is returned from the call to eval.

Note that when you write a call to eval two levels of evaluation occur on the

argument form you write. First the argument form is evaluated, as for arguments

487

488 COMMON LISP

to any function, by the usual argument evaluation mechanism (which involves an

implicit use of eval). Then the argument is passed to the eval function, where

another evaluation occurs. For example:

(eval (list ´cdr (car ´((quote (a . b)) c)))) ⇒ b

The argument form (list ´cdr (car ´((quote (a . b)) c))) is evaluated in the usual

way to produce the argument (cdr (quote (a . b))); this is then given to eval because

eval is being called explicitly, and eval evaluates its argument (cdr (quote (a . b)))

to produce b.

If all that is required for some application is to obtain the current dynamic value

of a given symbol, the function symbol-value may be more efficient than eval.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

[Variable]*evalhook*

[Variable]*applyhook*

If the value of *evalhook* is not nil, then eval behaves in a special way. The nonnil

value of *evalhook* should be a function that takes two arguments, a form and an

environment; this is called the eval hook function. When a form is to be evaluated

(any form at all, even a number or a symbol), whether implicitly or via an explicit

call to eval, no attempt is made to evaluate the form. Instead, the hook function

is invoked and is passed the form to be evaluated as its first argument. The hook

function is then responsible for evaluating the form; whatever is returned by the hook

function is assumed to be the result of evaluating the form.

The variable *applyhook* is similar to *evalhook* but is used when a function is

about to be applied to arguments. If the value of *applyhook* is not nil, then eval

behaves in a special way.

The nonnil value of *applyhook* should be a function that takes three arguments:
..

a function, a list of arguments, and an environment; this is called the apply hook

function.

X3J13 voted in January 1989 〈5〉 to revise the definition of *applyhook*. Its

value should be a function of two arguments, a function and a list of arguments; no

environment information is passed to an apply hook function.

This was simply a flaw in the first edition. Sorry about that.

When a function is about to be applied to a list of arguments, no attempt is made to

apply the function. Instead, the hook function is invoked and is passed the function

and the list of arguments as its first and second arguments. The hook function is

then responsible for evaluating the form; whatever is returned by the hook function is

assumed to be the result of evaluating the form. The apply hook function is used only

for application of ordinary functions within eval. It is not used for applications via

THE EVALUATOR 489

apply or funcall, for applications by such functions as map or reduce, or for invocation

of macroexpansion functions by either eval or macroexpand.

X3J13 voted in June 1988 〈90〉 to specify that the value of *macroexpand-hook*

is first coerced to a function before being called as the expansion interface hook.

This vote made no mention of *evalhook* or *applyhook*, but this may have been an

oversight.

A proposal was submitted to X3J13 in September 1989 to specify that the value

of *evalhook* or *applyhook* is first coerced to a function before being called. If this

proposal is accepted, the value of either variable may be nil, any other symbol, a

lambdaexpression, or any object of type function.

The last argument passed to either kind of hook function contains information about

the lexical environment in an implementationdependent format. These arguments

are suitable for the functions evalhook, applyhook, and macroexpand.

When either kind of hook function is invoked, both of the variables *evalhook* and

applyhook are rebound to the value nil around the invocation of the hook function.

This is so that the hook function will not be invoked recursively on evaluations and

applications that occur in the course of executing the code of the hook function. The

functions evalhook and applyhook are useful for performing recursive evaluations and

applications within the hook function.

The hook feature is provided as an aid to debugging. The step facility is imple

mented using this hook.

If a nonlocal exit causes a throw back to the top level of Lisp, perhaps because an

error could not be corrected, then *evalhook* and *applyhook* are automatically reset

to nil as a safety feature.

[Function]evalhook form evalhookfn applyhookfn &optional env

[Function]applyhook function args evalhookfn applyhookfn &optional env

The functions evalhook and applyhook are provided to make it easier to exploit the

hook feature.

In the case of evalhook, the form is evaluated. In the case of applyhook, the function

is applied to the list of arguments args. In either case, for the duration of the

operation the variable *evalhook* is bound to evalhookfn, and *applyhook* is bound

to applyhookfn. Furthermore, the env argument is used as the lexical environment for

the operation; env defaults to the null environment. The check for a hook function is

bypassed for the evaluation of the form itself (for evalhook) or for the application of

the function to the args itself (for applyhook), but not for subsidiary evaluations and

applications such as evaluations of subforms. It is this oneshot bypass that makes

evalhook and applyhook so useful.

490 COMMON LISP

X3J13 voted in January 1989 〈5〉 to eliminate the optional env parameter to

applyhook, because it is not (and cannot) be useful. Any function that can be ap

plied carries its own environment and does not need another environment to be

specified separately. This was a flaw in the first edition.

Here is an example of a very simple tracing routine that uses just the evalhook

feature.

(defvar *hooklevel* 0)

(defun hook (x)

(let ((*evalhook* ´eval-hook-function))

(eval x)))

(defun eval-hook-function (form &rest env)

(let ((*hooklevel* (+ *hooklevel* 1)))

(format *trace-output* "˜%˜V@TForm: ˜S"

(* *hooklevel* 2) form)

(let ((values (multiple-value-list

(evalhook form

#--´eval-hook-function

nil

env))))

(format *trace-output* "˜%˜V@TValue:˜{ ˜S˜}"

(* *hooklevel* 2) values)

(values-list values))))

Using these routines, one might see the following interaction:

(hook ´(cons (floor *print-base* 2) ´b))

Form: (CONS (FLOOR *PRINT-BASE* 2) (QUOTE B))

Form: (FLOOR *PRINT-BASE* 3)

Form: *PRINT-BASE*

Value: 10

Form: 3

Value: 3

Value: 3 1

Form: (QUOTE B)

Value: B

Value: (3 . B)

(3 . B)

THE EVALUATOR 491

[Function]constantp object

If the predicate constantp is true of an object, then that object, when considered as

a form to be evaluated, always evaluates to the same thing; it is a constant. This

includes selfevaluating objects such as numbers, characters, strings, bitvectors, and

keywords, as well as all constant symbols declared by defconstant, such as nil, t,

and pi. In addition, a list whose car is quote, such as (quote foo), is considered to be

a constant.

If constantp is false of an object, then that object, considered as a form, might or

might not always evaluate to the same thing.

20.2. The TopLevel Loop

Normally one interacts with Lisp through a “toplevel readevalprint loop,” so called

because it is the highest level of control and consists of an endless loop that reads an

expression, evaluates it, and prints the results. One has an effect on the state of the

Lisp system only by invoking actions that have side effects.

The precise nature of the toplevel loop for Common Lisp is purposely not rig

orously specified here so that implementors can experiment to improve the user

interface. For example, an implementor may choose to require lineatatime input,

or may provide a fancy editor or complex graphicsdisplay interface. An implementor

may choose to provide explicit prompts for input, or may choose (as MacLisp does)

not to clutter up the transcript with prompts.

The toplevel loop is required to trap all throws and recover gracefully. It is also

required to print all values resulting from evaluation of a form, perhaps on separate

lines. If a form returns zero values, as little as possible should be printed.

The following variables are maintained by the toplevel loop as a limited safety

net, in case the user forgets to save an interesting input expression or output value.

(Note that the names of some of these variables violate the convention that names of

global variables begin and end with an asterisk.) These are intended primarily for

user interaction, which is why they have short names. Use of these variables should

be avoided in programs.

[Variable]+

[Variable]++

[Variable]+++

While a form is being evaluated by the toplevel loop, the variable + is bound to the

previous form read by the loop. The variable ++ holds the previous value of + (that

is, the form evaluated two interactions ago), and +++ holds the previous value of ++.

492 COMMON LISP

[Variable]-

While a form is being evaluated by the toplevel loop, the variable - is bound to the

form itself; that is, it is the value about to be given to + once this interaction is done.

Notice of correction. In the first edition, the name of the variable -was inadvertently

omitted.

[Variable]*

[Variable]**

[Variable]***

While a form is being evaluated by the toplevel loop, the variable * is bound to

the result printed at the end of the last time through the loop; that is, it is the value

produced by evaluating the form in +. If several values were produced, * contains the

first value only; * contains nil if zero values were produced. The variable ** holds

the previous value of * (that is, the result printed two interactions ago), and *** holds

the previous value of **.

If the evaluation of + is aborted for some reason, then the values associated with *,

, and * are not updated; they are updated only if the printing of values is at least

begun (though not necessarily completed).

[Variable]/

[Variable]//

[Variable]///

While a form is being evaluated by the toplevel loop, the variable / is bound to a list

of the results printed at the end of the last time through the loop; that is, it is a list of

all values produced by evaluating the form in +. The value of * should always be the

same as the car of the value of /. The variable // holds the previous value of / (that

is, the results printed two interactions ago), and /// holds the previous value of //.

Therefore the value of ** should always be the same as the car of //, and similarly

for *** and ///.

If the evaluation of + is aborted for some reason, then the values associated with /,

//, and /// are not updated; they are updated only if the printing of values is at least

begun (though not necessarily completed).

As an example of the processing of these variables, consider the following possible

transcript, where > is a prompt by the toplevel loop for user input:

>(cons - -) ;Interaction 1

((CONS - -) CONS - -) ;Cute, huh?

THE EVALUATOR 493

>(values) ;Interaction 2

;Nothing to print

>(cons ´a ´b) ;Interaction 3

(A . B) ;There is a single value

>(hairy-loop)ˆG ;Interaction 4

#--#--#-- QUIT to top level. ;(User aborts the computation.)

>(floor 13 4) ;Interaction 5

3 ;There are two values

1

At this point we have:

+++ ⇒ (cons ´a ´b) *** ⇒ NIL /// ⇒ ()

++ ⇒ (hairy-loop) ** ⇒ (A . B) // ⇒ ((A . B))

+ ⇒ (floor 13 4) * ⇒ 3 / ⇒ (3 1)

21

Streams

Streams are objects that serve as sources or sinks of data. Character streams produce

or absorb characters; binary streams produce or absorb integers. The normal action

of a Common Lisp system is to read characters from a character input stream, parse

the characters as representations of Common Lisp data objects, evaluate each object

(as a form) as it is read, and print representations of the results of evaluation to an

output character stream.

Typically streams are connected to files or to an interactive terminal. Streams, being

Lisp objects, serve as the ambassadors of external devices by which input/output is

accomplished.

A stream, whether a character stream or a binary stream, may be inputonly, output

only, or bidirectional. What operations may be performed on a stream depends on

which of the six types of stream it is.

21.1. Standard Streams

There are several variables whose values are streams used by many functions in the

Lisp system. These variables and their uses are listed here. By convention, variables

that are expected to hold a stream capable of input have names ending with -input,

and variables that are expected to hold a stream capable of output have names ending

with -output. Variables expected to hold a bidirectional stream have names ending

with -io.

[Variable]*standard-input*

In the normal Lisp toplevel loop, input is read from *standard-input* (that is,

whatever stream is the value of the global variable *standard-input*). Many input

functions, including read and read-char, take a stream argument that defaults to

standard-input.

494

STREAMS 495

[Variable]*standard-output*

In the normal Lisp toplevel loop,output is sent to *standard-output* (that is, whatever

stream is the value of the global variable *standard-output*). Many output functions,

including print and write-char, take a stream argument that defaults to *standard-

output*.

[Variable]*error-output*

The value of *error-output* is a stream to which error messages should be sent.

Normally this is the same as *standard-output*, but *standard-output* might be

bound to a file and *error-output* left going to the terminal or to a separate file of

error messages.

[Variable]*query-io*

The value of *query-io* is a stream to be used when asking questions of the user.

The question should be output to this stream, and the answer read from it. When the

normal input to a program may be coming from a file, questions such as “Do you

really want to delete all of the files in your directory?” should nevertheless be sent

directly to the user; and the answer should come from the user, not from the data

file. For such purposes *query-io* should be used instead of *standard-input* and

standard-output. *query-io* is used by such functions as yes-or-no-p.

[Variable]*debug-io*

The value of *debug-io* is a stream to be used for interactive debugging purposes.

This is often the same as the value of *query-io*, but need not be.

[Variable]*terminal-io*

The value of *terminal-io* is ordinarily the stream that connects to the user’s console.

Typically, writing to this stream would cause the output to appear on a display screen,

for example, and reading from the stream would accept input from a keyboard.

It is intended that standard input functions such as read and read-char, when

used with this stream, would cause “echoing” of the input into the output side

of the stream. (The means by which this is accomplished are of course highly

implementationdependent.)

496 COMMON LISP

[Variable]*trace-output*

The value of *trace-output* is the stream on which the trace function prints its

output.

The variables *standard-input*, *standard-output*, *error-output*, *trace-

output*, *query-io*, and *debug-io* are initially bound to synonym streams that

pass all operations on to the stream that is the value of *terminal-io*. (See make-

synonym-stream.) Thus any operations performed on those streams will go to the

terminal.

X3J13 voted in January 1989 〈165〉 to replace the requirements of the preceding

paragraph with the following new requirements:

The seven standard stream variables, *standard-input*, *standard-output*, *query-

io*, *debug-io*, *terminal-io*, *error-output*, and *trace-output*, are initially

bound to open streams. (These will be called the standard initial streams.)

The streams that are the initial values of *standard-input*, *query-io*, *debug-io*,

and *terminal-io* must support input.

The streams that are the initial values of *standard-output*, *error-output*, *trace-

output*, *query-io*, *debug-io*, and *terminal-io* must support output.

None of the standard initial streams (including the one to which *terminal-io*

is initially bound) may be a synonym, either directly or indirectly, for any of the

standard stream variables except *terminal-io*. For example, the initial value of

trace-output may be a synonym stream for *terminal-io* but not a synonym stream

for *standard-output* or *query-io*. (These are examples of direct synonyms.) As

another example, *query-io* may be a twoway stream or echo stream whose input

component is a synonym for *terminal-io*, but its input component may not be

a synonym for *standard-input* or *debug-io*. (These are examples of indirect

synonyms.)

Any or all of the standard initial streams may be direct or indirect synonyms for

one or more common implementationdependent streams. For example, the standard

initial streams might all be synonym streams (or twoway or echo streams whose

components are synonym streams) to a pair of hidden terminal input and output

streams maintained by the implementation.

Part of the intent of these rules is to ensure that it is always safe to bind any standard

stream variable to the value of any other standard stream variable (that is, unworkable

circularities are avoided) without unduly restricting implementation flexibility.

No user program should ever change the value of *terminal-io*. A program that

wants (for example) to divert output to a file should do so by binding the value of

standard-output; that way error messages sent to *error-output* can still get to the

user by going through *terminal-io*, which is usually what is desired.

STREAMS 497

21.2. Creating New Streams

Perhaps the most important constructs for creating new streams are those that open

files; see with-open-file and open. The following functions construct streams without

reference to a file system.

[Function]make-synonym-stream symbol

make-synonym-stream creates and returns a synonym stream. Any operations on the

new stream will be performed on the stream that is then the value of the dynamic

variable named by the symbol. If the value of the variable should change or be bound,

then the synonym stream will operate on the new stream.

X3J13 voted in January 1989 〈167〉 to specify that the result of make-synonym-stream

is always a stream of type synonym-stream. Note that the type of a synonym stream is

always synonym-stream, regardless of the type of the stream for which it is a synonym.

[Function]make-broadcast-stream &rest streams

This returns a stream that works only in the output direction. Any output sent to this

stream will be sent to all of the streams given. The set of operations that may be

performed on the new stream is the intersection of those for the given streams. The

results returned by a stream operation are the values resulting from performing the

operation on the last stream in streams; the results of performing the operation on

all preceding streams are discarded. If no streams are given as arguments, then the

result is a “bit sink”; all output to the resulting stream is discarded.

X3J13 voted in January 1989 〈167〉 to specify that the result of make-broadcast-

stream is always a stream of type broadcast-stream.

[Function]make-concatenated-stream &rest streams

This returns a stream that works only in the input direction. Input is taken from the

first of the streams until it reaches endoffile; then that stream is discarded, and input

is taken from the next of the streams, and so on. If no arguments are given, the result

is a stream with no content; any input attempt will result in endoffile.

X3J13 voted in January 1989 〈167〉 to specify that the result of make-concatenated-

stream is always a stream of type concatenated-stream.

[Function]make-two-way-stream input-stream output-stream

This returns a bidirectional stream that gets its input from inputstream and sends its

output to outputstream.

498 COMMON LISP

X3J13 voted in January 1989 〈167〉 to specify that the result of make-two-way-stream

is always a stream of type two-way-stream.

[Function]make-echo-stream input-stream output-stream

This returns a bidirectional stream that gets its input from inputstream and sends its

output to outputstream. In addition, all input taken from inputstream is echoed to

outputstream.

X3J13 voted in January 1989 〈167〉 to specify that the result of make-echo-stream

is always a stream of type echo-stream.

X3J13 voted in January 1989 〈138〉 to clarify the interaction of read-char, unread-

char, and peek-char with echo streams. (See the descriptions of those functions for

details.)

X3J13 explicitly noted that the bidirectional streams that are the initial values

of *query-io*, *debug-io*, and *terminal-io*, even though they may have some

echoing behavior, conceptually are not necessarily the products of calls to make-echo-

stream and therefore are not subject to the new rules about echoing on echo streams.

Instead, these initial interactive streams may have implementationdependentechoing

behavior.

[Function]make-string-input-stream string &optional start end

This returns an input stream. The input stream will supply, in order, the characters

in the substring of string delimited by start and end; after the last character has been

supplied, the stream will then be at endoffile.

X3J13 voted in January 1989 〈167〉 to specify that the result of make-string-input-

stream is always a stream of type string-stream.

[Function]make-string-output-stream
...

This returns an output stream that will accumulate all output given it for the benefit

of the function get-output-stream-string.

X3J13 voted in June 1989 〈122〉 to let make-string-output-stream take an :element-

type argument.

[Function]make-string-output-stream &key :element-type

This returns an output stream that will accumulate all output given it for the benefit

of the function get-output-stream-string.

STREAMS 499

The :element-type argument specifies what characters must be accepted by the

created stream. If the :element-type argument is omitted, the created stream must

accept all characters.

X3J13 voted in January 1989 〈167〉 to specify that the result of make-string-output-

stream is always a stream of type string-stream.

[Function]get-output-stream-string string-output-stream

Given a stream produced by make-string-output-stream, this returns a string contain

ing all the characters output to the stream so far. The stream is then reset; thus each

call to get-output-stream-string gets only the characters since the last such call (or

the creation of the stream, if no such previous call has been made).

[Macro]with-open-stream (var stream) {declaration}∗ { form}∗

The form stream is evaluated and must produce a stream. The variable var is bound

with the stream as its value, and then the forms of the body are executed as an implicit

progn; the results of evaluating the last form are returned as the value of the with-open-

stream form. The stream is automatically closed on exit from the with-open-stream

form, no matter whether the exit is normal or abnormal; see close. The stream should

be regarded as having dynamic extent.

X3J13 voted in January 1989 〈167〉 to specify that the stream created by with-

open-stream is always of type file-stream.

[Macro]with-input-from-string (var string {keyword value}∗)
{declaration}∗ { form}∗

The body is executed as an implicit progn with the variable var bound to a character

input stream that supplies successive characters from the value of the form string.

with-input-from-string returns the results from the last form of the body.

The input stream is automatically closed on exit from the with-input-from-string

form, no matter whether the exit is normal or abnormal. The stream should be

regarded as having dynamic extent.

X3J13 voted in January 1989 〈167〉 to specify that the stream created by with-

input-from-string is always of type string-stream.

The following keyword options may be used:

:index

The form after the :index keyword should be a place acceptable to setf. If the

with-input-from-string form is exited normally, then the place will have stored

into it the index into the string indicating the first character not read (the length

500 COMMON LISP

of the string if all characters were used). The place is not updated as reading

progresses, but only at the end of the operation.

:start

The :start keyword takes an argument indicating, in the manner usual for sequence

functions, the beginning of a substring of string to be used.

:end

The :end keyword takes an argument indicating, in the manner usual for sequence

functions, the end of a substring of string to be used.

Here is an example of the use of with-input-from-string:

(with-input-from-string (s "Animal Crackers" :index j :start 6)

(read s)) ⇒ crackers

As a side effect, the variable j is set to 15.

The :start and :index keywords may both specify the same variable, which is a

pointer within the string to be advanced, perhaps repeatedly by some containing loop.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

...

[Macro]with-output-to-string (var [string]) {declaration}∗ { form}∗

The body is executed as an implicit progn with the variable var bound to a character

output stream. All output to that stream is saved in a string. This may be done in one

of two ways.

If no string argument is provided, then the value of with-output-from-string is a

string containing all the collected output.

If string is specified, it must be a string with a fill pointer; the output is incrementally

appended to the string, as if using vector-push-extend if the string is adjustable, and

otherwise as if using vector-push. In this case with-output-to-string returns the

results from the last form of the body.

In either case, the output stream is automatically closed on exit from the with-

output-from-string form, no matter whether the exit is normal or abnormal. The

stream should be regarded as having dynamic extent.

X3J13 voted in June 1989 〈122〉 to let with-output-to-string take an :element-type

argument.

STREAMS 501

[Macro]with-output-to-string (var [string [:element-type type]])

{declaration}∗ { form}∗

One may specify nil instead of a string as the string and use the :element-type

argument to specify what characters must be accepted by the created stream. If no

string argument is provided, or if it is nil and no :element-type is specified, the

created stream must accept all characters.

X3J13 voted in October 1988 〈185〉 to specify that if string is specified, it must be

a string with a fill pointer; the output is incrementally appended to the string (as if by

use of vector-push-extend).

In this way output cannot be accidentally lost. This change makes with-output-

to-string behave in the same way that format does when given a string as its first

argument.

X3J13 voted in January 1989 〈167〉 to specify that the stream created by with-

output-to-string is always of type string-stream.

X3J13 voted in January 1989 〈121〉 to restrict user side effects; see section 7.9.

21.3. Operations on Streams

This section contains discussion of only those operations that are common to all

streams. Input and output is rather complicated and is discussed separately in chapter

22. The interface between streams and the file system is discussed in chapter 23.

[Function]streamp object

streamp is true if its argument is a stream, and otherwise is false.

(streamp x) ≡ (typep x ´stream)

X3J13 voted in January 1989 〈15〉 to specify that streamp is unaffected by whether

its argument, if a stream, is open or closed. In either case it returns true.

[Function]open-stream-p stream

X3J13 voted in January 1989 〈167〉 to add the predicate open-stream-p. It is true if

its argument (which must be a stream) is open, and otherwise is false.

A stream is always created open; it remains open until closed with the close

function. The macros with-open-stream, with-input-from-string, with-output-to-

string, and with-open-file automatically close the created stream as control leaves

their bodies, in effect imposing dynamic extent on the openness of the stream.

502 COMMON LISP

[Function]input-stream-p stream

This predicate is true if its argument (which must be a stream) can handle input

operations, and otherwise is false.

[Function]output-stream-p stream

This predicate is true if its argument (which must be a stream) can handle output

operations, and otherwise is false.

[Function]stream-element-type stream

A type specifier is returned to indicate what objects may be read from or written to

the argument stream, which must be a stream. Streams created by open will have an

element type restricted to a subset of character or integer, but in principle a stream

may conduct transactions using any Lisp objects.

[Function]close stream &key :abort

The argument must be a stream. The stream is closed. No further input/output

operations may be performed on it. However, certain inquiry operations may still be

performed, and it is permissible to close an already closed stream.

X3J13 voted in January 1989 〈15〉 and revised the vote in March 1989 to specify

that if close is called on an open stream, the stream is closed and t is returned;

but if close is called on a closed stream, it succeeds without error and returns an

unspecified value. (The rationale for not specifying the value returned for a closed

stream is that in some implementations closing certain streams does not really have

an effect on them—for example, closing the *terminal-io* stream might not “really”

close it—and it is not desirable to force such implementations to keep otherwise

unnecessary state. Portable programs will of course not rely on such behavior.)

X3J13 also voted in January 1989 to specify exactly which inquiry functions may

be applied to closed streams:

streamp pathname-host namestring

pathname pathname-device file-namestring

truename pathname-directory directory-namestring

merge-pathnames pathname-name host-namestring

open pathname-type enough-namestring

probe-file pathname-version directory

STREAMS 503

See the individual descriptions of these functions for more information on how they

operate on closed streams.

X3J13 voted in January 1989 〈14〉 to clarify the effect of closing various kinds of

streams. First some terminology:

. A composite stream is one that was returned by a call to make-synonym-stream,

make-broadcast-stream, make-concatenated-stream, make-two-way-stream, or make-

echo-stream.

. The constituents of a composite stream are the streams that were given as arguments

to the function that constructed it or, in the case of make-synonym-stream, the stream

that is the symbol-value of the symbol that was given as an argument. (The

constituent of a synonym stream may therefore vary over time.)

. A constructed stream is either a composite stream or one returned by a call to

make-string-input-stream, make-string-output-stream, with-input-from-string, or

with-output-to-string.

The effect of applying close to a constructed stream is to close that stream only.

No input/output operations are permitted on the constructed stream once it has been

closed (though certain inquiry functions are still permitted, as described above).

Closing a composite stream has no effect on its constituents; any constituents that

are open remain open.

If a stream created by make-string-output-stream is closed, the result of then

applying get-output-stream-string to the stream is unspecified.

If the :abort parameter is not nil (it defaults to nil), it indicates an abnormal

termination of the use of the stream. An attempt is made to clean up any side effects

of having created the stream in the first place. For example, if the stream performs

output to a file that was newly created when the stream was created, then if possible

the file is deleted and any previously existing file is not superseded.

X3J13 voted in January 1989 〈167〉 to add the following accessor functions for

obtaining information about streams.

[Function]broadcast-stream-streams broadcast-stream

The argument must be of type broadcast-stream. A list of the constituent output

streams (whether open or not) is returned.

[Function]concatenated-stream-streams concatenated-stream

The argument must be of type concatenated-stream. A list of constituent streams

(whether open or not) is returned. This list represents the ordered set of input streams

504 COMMON LISP

from which the concatenated stream may yet read; the stream from which it is

currently reading is first in the list. The list may be empty if no more streams remain

to be read.

[Function]echo-stream-input-stream echo-stream

[Function]echo-stream-output-stream echo-stream

The argument must be of type echo-stream. The function echo-stream-input-stream re

turns the constituent input stream; echo-stream-output-stream returns the constituent

output stream.

[Function]synonym-stream-symbol synonym-stream

The argument must be of type synonym-stream. This function returns the symbol for

whose value the synonymstream is a synonym.

[Function]two-way-stream-input-stream two-way-stream

[Function]two-way-stream-output-stream two-way-stream

The argument must be of type two-way-stream. The function two-way-stream-input-

stream returns the constituent input stream; two-way-stream-output-stream returns the

constituent output stream.

[Function]interactive-stream-p stream

X3J13 voted in June 1989 〈168〉 to add the predicate interactive-stream-p, which

returns t if the stream is interactive and otherwise returns nil. A type-error error is

signalled if the argument is not of type stream.

The precise meaning of interactive-stream-p is implementationdependent and

may depend on the underlying operating system. The intent is to distinguish between

interactive and batch (background, commandfile) operations. Some characteristics

that might distinguish a stream as interactive:

. The stream is connected to a person (or the equivalent) in such a way that the

program can prompt for information and expect to receive input that might depend

on the prompt.

. The program is expected to prompt for input and to support “normal input editing

protocol” for that operating environment.

. A call to read-char might hang waiting for the user to type something rather than

quickly returning a character or an endoffile indication.

STREAMS 505

The value of *terminal-io* might or might not be interactive.

[Function]stream-external-format stream

X3J13 voted in June 1989 〈122〉 to add the function stream-external-format, which

returns a specifier for the implementationrecognized scheme used for representing

characters in the argument stream. See the :external-format argument to open.

22

Input /Output

Common Lisp provides a rich set of facilities for performing input/output. All

input/output operations are performed on streams of various kinds. This chapter is

devoted to stream data transfer operations. Streams are discussed in chapter 21, and

ways of manipulating files through streams are discussed in chapter 23.

While there is provision for reading and writing binary data, most of the I/O

operations in Common Lisp read or write characters. There are simple primitives

for reading and writing single characters or lines of data. The format function can

perform complex formatting of output data, directed by a control string in manner

similar to a Fortran FORMAT statement or a PL/I PUT EDIT statement. The most useful

I/O operations, however, read and write printed representations of arbitrary Lisp

objects.

22.1. Printed Representation of Lisp Objects

Lisp objects in general are not text strings but complex data structures. They have

very different properties from text strings as a consequence of their internal repre

sentation. However, to make it possible to get at and talk about Lisp objects, Lisp

provides a representation of most objects in the form of printed text; this is called the

printed representation, which is used for input/output purposes and in the examples

throughout this book. Functions such as print take a Lisp object and send the char

acters of its printed representation to a stream. The collection of routines that does

this is known as the (Lisp) printer. The read function takes characters from a stream,

interprets them as a printed representation of a Lisp object, builds that object, and

returns it; the collection of routines that does this is called the (Lisp) reader.

Ideally, one could print a Lisp object and then read the printed representation

back in, and so obtain the same identical object. In practice this is difficult and for

some purposes not even desirable. Instead, reading a printed representation produces

506

INPUT/OUTPUT 507

an object that is (with obscure technical exceptions) equal to the originally printed

object.

Most Lisp objects have more than one possible printed representation. For example,

the integer twentyseven can be written in any of these ways:

27 27. #--o33 #--x1B #--b11011 #--.(* 3 3 3) 81/3

A list of two symbols A and B can be printed in many ways:

(A B) (a b) (a b) (\A |B|)

(|\A|

B

)

The last example, which is spread over three lines, may be ugly, but it is legitimate. In

general, wherever whitespace is permissible in a printed representation, any number

of spaces and newlines may appear.

When print produces a printed representation, it must choose arbitrarily from

among many possible printed representations. It attempts to choose one that is

readable. There are a number of global variables that can be used to control the

actions of print, and a number of different printing functions.

This section describes in detail what is the standard printed representation for any

Lisp object and also describes how read operates.

22.1.1. What the Read Function Accepts

The purpose of the Lisp reader is to accept characters, interpret them as the printed

representation of a Lisp object, and construct and return such an object. The reader

cannot accept everything that the printer produces; for example, the printed represen

tations of compiled code objects cannot be read in. However, the reader has many

features that are not used by the output of the printer at all, such as comments, alterna

tive representations, and convenient abbreviations for frequently used but unwieldy

constructs. The reader is also parameterized in such a way that it can be used as a

lexical analyzer for a more general userwritten parser.

The reader is organized as a recursivedescent parser. Broadly speaking, the

reader operates by reading a character from the input stream and treating it in one

of three ways. Whitespace characters serve as separators but are otherwise ignored.

Constituent and escape characters are accumulated to make a token, which is then

interpreted as a number or symbol. Macro characters trigger the invocation of func

tions (possibly usersupplied) that can perform arbitrary parsing actions, including

recursive invocation of the reader.

508 COMMON LISP

More precisely, when the reader is invoked, it reads a single character from the

input stream and dispatches according to the syntactic type of that character. Every

character that can appear in the input stream must be of exactly one of the following

kinds: illegal, whitespace, constituent, single escape, multiple escape, or macro.

Macro characters are further divided into the types terminating and nonterminating

(of tokens). (Note that macro characters have nothing whatever to do with macros in

their operation. There is a superficial similarity in that macros allow the user to extend

the syntax of Common Lisp at the level of forms, while macro characters allow the

user to extend the syntax at the level of characters.) Constituents additionally have

one or more attributes, the most important of which is alphabetic; these attributes are

discussed further in section 22.1.2.

The parsing of Common Lisp expressions is discussed in terms of these syntactic

character types because the types of individual characters are not fixed but may

be altered by the user (see set-syntax-from-char and set-macro-character). The

characters of the standard character set initially have the syntactic types shown in

table 221. Note that the brackets, braces, question mark, and exclamation point (that

is, [,], {, }, ?, and !) are normally defined to be constituents, but they are not used

for any purpose in standard Common Lisp syntax and do not occur in the names of

builtin Common Lisp functions or variables. These characters are explicitly reserved

to the user. The primary intent is that they be used as macro characters; but a user

might choose, for example, to make ! be a single escape character (as it is in Portable

Standard Lisp).

The algorithm performed by the Common Lisp reader is roughly as follows:

1. If at end of file, perform endoffile processing (as specified by the caller of the

read function). Otherwise, read one character from the input stream, call it x, and

dispatch according to the syntactic type of x to one of steps 2 to 7.

2. If x is an illegal character, signal an error.

3. If x is a whitespace character, then discard it and go back to step 1.

4. If x is a macro character (at this point the distinction between terminating and

nonterminating macro characters does not matter), then execute the function

associated with that character. The function may return zero values or one value

(see values).

The macrocharacter function may of course read characters from the input

stream; if it does, it will see those characters following the macro character.

The function may even invoke the reader recursively. This is how the macro char

acter (constructs a list: by invoking the reader recursively to read the elements

of the list.

INPUT/OUTPUT 509

Table 221: Standard Character Syntax Types

〈tab〉 whitespace 〈page〉 whitespace 〈newline〉 whitespace

〈space〉 whitespace @ constituent ` terminating macro

! constituent * A constituent a constituent

" terminating macro B constituent b constituent

#-- nonterminating macro C constituent c constituent

$ constituent D constituent d constituent

% constituent E constituent e constituent

& constituent F constituent f constituent

´ terminating macro G constituent g constituent

(terminating macro H constituent h constituent

) terminating macro I constituent i constituent

* constituent J constituent j constituent

+ constituent K constituent k constituent

, terminating macro L constituent l constituent

- constituent M constituent m constituent

. constituent N constituent n constituent

/ constituent O constituent o constituent

0 constituent P constituent p constituent

1 constituent Q constituent q constituent

2 constituent R constituent r constituent

3 constituent S constituent s constituent

4 constituent T constituent t constituent

5 constituent U constituent u constituent

6 constituent V constituent v constituent

7 constituent W constituent w constituent

8 constituent X constituent x constituent

9 constituent Y constituent y constituent

: constituent Z constituent z constituent

; terminating macro [constituent * { constituent *

< constituent \ single escape | multiple escape

−− constituent] constituent * } constituent *

> constituent ˆ constituent ˜ constituent

? constituent * _ constituent 〈rubout〉 constituent

〈backspace〉 constituent 〈return〉 whitespace 〈linefeed〉 whitespace

The characters marked with an asterisk are initially constituents but are reserved to the user

for use as macro characters or for any other desired purpose.

510 COMMON LISP

If one value is returned, then return that value as the result of the read operation;

the algorithm is done. If zero values are returned, then go back to step 1.

5. If x is a single escape character (normally \), then read the next character and call

it y (but if at end of file, signal an error instead). Ignore the usual syntax of y and

pretend it is a constituent whose only attribute is alphabetic.

(If y is a lowercase character, leave it alone; do not replace it with the correspond
...

ing uppercase character.)

For the purposes of readtable-case, y is not replaceable.

Use y to begin a token, and go to step 8.

6. If x is a multiple escape character (normally |), then begin a token (initially

containing no characters) and go to step 9.

7. If x is a constituent character, then it begins an extended token. After the entire

token is read in, it will be interpreted either as representing a Lisp object such as

a symbol or number (in which case that object is returned as the result of the read

operation), or as being of illegal syntax (in which case an error is signaled).

If x is a lowercase character, replace it with the corresponding uppercase character.
...

X3J13 voted in June 1989 〈150〉 to introduce readtable-case. Consequently,

the preceding sentence should be ignored. The case of x should not be altered;

instead, x should be regarded as replaceable.

Use x to begin a token, and go on to step 8.

8. (At this point a token is being accumulated,and an even number of multiple escape

characters have been encountered.) If at end of file, go to step 10. Otherwise,

read a character (call it y), and perform one of the following actions according to

its syntactic type:

. If y is a constituent or nonterminating macro, then do the following.

If y is a lowercase character, replace it with the corresponding uppercase
...

character.

X3J13 voted in June 1989 〈150〉 to introduce readtable-case. Consequently,

the preceding sentence should be ignored. The case of y should not be altered;

instead, y should be regarded as replaceable.

Append y to the token being built, and repeat step 8.

. If y is a single escape character, then read the next character and call it z (but if

at end of file, signal an error instead). Ignore the usual syntax of z and pretend

it is a constituent whose only attribute is alphabetic.

...

INPUT/OUTPUT 511

(If z is a lowercase character, leave it alone; do not replace it with the corre
...

sponding uppercase character.)

For the purposes of readtable-case, z is not replaceable.

Append z to the token being built, and repeat step 8.

. If y is a multiple escape character, then go to step 9.

. If y is an illegal character, signal an error.

. If y is a terminating macro character, it terminates the token. First “unread”

the character y (see unread-char), then go to step 10.

. If y is a whitespace character, it terminates the token. First “unread” y if

appropriate (see read-preserving-whitespace), then go to step 10.

9. (At this point a token is being accumulated, and an odd number of multiple escape

characters have been encountered.) If at end of file, signal an error. Otherwise,

read a character (call it y), and perform one of the following actions according to

its syntactic type:

. If y is a constituent, macro, or whitespace character, then ignore the usual

syntax of that character and pretend it is a constituent whose only attribute is

alphabetic.

(If y is a lowercase character, leave it alone; do not replace it with the corre
..

sponding uppercase character.)

For the purposes of readtable-case, y is not replaceable.

Append y to the token being built, and repeat step 9.

. If y is a single escape character, then read the next character and call it z (but if

at end of file, signal an error instead). Ignore the usual syntax of z and pretend

it is a constituent whose only attribute is alphabetic.

(If z is a lowercase character, leave it alone; do not replace it with the corre
...

sponding uppercase character.)

For the purposes of readtable-case, z is not replaceable.

Append z to the token being built, and repeat step 9.

. If y is a multiple escape character, then go to step 8.

. If y is an illegal character, signal an error.

10. An entire token has been accumulated.

512 COMMON LISP

X3J13 voted in June 1989 〈150〉 to introduce readtable-case. If the accumulated

token is to be interpreted as a symbol, any case conversion of replaceable charac

ters should be performed at this point according to the value of the readtable-case

slot of the current readtable (the value of *readtable*).

Interpret the token as representing a Lisp object and return that object as the result

of the read operation, or signal an error if the token is not of legal syntax.

X3J13 voted in March 1989 〈11〉 to specify that implementationdefinedattributes

may be removed from the characters of a symbol token when constructing the

print name. It is implementationdependent which attributes are removed.

As a rule, a single escape character never stands for itself but always serves to

cause the following character to be treated as a simple alphabetic character. A single

escape character can be included in a token only if preceded by another single escape

character.

A multiple escape character also never stands for itself. The characters between a

pair of multiple escape characters are all treated as simple alphabetic characters, ex

cept that single escape and multiple escape characters must nevertheless be preceded

by a single escape character to be included.

Compatibility note: In MacLisp, the | character is implemented as a macro character that

reads characters up to the next unescaped | and then makes a token; no characters are ever read

beyond the second | of a matching pair. In Common Lisp, the second | does not terminate

the token being read but merely reverts to the ordinary (rather than multipleescape) mode of

token accumulation. This results in some differences in the way certain character sequences

are interpreted. For example, the sequence |foo||bar| would be read in MacLisp as two

distinct tokens, |foo| and |bar|, whereas in Common Lisp it would be treated as a single

token equivalent to |foobar|. The sequence |foo|bar|baz| would be read in MacLisp as three

distinct tokens, |foo|, bar, and |baz|, whereas in Common Lisp it would be treated as a single

token equivalent to |fooBARbaz|; note that the middle three lowercase letters are converted to

uppercase letters as they do not fall within a matching pair of vertical bars.

One reason for the different treatment of | in Common Lisp lies in the syntax for package

qualified symbol names. A sequence such as |foo:bar| ought to be interpreted as a symbol

whose name is foo:bar; the colon should be treated as a simple alphabetic character because it

lies within a pair of vertical bars. The symbol |bar| within the package |foo| can be notated

not as |foo:bar| but as |foo|:|bar|; the colon can serve as a package marker because it falls

outside the vertical bars, and yet the notation is treated as a single token thanks to the new

rules adopted in Common Lisp.

In MacLisp, the parentheses are treated as additional character types. In Common Lisp they

are simply macro characters, as described in section 22.1.3.

What MacLisp calls “single character objects” (tokens of type single) are not provided for

explicitly in Common Lisp. They can be viewed as simply a kind of macro character. That is,

the effect of

INPUT/OUTPUT 513

(setsyntax ´$ ´single nil)

(setsyntax ´% ´single nil)

in MacLisp can be achieved in Common Lisp by

(defun single-macro-character (stream char)

(declare (ignore stream))

(intern (string char)))

(set-macro-character ´$ #--´single-macro-character)

(set-macro-character ´% #--´single-macro-character)

22.1.2. Parsing of Numbers and Symbols

When an extended token is read, it is interpreted as a number or symbol. In general,

the token is interpreted as a number if it satisfies the syntax for numbers specified in

table 222; this is discussed in more detail below.

The characters of the extended token may serve various syntactic functions as

shown in table 223, but it must be remembered that any character included in a token

under the control of an escape character is treated as alphabetic rather than according

to the attributes shown in the table. One consequence of this rule is that a whitespace,

macro, or escape character will always be treated as alphabetic within an extended

token because such a character cannot be included in an extended token except under

the control of an escape character.

To allow for extensions to the syntax of numbers, a syntax for potential numbers

is defined in Common Lisp that is more general than the actual syntax for numbers.

Any token that is not a potential number and does not consist entirely of dots will

always be taken to be a symbol, now and in the future; programs may rely on this fact.

Any token that is a potential number but does not fit the actual number syntax defined

below is a reserved token and has an implementationdependent interpretation; an

implementation may signal an error, quietly treat the token as a symbol, or take some

other action. Programmers should avoid the use of such reserved tokens. (A symbol

whose name looks like a reserved token can always be written using one or more

escape characters.)

Just as bignum is the standard term used by Lisp implementors for very large

integers, and flonum (rhymes with “low hum”) refers to a floatingpoint number,

the term potnum has been used widely as an abbreviation for “potential number.”

“Potnum” rhymes with “hot rum.”

514 COMMON LISP

Table 222: Actual Syntax of Numbers

number ::= integer | ratio | floatingpointnumber

integer ::= [sign] {digit}+ [decimalpoint]

ratio ::= [sign] {digit}+ / {digit}+

floatingpointnumber ::= [sign] {digit}∗ decimalpoint {digit}+ [exponent]

| [sign] {digit}+ [decimalpoint {digit}∗] exponent

sign ::= + | -
decimalpoint ::= .

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
exponent ::= exponentmarker [sign] {digit}+

exponentmarker ::= e | s | f | d | l | E | S | F | D | L

A token is a potential number if it satisfies the following requirements:

. It consists entirely of digits, signs (+ or -), ratio markers (/), decimal points (.),

extension characters (ˆ or _), and number markers. (A number marker is a letter.

Whether a letter may be treated as a number marker depends on context, but no

letter that is adjacent to another letter may ever be treated as a number marker.

Floatingpoint exponent markers are instances of number markers.)

. It contains at least one digit. (Letters may be considered to be digits, depending

on the value of *read-base*, but only in tokens containing no decimal points.)

. It begins with a digit, sign, decimal point, or extension character.

. It does not end with a sign.

As examples, the following tokens are potential numbers, but they are not actually

numbers as defined below, and so are reserved tokens. (They do indicate some

interesting possibilities for future extensions.)

1b5000 777777q 1.7J -3/4+6.7J 12/25/83

27ˆ19 3ˆ4/5 6//7 3.1.2.6 ˆ-43ˆ
3.141_592_653_589_793_238_4 -3.7+2.6i-6.17j+19.6k

The following tokens are not potential numbers but are always treated as symbols:

/ /5 + 1+ 1-

foo+ ab.cd _ ˆ ˆ/-

INPUT/OUTPUT 515

Table 223: Standard Constituent Character Attributes

! alphabetic 〈page〉 illegal 〈backspace〉 illegal

" alphabetic * 〈return〉 illegal * 〈tab〉 illegal *

#-- alphabetic * 〈space〉 illegal * 〈newline〉 illegal *

$ alphabetic 〈rubout〉 illegal 〈linefeed〉 illegal *

% alphabetic . alphabetic, dot, decimal point

& alphabetic + alphabetic, plus sign

´ alphabetic * - alphabetic, minus sign

(alphabetic * * alphabetic

) alphabetic * / alphabetic, ratio marker

, alphabetic * @ alphabetic

0 alphadigit A, a alphadigit

1 alphadigit B, b alphadigit

2 alphadigit C, c alphadigit

3 alphadigit D, d alphadigit, doublefloat exponent marker

4 alphadigit E, e alphadigit, float exponent marker

5 alphadigit F, f alphadigit, singlefloat exponent marker

6 alphadigit G, g alphadigit

7 alphadigit H, h alphadigit

8 alphadigit I, i alphadigit

9 alphadigit J, j alphadigit

: package marker K, k alphadigit

; alphabetic * L, l alphadigit, longfloat exponent marker

< alphabetic M, m alphadigit

−− alphabetic N, n alphadigit

> alphabetic O, o alphadigit

? alphabetic P, p alphadigit

[alphabetic Q, q alphadigit

\ alphabetic * R, r alphadigit

] alphabetic S, s alphadigit, shortfloat exponent marker

ˆ alphabetic T, t alphadigit
_ alphabetic U, u alphadigit

` alphabetic * V, v alphadigit

{ alphabetic W, w alphadigit

| alphabetic * X, x alphadigit

} alphabetic Y, y alphadigit

˜ alphabetic Z, z alphadigit

These interpretations apply only to characters whose syntactic type is constituent.
Entries marked with an asterisk are normally shadowed because the characters are of
syntactic type whitespace, macro, single escape, or multiple escape. An alphadigit
character is interpreted as a digit if it is a valid digit in the radix specified by *read-

base*; otherwise it is alphabetic. Characters with an illegal attribute can never appear
in a token except under the control of an escape character.

516 COMMON LISP

The following tokens are potential numbers if the value of *read-base* is 16 (an

abnormal situation), but they are always treated as symbols if the value of *read-

base* is 10 (the usual value):

bad-face 25-dec-83 a/b fad_cafe fˆ

It is possible for there to be an ambiguity as to whether a letter should be treated as

a digit or as a number marker. In such a case, the letter is always treated as a digit

rather than as a number marker.

Note that the printed representation for a potential number may not contain any

escape characters. An escape character robs the following character of all syntactic

qualities, forcing it to be strictly alphabetic and therefore unsuitable for use in a

potential number. For example, all of the following representations are interpreted

as symbols, not numbers:

\256 25\64 1.0\E6 |100| 3\.14159 |3/4| 3\/4 5||

In each case, removing the escape character(s) would allow the token to be treated as

a number.

If a potential number can in fact be interpreted as a number according to the BNF

syntax in table 222, then a number object of the appropriate type is constructed

and returned. It should be noted that in a given implementation it may be that not

all tokens conforming to the actual syntax for numbers can actually be converted

into number objects. For example, specifying too large or too small an exponent

for a floatingpoint number may make the number impossible to represent in the

implementation. Similarly, a ratio with denominator zero (such as -35/000) cannot

be represented in any implementation. In any such circumstance where a token with

the syntax of a number cannot be converted to an internal number object, an error is

signaled. (On the other hand, an error must not be signaled for specifying too many

significant digits for a floatingpoint number; an appropriately truncated or rounded

value should be produced.)

There is an omission in the syntax of numbers as described in table 222, in that

the syntax does not account for the possible use of letters as digits. The radix used

for reading integers and ratios is normally decimal. However, this radix is actually

determined by the value of the variable *read-base*, whose initial value is 10. *read-

base* may take on any integral value between 2 and 36; let this value be n. Then

a token x is interpreted as an integer or ratio in base n if it could be properly so

interpreted in the syntax #--nRx (see section 22.1.4). So, for example, if the value of

read-base is 16, then the printed representation

(a small face in a bad place)

INPUT/OUTPUT 517

would be interpreted as if the following representation had been read with *read-base*

set to 10:

(10 small 64206 in 10 2989 place)

because four of the seven tokens in the list can be interpreted as hexadecimal numbers.

This facility is intended to be used in reading files of data that for some reason contain

numbers not in decimal radix; it may also be used for reading programs written in

Lisp dialects (such as MacLisp) whose default number radix is not decimal. Non

decimal constants in Common Lisp programs or portable Common Lisp data files

should be written using #--O, #--X, #--B, or #--nR syntax.

When *read-base* has a value greater than 10, an ambiguity is introduced into the

actual syntax for numbers because a letter can serve as either a digit or an exponent

marker; a simple example is 1E0 when the value of *read-base* is 16. The ambiguity

is resolved in accordance with the general principle that interpretation as a digit is

preferred to interpretation as a number marker. The consequence in this case is that

if a token can be interpreted as either an integer or a floatingpoint number, then it is

taken to be an integer.

If a token consists solely of dots (with no escape characters), then an error is

signaled, except in one circumstance: if the token is a single dot and occurs in a

situation appropriate to “dotted list” syntax, then it is accepted as a part of such

syntax. Signaling an error catches not only misplaced dots in dotted list syntax but

also lists that were truncated by *print-length* cutoff, because such lists end with a

threedot sequence (...). Examples:

(a . b) ;A dotted pair of a and b

(a.b) ;A list of one element, the symbol named a.b

(a. b) ;A list of two elements a. and b

(a .b) ;A list of two elements a and .b

(a \. b) ;A list of three elements a, ., and b

(a |.| b) ;A list of three elements a, ., and b

(a \... b) ;A list of three elements a, ..., and b

(a |...| b) ;A list of three elements a, ..., and b

(a b . c) ;A dotted list of a and b with c at the end

.iot ;The symbol whose name is .iot

(. b) ;Illegal; an error is signaled

(a .) ;Illegal; an error is signaled

(a .. b) ;Illegal; an error is signaled

(a . . b) ;Illegal; an error is signaled

(a b c ...) ;Illegal; an error is signaled

518 COMMON LISP

In all other cases, the token is construed to be the name of a symbol. If there are

any package markers (colons) in the token, they divide the token into pieces used to

control the lookup and creation of the symbol.

If there is a single package marker, and it occurs at the beginning of the token, then
...

the token is interpreted as a keyword, that is, a symbol in the keyword package. The

part of the token after the package marker must not have the syntax of a number.

If there is a single package marker not at the beginning or end of the token, then it

divides the token into two parts. The first part specifies a package; the second part

is the name of an external symbol available in that package. Neither of the two parts

may have the syntax of a number.

If there are two adjacent package markers not at the beginning or end of the

token, then they divide the token into two parts. The first part specifies a package;

the second part is the name of a symbol within that package (possibly an internal

symbol). Neither of the two parts may have the syntax of a number.

X3J13 voted in March 1988 〈16〉 to clarify that, in the situations described in

the preceding three paragraphs, the restriction on the syntax of the parts should be

strengthened: none of the parts may have the syntax of even a potential number. To

kens such as :3600, :1/2, and editor:3.14159 were already ruled out; this clarification

further declares that such tokens as :2ˆ3, compiler:1.7J, and Christmas:12/25/83 are

also in error and therefore should not be used in portable programs. Implementations

may differ in their treatment of such packagemarked potential numbers.

If a symbol token contains no package markers, then the entire token is the name

of the symbol. The symbol is looked up in the default package, which is the value of

the variable *package*.

All other patterns of package markers, including the cases where there are more

than two package markers or where a package marker appears at the end of the token,

at present do not mean anything in Common Lisp (see chapter 11). It is therefore

currently an error to use such patterns in a Common Lisp program. The valid patterns

for tokens may be summarized as follows:

nnnnn a number

xxxxx a symbol in the current package

:xxxxx a symbol in the keyword package

ppppp:xxxxx an external symbol in the ppppp package

ppppp::xxxxx a (possibly internal) symbol in the ppppp package

where nnnnn has the syntax of a number, and xxxxx and ppppp do not have the syntax

of a number.

In accordance with the X3J13 decision noted above 〈16〉, xxxxx and ppppp may

not have the syntax of even a potential number.

INPUT/OUTPUT 519

[Variable]*read-base*

The value of *read-base* controls the interpretation of tokens by read as being integers

or ratios. Its value is the radix in which integers and ratios are to be read; the value

may be any integer from 2 to 36 (inclusive) and is normally 10 (decimal radix). Its

value affects only the reading of integers and ratios. In particular, floatingpoint

numbers are always read in decimal radix. The value of *read-base* does not affect

the radix for rational numbers whose radix is explicitly indicated by #--O, #--X, #--B, or #--nR

syntax or by a trailing decimal point.

Care should be taken when setting *read-base* to a value larger than 10, because

tokens that would normally be interpreted as symbols may be interpreted as numbers

instead. For example, with *read-base* set to 16 (hexadecimal radix), variables with

names such as a, b, f, bad, and face will be treated by the reader as numbers (with

decimal values 10, 11, 15, 2989, and 64206, respectively). The ability to alter the

input radix is provided in Common Lisp primarily for the purpose of reading data

files in special formats, rather than for the purpose of altering the default radix in

which to read programs. The user is strongly encouraged to use #--O, #--X, #--B, or #--nR

syntax when notating nondecimal constants in programs.

Compatibility note: This variable corresponds to the variable called ibase in MacLisp and to

the function called radix in Interlisp.

[Variable]*read-suppress*

When the value of *read-suppress* is nil, the Lisp reader operates normally. When it

is not nil, then most of the interesting operations of the reader are suppressed; input

characters are parsed, but much of what is read is not interpreted.

The primary purpose of *read-suppress* is to support the operation of the read

time conditional constructs #--+ and #--- (see section 22.1.4). It is important for these

constructs to be able to skip over the printed representation of a Lisp expression

despite the possibility that the syntax of the skipped expression may not be entirely

legal for the current implementation; this is because a primary application of #--+ and

#--- is to allow the same program to be shared among several Lisp implementations

despite small incompatibilities of syntax.

A nonnil value of *read-suppress* has the following specific effects on the Com

mon Lisp reader:

. All extended tokens are completely uninterpreted. It matters not whether the token

looks like a number, much less like a valid number; the pattern of package markers

also does not matter. An extended token is simply discarded and treated as if

it were nil; that is, reading an extended token when *read-suppress* is nonnil

520 COMMON LISP

simply returns nil. (One consequence of this is that the error concerning improper

dottedlist syntax will not be signaled.)

. Any standard #-- macrocharacter construction that requires, permits, or disallows

an infix numerical argument, such as #--nR, will not enforce any constraint on the

presence, absence, or value of such an argument.

. The #--\ construction always produces the value nil. It will not signal an error even

if an unknown character name is seen.

. Each of the #--B, #--O, #--X, and #--R constructions always scans over a following token

and produces the value nil. It will not signal an error even if the token does not

have the syntax of a rational number.

. The #--* construction always scans over a following token and produces the value

nil. It will not signal an error even if the token does not consist solely of the

characters 0 and 1.

. Each of the #--. and #--, constructions reads the following form (in suppressed mode,
..

of course) but does not evaluate it. The form is discarded and nil is produced.

X3J13 voted in January 1989 〈162〉 to remove #--, from the language.

. Each of the #--A, #--S, and #--: constructions reads the following form (in suppressed

mode, of course) but does not interpret it in any way; it need not even be a list

in the case of #--S, or a symbol in the case of #--:. The form is discarded and nil is

produced.

. The #--−− construction is totally ignored. It does not read a following form. It

produces no object, but is treated as whitespace.

. The #--#-- construction always produces nil.

Note that, no matter what the value of *read-suppress*, parentheses still continue

to delimit (and construct) lists; the #--(construction continues to delimit vectors;

and comments, strings, and the quote and backquote constructions continue to be

interpreted properly. Furthermore, such situations as ´), #--<, #--), and #--〈space〉 continue

to signal errors.

In some cases, it may be appropriate for a userwritten macrocharacter definition

to check the value of *read-suppress* and to avoid certain computations or side effects

if its value is not nil.

[Variable]*read-eval*

X3J13 voted in June 1989 〈40〉 to add a new reader control variable, *read-eval*,

whose default value is t. If *read-eval* is false, the #--. reader macro signals an error.

INPUT/OUTPUT 521

Printing is also affected. If *read-eval* is false and *print-readably* is true, any

print-object method that would otherwise output a #--. reader macro must either

output something different or signal an error of type print-not-readable.

Binding *read-eval* to nil is useful when reading data that came from an untrusted

source, such as a network or a usersupplied data file; it prevents the #--. reader macro

from being exploited as a “Trojan horse” to cause arbitrary forms to be evaluated.

22.1.3. Macro Characters

If the reader encounters a macro character, then the function associated with that

macro character is invoked and may produce an object to be returned. This function

may read following characters in the stream in whatever syntax it likes (it may

even call read recursively) and return the object represented by that syntax. Macro

characters may or may not be recognized, of course, when read as part of other special

syntaxes (such as for strings).

The reader is therefore organized into two parts: the basic dispatch loop, which

also distinguishes symbols and numbers, and the collection of macro characters. Any

character can be reprogrammed as a macro character; this is a means by which the

reader can be extended. The macro characters normally defined are as follows:

(

The leftparenthesis character initiates reading of a pair or list. The function read

is called recursively to read successive objects until a right parenthesis is found to

be next in the input stream. A list of the objects read is returned. Thus the input

sequence

(a b c)

is read as a list of three objects (the symbols a, b, and c). The right parenthesis

need not immediately follow the printed representation of the last object; whitespace

characters and comments may precede it. This can be useful for putting one object

on each line and making it easy to add new objects:

(defun traffic-light (color)

(case color

(green)

(red (stop))

(amber (accelerate)) ;Insert more colors after this line

))

522 COMMON LISP

It may be that no objects precede the right parenthesis, as in () or (); this reads

as a list of zero objects (the empty list).

If a token that is just a dot, not preceded by an escape character, is read after

some object, then exactly one more object must follow the dot, possibly followed by

whitespace, followed by the right parenthesis:

(a b c . d)

This means that the cdr of the last pair in the list is not nil, but rather the object whose

representation followed the dot. The above example might have been the result of

evaluating

(cons ´a (cons ´b (cons ´c ´d))) ⇒ (a b c . d)

Similarly, we have

(cons ´znets ´wolq-zorbitan) ⇒ (znets . wolq-zorbitan)

It is permissible for the object following the dot to be a list:

(a b c d . (e f . (g)))

is the same as

(a b c d e f g)

but a list following a dot is a nonstandard form that print will never produce.

)

The rightparenthesis character is part of various constructs (such as the syntax for

lists) using the leftparenthesis character and is invalid except when used in such a

construct.

INPUT/OUTPUT 523

´

The singlequote (accent acute) character provides an abbreviation to make it easier

to put constants in programs. The form ´foo reads the same as (quote foo): a list of

the symbol quote and foo.

;

Semicolon is used to write comments. The semicolon and all characters up to and

including the next newline are ignored. Thus a comment can be put at the end of any

line without affecting the reader. (A comment will terminate a token, but a newline

would terminate the token anyway.)

There is no functional difference between using one semicolon and using more

than one, but the conventions shown here are in common use.

;;;; COMMENT-EXAMPLE function.

;;; This function is useless except to demonstrate comments.

;;; (Actually, this example is much too cluttered with them.)

(defun comment-example (x y) ;X is anything; Y is an a-list.

(cond ((listp x) x) ;If X is a list, use that.

;; X is now not a list. There are two other cases.

((symbolp x)

;; Look up a symbol in the a-list.

(cdr (assoc x y))) ;Remember, (cdr nil) is nil.

;; Do this when all else fails:

(t (cons x ;Add x to a default list.

´((lisp t) ;LISP is okay.

(fortran nil) ;FORTRAN is not.

(pl/i -500) ;Note that you can put comments in

(ada .001) ; "data" as well as in "programs".

;; COBOL??

(teco -1.0e9))))))

In this example, comments may begin with one to four semicolons.

. Singlesemicolon comments are all aligned to the same column at the right; usually

each comment concerns only the code it is next to. Occasionally a comment is

long enough to occupy two or three lines; in this case, it is conventional to indent

the continued lines of the comment one space (after the semicolon).

. Doublesemicolon comments are aligned to the level of indentation of the code. A

space conventionally follows the two semicolons. Such comments usually describe

524 COMMON LISP

the state of the program at that point or the code section that follows the comment.

. Triplesemicolon comments are aligned to the left margin. They usually document

whole programs or large code blocks.

. Quadruplesemicolon comments usually indicate titles of whole programs or large

code blocks.

Compatibility note: These conventions arose among users of MacLisp and have been found

to be very useful. The conventions are conveniently exploited by certain software tools, such

as the EMACS editor and the ATSIGN listing program developed at MIT.

The ATSIGN listing program, alas, is no longer in use, but EMACS is widely available,

especially the GNU EMACS implementation, which is available from the Free Software

Foundation, 675 Massachusetts Avenue, Cambridge, Massachusetts 02139. Remember,

GNU’s Not UNIX.

"

The double quote character begins the printed representation of a string. Successive

characters are read from the input stream and accumulated until another double quote

is encountered. An exception to this occurs if a single escape character is seen; the

escape character is discarded, the next character is accumulated, and accumulation

continues. When a matching double quote is seen, all the accumulated characters

up to but not including the matching double quote are made into a simple string and

returned.

`

The backquote (accent grave) character makes it easier to write programs to construct

complex data structures by using a template.

Notice of correction. In the first edition, the backquote character 〈`〉 appearing at

the left margin above was inadvertently omitted.

As an example, writing

`(cond ((numberp ,x) ,@y) (t (print ,x) ,@y))

is roughly equivalent to writing

(list ´cond

(cons (list ´numberp x) y)

(list* ´t (list ´print x) y))

The general idea is that the backquote is followed by a template, a picture of a data

structure to be built. This template is copied, except that within the template commas

INPUT/OUTPUT 525

can appear. Where a comma occurs, the form following the comma is to be evaluated

to produce an object to be inserted at that point. Assume b has the value 3; then

evaluating the form denoted by `(a b ,b ,(+ b 1) b) produces the result (a b 3 4

b).

If a comma is immediately followed by an atsign (@), then the form following the

atsign is evaluated to produce a list of objects. These objects are then “spliced” into

place in the template. For example, if x has the value (a b c), then

`(x ,x ,@x foo ,(cadr x) bar ,(cdr x) baz ,@(cdr x))

⇒ (x (a b c) a b c foo b bar (b c) baz b c)

The backquote syntax can be summarized formally as follows. For each of several

situations in which backquote can be used, a possible interpretation of that situation

as an equivalent form is given. Note that the form is equivalent only in the sense that

when it is evaluated it will calculate the correct result. An implementation is quite

free to interpret backquote in any way such that a backquoted form, when evaluated,

will produce a result equal to that produced by the interpretation shown here.

. `basic is the same as ´basic, that is, (quote basic), for any form basic that is not a

list or a general vector.

. `,form is the same as form, for any form, provided that the representation of form

does not begin with “@” or “.”. (A similar caveat holds for all occurrences of a

form after a comma.)

. `,@form is an error.

. `(x1 x2 x3 ... xn . atom) may be interpreted to mean

(append [x1] [x2] [x3] ... [xn] (quote atom))

where the brackets are used to indicate a transformation of an xj as follows:

– [form] is interpreted as (list `form), which contains a backquoted form that

must then be further interpreted.

– [,form] is interpreted as (list form).

– [,@form] is interpreted simply as form.

. `(x1 x2 x3 ... xn) may be interpreted to mean the same as the backquoted form

`(x1 x2 x3 ... xn . nil), thereby reducing it to the previous case.

. `(x1 x2 x3 ... xn . ,form) may be interpreted to mean

526 COMMON LISP

(append [x1] [x2] [x3] ... [xn] form)

where the brackets indicate a transformation of an xj as described above.

. `(x1 x2 x3 ... xn . ,@form) is an error.

. `#--(x1 x2 x3 ... xn) may be interpreted to mean

(apply #--´vector `(x1 x2 x3 ... xn))

No other uses of comma are permitted; in particular, it may not appear within the

#--A or #--S syntax.

Anywhere “,@” may be used, the syntax “,.” may be used instead to indicate that

it is permissible to destroy the list produced by the form following the “,.”; this may

permit more efficient code, using nconc instead of append, for example.

If the backquote syntax is nested, the innermost backquoted form should be ex

panded first. This means that if several commas occur in a row, the leftmost one

belongs to the innermost backquote.

Once again, it is emphasized that an implementation is free to interpret a backquoted

form as any form that, when evaluated, will produce a result that is equal to the result

implied by the above definition. In particular, no guarantees are made as to whether

the constructed copy of the template will or will not share list structure with the

template itself. As an example, the above definition implies that

`((,a b) ,c ,@d)

will be interpreted as if it were

(append (list (append (list a) (list ´b) ´nil)) (list c) d ´nil)

but it could also be legitimately interpreted to mean any of the following.

(append (list (append (list a) (list ´b))) (list c) d)

(append (list (append (list a) ´(b))) (list c) d)

(append (list (cons a ´(b))) (list c) d)

(list* (cons a ´(b)) c d)

(list* (cons a (list ´b)) c d)

(list* (cons a ´(b)) c (copy-list d))

(There is no good reason why copy-list should be performed, but it is not prohibited.)

INPUT/OUTPUT 527

Some users complain that backquote syntax is difficult to read, especially when

it is nested. I agree that it can get complicated, but in some situations (such as

writing macros that expand into definitions for other macros) such complexity is to

be expected, and the alternative is much worse.

After I gained some experience in writing nested backquote forms, I found that I

was not stopping to analyze the various patterns of nested backquotes and interleaved

commas and quotes; instead, I was recognizing standard idioms wholesale, in the

same manner that I recognize cadar as the primitive for “extract the lambdalist from

the form ((lambda ...) ...))” without stopping to analyze it into “car of cdr of

car.” For example, ,x within a doublynested backquote form means “the value of x

available during the second evaluation will appear here once the form has been twice

evaluated,” whereas ,´,x means “the value of x available during the first evaluation

will appear here once the form has been twice evaluated” and ,,x means “the value

of the value of x will appear here.”

See appendix C for a systematic set of examples of the use of nested backquotes.

,

The comma character is part of the backquote syntax and is invalid if used other than

inside the body of a backquote construction as described above.

#--

This is a dispatching macro character. It reads an optional digit string and then one

more character, and uses that character to select a function to run as a macrocharacter

function.

The #-- character also happens to be a nonterminating macro character. This is

completely independent of the fact that it is a dispatching macro character; it is a

coincidence that the only standard dispatching macro character in Common Lisp is

also the only standard nonterminating macro character.

See the next section for predefined #-- macrocharacter constructions.

22.1.4. Standard Dispatching Macro Character Syntax

The standard syntax includes forms introduced by the #-- character. These take the

general form of a #--, a second character that identifies the syntax, and following

arguments in some form. If the second character is a letter, then case is not important;

#--O and #--o are considered to be equivalent, for example.

Certain #-- forms allow an unsigned decimal number to appear between the #-- and

the second character; some other forms even require it. Those forms that do not

explicitly permit such a number to appear forbid it.

528 COMMON LISP

Table 224: Standard # Macro Character Syntax

#--! undefined * #--〈backspace〉 signals error

#--" undefined #--〈tab〉 signals error

#--#-- reference to #--−− label #--〈newline〉 signals error

#--$ undefined #--〈linefeed〉 signals error

#--% undefined #--〈page〉 signals error

#--& undefined #--〈return〉 signals error

#--´ function abbreviation #--〈space〉 signals error

#--(simple vector #--+ readtime conditional

#--) signals error #--- readtime conditional

#--* bitvector #--. readtime evaluation

#--, loadtime evaluation #--/ undefined

#--0 used for infix arguments #--A, #--a array

#--1 used for infix arguments #--B, #--b binary rational

#--2 used for infix arguments #--C, #--c complex number

#--3 used for infix arguments #--D, #--d undefined

#--4 used for infix arguments #--E, #--e undefined

#--5 used for infix arguments #--F, #--f undefined

#--6 used for infix arguments #--G, #--g undefined

#--7 used for infix arguments #--H, #--h undefined

#--8 used for infix arguments #--I, #--i undefined

#--9 used for infix arguments #--J, #--j undefined

#--: uninterned symbol #--K, #--k undefined

#--; undefined #--L, #--l undefined

#--< signals error #--M, #--m undefined

#--−− label following object #--N, #--n undefined

#--> undefined #--O, #--o octal rational

#--? undefined * #--P, #--p pathname

#--@ undefined #--Q, #--q undefined

#--[undefined * #--R, #--r radixn rational

#--\ character object #--S, #--s structure

#--] undefined * #--T, #--t undefined

#--ˆ undefined #--U, #--u undefined

#--_ undefined #--V, #--v undefined

#--` undefined #--W, #--w undefined

#--{ undefined * #--X, #--x hexadecimal rational

#--| balanced comment #--Y, #--y undefined

#--} undefined * #--Z, #--z undefined

#--˜ undefined #--〈rubout〉 undefined

The combinations marked by an asterisk are explicitly reserved to the user and will never be

defined by Common Lisp.

X3J13 voted in June 1989 〈131〉 to specify #--P and #--p (undefined in the first edition).

INPUT/OUTPUT 529

The currently defined #-- constructs are described below and summarized in ta

ble 224; more are likely to be added in the future. However, the constructs #--!, #--?,

#--[, #--], #--{, and #--} are explicitly reserved for the user and will never be defined by the

Common Lisp standard.

#--\

#--\x reads in as a character object that represents the character x. Also, #--\name reads

in as the character object whose name is name. Note that the backslash \ allows this

construct to be parsed easily by EMACSlike editors.

In the singlecharacter case, the character x must be followed by a nonconstituent

character, lest a name appear to follow the #--\. A good model of what happens is

that after #--\ is read, the reader backs up over the \ and then reads an extended token,

treating the initial \ as an escape character (whether it really is or not in the current

readtable).

Uppercase and lowercase letters are distinguished after #--\; #--\A and #--\a denote

different character objects. Any character works after #--\, even those that are normally

special to read, such as parentheses. Nonprinting characters may be used after #--\,

although for them names are generally preferred.

#--\name reads in as a character object whose name is name (actually, whose name

is (string-upcase name); therefore the syntax is caseinsensitive). The name should

have the syntax of a symbol. The following names are standard across all implemen

tations:

newline The character that represents the division between lines

space The space or blank character

The following names are semistandard; if an implementation supports them, they

should be used for the described characters and no others.

rubout The rubout or delete character.

page The formfeed or pageseparator character

tab The tabulate character

backspace The backspace character

return The carriage return character

linefeed The linefeed character

In some implementations, one or more of these characters might be a synonym for

a standard character; the #--\Linefeed character might be the same as #--\Newline, for

example.

When the Lisp printer types out the name of a special character, it uses the same

table as the #--\ reader; therefore any character name you see typed out is acceptable

530 COMMON LISP

as input (in that implementation). Standard names are always preferred over non

standard names for printing.

The following convention is used in implementations that support nonzero bits

attributes for character objects. If a name after #--\ is longer than one character and

has a hyphen in it, then it may be split into the two parts preceding and following

the first hyphen; the first part (actually, string-upcase of the first part) may then be

interpreted as the name or initial of a bit, and the second part as the name of the

character (which may in turn contain a hyphen and be subject to further splitting).

For example:

#--\Control-Space #--\Control-Meta-Tab

#--\C-M-Return #--\H-S-M-C-Rubout

If the character name consists of a single character, then that character is used.

Another \ may be necessary to quote the character.

#--\Control-% #--\Control-Meta-\"

#--\Control-\a #--\Meta->

If an unsigned decimal integer appears between the #-- and \, it is interpreted as a
...

font number, to become the font attribute of the character object (see char-font).

X3J13 voted in March 1989 〈11〉 to replace the notion of bits and font attributes with

that of implementationdefined attributes. Presumably this eliminates the portable

use of this syntax for font information, although the vote did not address this question

directly.

#--’

#--´foo is an abbreviation for (function foo). foo may be the printed representation of

any Lisp object. This abbreviation may be remembered by analogy with the ´ macro

character, since the function and quote special forms are similar in form.

#--(

A series of representations of objects enclosed by #--(and) is read as a simple vector

of those objects. This is analogous to the notation for lists.

If an unsigned decimal integer appears between the #-- and (, it specifies explicitly

the length of the vector. In that case, it is an error if too many objects are specified

before the closing), and if too few are specified, the last object (it is an error if there

are none in this case) is used to fill all remaining elements of the vector. For example,

#--(a b c c c c) #--6(a b c c c c) #--6(a b c) #--6(a b c c)

INPUT/OUTPUT 531

all mean the same thing: a vector of length 6 with elements a, b, and four instances

of c. The notation #--() denotes an empty vector, as does #--0() (which is legitimate

because it is not the case that too few elements are specified).

#--*

A series of binary digits (0 and 1) preceded by #--* is read as a simple bitvector

containing those bits, the leftmost bit in the series being bit 0 of the bitvector.

If an unsigned decimal integer appears between the #-- and *, it specifies explicitly

the length of the vector. In that case, it is an error if too many bits are specified, and

if too few are specified the last one (it is an error if there are none in this case) is used

to fill all remaining elements of the bitvector. For example,

#--*101111 #--6*101111 #--6*101 #--6*1011

all mean the same thing: a vector of length 6 with elements 1, 0, 1, 1, 1, and 1. The

notation #--* denotes an empty bitvector, as does #--0* (which is legitimate because it

is not the case that too few elements are specified).

Compare this to #--B, used for expressing integers in binary notation.

#--:

#--:foo requires foo to have the syntax of an unqualified symbol name (no embedded

colons). It denotes an uninterned symbol whose name is foo. Every time this syntax

is encountered, a different uninterned symbol is created. If it is necessary to refer to

the same uninterned symbol more than once in the same expression, the #--−− syntax

may be useful.

#--.

#--.foo is read as the object resulting from the evaluation of the Lisp object represented

by foo, which may be the printed representation of any Lisp object. The evaluation

is done during the read process, when the #--. construct is encountered.

X3J13 voted in June 1989 〈40〉 to add a new reader control variable, *read-eval*.

If it is true, the #--. reader macro behaves as described above; if it is false, the #--. reader

macro signals an error.

The #--. syntax therefore performs a readtime evaluation of foo. By contrast, #--,

(see below) performs a loadtime evaluation.

Both #--. and #--, allow you to include, in an expression being read, an object that

does not have a convenient printed representation; instead of writing a representation

for the object, you write an expression that will compute the object.

...

532 COMMON LISP

#--,..

#--,foo is read as the object resulting from the evaluation of the Lisp object represented

by foo, which may be the printed representation of any Lisp object. The evaluation

is done during the read process, unless the compiler is doing the reading, in which

case it is arranged that foo will be evaluated when the file of compiled code is loaded.

The #--, syntax therefore performs a loadtime evaluation of foo. By contrast, #--.

(see above) performs a readtime evaluation. In a sense, #--, is like specifying (eval

load) to eval-when, whereas #--. is more like specifying (eval compile). It makes no

difference when loading interpreted code; when code is to be compiled, however, #--.

specifies compiletime evaluation and #--, specifies loadtime evaluation.

X3J13 voted in January 1989 〈162〉 to remove #--, from the language. X3J13 noted

that the first edition failed to make it clear that #--, can be meaningful only within

quoted forms. All sorts of anomalies can arise, including inconsistencies between

the interpreter and compiler, if #--, is not properly restricted. See load-time-eval.

#--B

#--brational reads rational in binary (radix 2). For example, #--B1101 ≡ 13, and #--b101/11

≡ 5/3.

Compare this to #--*, used for expressing bitvectors in binary notation.

#--O

#--orational reads rational in octal (radix 8). For example, #--o37/15 ≡ 31/13, and #--o777

≡ 511.

#--X

#--xrational reads rational in hexadecimal (radix 16). The digits above 9 are the letters

A through F (the lowercase letters a through f are also acceptable). For example, #--xF00

≡ 3840.

#--nR

#--radixrrational reads rational in radix radix. radix must consist of only digits, and

it is read in decimal; its value must be between 2 and 36 (inclusive).

INPUT/OUTPUT 533

For example, #--3r102 is another way of writing 11, and #--11R32 is another way of

writing 35. For radices larger than 10, letters of the alphabet are used in order for the

digits after 9.

#--nA

The syntax #--nAobject constructs an ndimensional array, using object as the value of

the :initial-contents argument to make-array.

The value of n makes a difference: #--2A((0 1 5) (foo 2 (hot dog))), for example,

represents a 2by3 matrix:

0 1 5

foo 2 (hot dog)

In contrast, #--1A((0 1 5) (foo 2 (hot dog))) represents a length2 array whose ele

ments are lists:

(0 1 5) (foo 2 (hot dog))

Furthermore, #--0A((0 1 5) (foo 2 (hot dog))) represents a zerodimensional array

whose sole element is a list:

((0 1 5) (foo 2 (hot dog)))

Similarly, #--0Afoo (or, more readably, #--0A foo) represents a zerodimensional array

whose sole element is the symbol foo. The expression #--1Afoo would not be legal

because foo is not a sequence.

#--S

The syntax #--s(name slot1 value1 slot2 value2 ...) denotes a structure. This is

legal only if name is the name of a structure already defined by defstruct and if the

structure has a standard constructor macro, which it normally will. Let cm stand for

the name of this constructor macro; then this syntax is equivalent to

#--.(cm keyword1 ´value1 keyword2 ´value2 ...)

where each keywordj is the result of computing

(intern (string slotj) ´keyword)

(This computation is made so that one need not write a colon in front of every slot

name.) The net effect is that the constructor macro is called with the specified slots

534 COMMON LISP

having the specified values (note that one does not write quote marks in the #--S syntax).

Whatever object the constructor macro returns is returned by the #--S syntax.

#--P

X3J13 voted in June 1989 〈131〉 to define the reader syntax #--p"..." to be equivalent to

#--.(parse-namestring "..."). Presumably this was meant to be taken descriptively and

not literally. I would think, for example, that the committee did not wish to quibble

over the package in which the name parse-namestring was to be read. Similarly, I

would presume that the #--p syntax operates normally rather than signaling an error

when *read-eval* is false. I interpret the intent of the vote to be that #--p reads a

following form, which should be a string, that is then converted to a pathname as if

by application of the standard function parse-namestring.

#--n−−

The syntax #--n−−object reads as whatever Lisp object has object as its printed represen

tation. However, that object is labelled by n, a required unsigned decimal integer, for

possible reference by the syntax #--n#-- (below). The scope of the label is the expression

being read by the outermost call to read. Within this expression the same label may

not appear twice.

#--n#--

The syntax #--n#--, where n is a required unsigned decimal integer, serves as a reference

to some object labelled by #--n−−; that is, #--n#-- represents a pointer to the same identical

(eq) object labelled by #--n−−. This permits notation of structures with shared or circular

substructure. For example, a structure created in the variable y by this code:

(setq x (list ´p ´q))

(setq y (list (list ´a ´b) x ´foo x))

(rplacd (last y) (cdr y))

could be represented in this way:

((a b) . #--1−−(#--2−−(p q) foo #--2#-- . #--1#--))

Without this notation, but with *print-length* set to 10, the structure would print in

this way:

((a b) (p q) foo (p q) (p q) foo (p q) (p q) foo (p q) ...)

A reference #--n#--may occur only after a label #--n−−; forward references are not permitted.

In addition, the reference may not appear as the labelled object itself (that is, one

INPUT/OUTPUT 535

may not write #--n−− #--n#--), because the object labelled by #--n−− is not well defined in this

case.

#--+

The #--+ syntax provides a readtime conditionalization facility; the syntax is

#--+feature form

If feature is “true,” then this syntax represents a Lisp object whose printed represen

tation is form. If feature is “false,” then this syntax is effectively whitespace; it is as

if it did not appear.

The feature should be the printed representation of a symbol or list. If feature is a

symbol, then it is true if and only if it is a member of the list that is the value of the

global variable *features*.

Compatibility note: MacLisp uses the status special form for this purpose, and Lisp Machine

Lisp duplicates status essentially only for the sake of (status features). The use of a variable

allows one to bind the features list, when compiling, for example.

Otherwise, feature should be a Boolean expression composed of and, or, and not

operators on (recursive) feature expressions.

For example, suppose that in implementation A the features spice and perq are

true, and in implementation B the feature lispm is true. Then the expressions on the

left below are read the same as those on the right in implementation A:

(cons #--+spice "Spice" #--+lispm "Lispm" x) (cons "Spice" x)

(setq a ´(1 2 #--+perq 43 #--+(not perq) 27)) (setq a ´(1 2 43))

(let ((a 3) #--+(or spice lispm) (b 3)) (let ((a 3) (b 3))

(foo a)) (foo a))

(cons a #--+perq #---perq b c) (cons a c)

In implementation B, however, they are read in this way:

(cons #--+spice "Spice" #--+lispm "Lispm" x) (cons "Lispm" x)

(setq a ´(1 2 #--+perq 43 #--+(not perq) 27)) (setq a ´(1 2 27))

(let ((a 3) #--+(or spice lispm) (b 3)) (let ((a 3) (b 3))

(foo a)) (foo a))

(cons a #--+perq #---perq b c) (cons a c)

536 COMMON LISP

The #--+ construction must be used judiciously if unreadable code is not to result.

The user should make a careful choice between readtime conditionalization and

runtime conditionalization.

The #--+ syntax operates by first reading the feature specification and then skipping
...

over the form if the feature is “false.” This skipping of a form is a bit tricky because of

the possibility of userdefined macro characters and side effects caused by the #--. and

#--, constructions. It is accomplished by binding the variable *read-suppress* to a non

nil value and then calling the read function. See the description of *read-suppress*

for the details of this operation.

X3J13 voted in January 1989 〈162〉 to remove #--, from the language.

X3J13 voted in March 1988 〈163〉 to specify that the keyword package is the de

fault package during the reading of a feature specification. Thus #--+spice means

the same thing as #--+:spice, and #--+(or spice lispm) means the same thing as

#--+(or :spice :lispm). Symbols in other packages may be used as feature names,

but one must use an explicit package prefix to cite one after #--+.

#---

#---feature form is equivalent to #--+(not feature) form.

#--|

#--|...|#-- is treated as a comment by the reader, just as everything from a semicolon

to the next newline is treated as a comment. Anything may appear in the comment,

except that it must be balanced with respect to other occurrences of #--| and |#--. Except

for this nesting rule, the comment may contain any characters whatsoever.

The main purpose of this construct is to allow “commenting out” of blocks of

code or data. The balancing rule allows such blocks to contain pieces already so

commented out. In this respect the #--|...|#-- syntax of Common Lisp differs from the

/*...*/ comment syntax used by PL/I and C.

#--<

This is not legal reader syntax. It is conventionally used in the printed representation

of objects that cannot be read back in. Attempting to read a #--< will cause an error.

(More precisely, it is legal syntax, but the macrocharacter function for #--< signals an

error.)

The usual convention for printing unreadable data objects is to print some identify

ing information (the internal machine address of the object, if nothing else) preceded

by #--< and followed by >.

X3J13 voted in June 1989 〈40〉 to add print-unreadable-object, a macro that

prints an object using #--<...> syntax and also takes care of checking the variable

print-readably.

INPUT/OUTPUT 537

#--〈space〉, #--〈tab〉, #--〈newline〉, #--〈page〉, #--〈return〉
A #-- followed by a whitespace character is not legal reader syntax. This prevents

abbreviated forms produced via *print-level* cutoff from reading in again, as a

safeguard against losing information. (More precisely, this is legal syntax, but the

macrocharacter function for it signals an error.)

#--)

This is not legal reader syntax. This prevents abbreviated forms produced via *print-

level* cutoff from reading in again, as a safeguard against losing information. (More

precisely, this is legal syntax, but the macrocharacter function for it signals an error.)

22.1.5. The Readtable

Previous sections describe the standard syntax accepted by the read function. This

section discusses the advanced topic of altering the standard syntax either to provide

extended syntax for Lisp objects or to aid the writing of other parsers.

There is a data structure called the readtable that is used to control the reader.

It contains information about the syntax of each character equivalent to that in

table 221. It is set up exactly as in table 221 to give the standard Common Lisp

meanings to all the characters, but the user can change the meanings of characters

to alter and customize the syntax of characters. It is also possible to have several

readtables describing different syntaxes and to switch from one to another by binding

the variable *readtable*.

Even if an implementation supports characters with nonzero bits and font at
..

tributes, it need not (but may) allow for such characters to have syntax descriptions

in the readtable. However, every character of type string-char must be represented

in the readtable.

X3J13 voted in March 1989 〈11〉 to remove the type string-char and to replace the

bits and font attributes with the notion of implementationdefined attributes. If any

implementationdefined attributes are supported, an implementation may (but need

not) allow for such characters to have syntax descriptions in the readtable. Characters

that do not have nonstandard values for any implementationdefined attribute must

be represented in the readtable.

[Variable]*readtable*

The value of *readtable* is the current readtable. The initial value of this is a readtable

set up for standard Common Lisp syntax. You can bind this variable to temporarily

change the readtable being used.

538 COMMON LISP

To program the reader for a different syntax, a set of functions are provided for

manipulating readtables. Normally, you should begin with a copy of the standard

Common Lisp readtable and then customize the individual characters within that

copy.

[Function]copy-readtable &optional from-readtable to-readtable

A copy is made of fromreadtable, which defaults to the current readtable (the value

of the global variable *readtable*). If fromreadtable is nil, then a copy of a standard

Common Lisp readtable is made. For example,

(setq *readtable* (copy-readtable nil))

will restore the input syntax to standard Common Lisp syntax, even if the original

readtable has been clobbered (assuming it is not so badly clobbered that you cannot

type in the above expression!). On the other hand,

(setq *readtable* (copy-readtable))

will merely replace the current readtable with a copy of itself.

If toreadtable is unsupplied or nil, a fresh copy is made. Otherwise, toreadtable

must be a readtable, which is destructively copied into.

[Function]readtablep object

readtablep is true if its argument is a readtable, and otherwise is false.

(readtablep x) ≡ (typep x ´readtable)

[Function]set-syntax-from-char to-char from-char &optional to-readtable

from-readtable

This makes the syntax of tochar in toreadtable be the same as the syntax of from

char in fromreadtable. The toreadtable defaults to the current readtable (the value

of the global variable *readtable*), and fromreadtable defaults to nil, meaning to

use the syntaxes from the standard Lisp readtable.

X3J13 voted in January 1989 〈7〉 to clarify that the tochar and fromchar must

each be a character.

Only attributes as shown in table 221 are copied; moreover, if a macro character is

copied, the macro definition function is copied also. However, attributes as shown in

table 223 are not copied; they are “hardwired” into the extendedtoken parser. For

example, if the definition of S is copied to *, then * will become a constituent that is

INPUT/OUTPUT 539

alphabetic but cannot be used as an exponent indicator for shortformat floatingpoint

number syntax.

It works to copy a macro definition from a character such as " to another character;

the standard definition for " looks for another character that is the same as the

character that invoked it. It doesn’t work to copy the definition of (to {, for example;

it can be done, but it lets one write lists in the form {a b c), not {a b c}, because

the definition always looks for a closing parenthesis, not a closing brace. See the

function read-delimited-list, which is useful in this connection.

X3J13 voted in January 1989 〈156〉 to specify that the set-syntax-from-char func

tion returns t.

[Function]set-macro-character char function &optional non-terminating-p

readtable

[Function]get-macro-character char &optional readtable

set-macro-character causes char to be a macro character that when seen by read

causes function to be called. If nonterminatingp is not nil (it defaults to nil), then

it will be a nonterminating macro character: it may be embedded within extended

tokens. set-macro-character returns t.

get-macro-character returns the function associated with char and, as a second

value, returns the nonterminatingp flag; it returns nil if char does not have macro

character syntax. In each case, readtable defaults to the current readtable.

X3J13 voted in January 1989 〈95〉 to specify that if nil is explicitly passed as the

second argument to get-macro-character, then the standard readtable is used. This is

consistent with the behavior of copy-readtable.

The function is called with two arguments, stream and char. The stream is the

input stream, and char is the macro character itself. In the simplest case, function

may return a Lisp object. This object is taken to be that whose printed representation

was the macro character and any following characters read by the function. As an

example, a plausible definition of the standard single quote character is:

(defun single-quote-reader (stream char)

(declare (ignore char))

(list ´quote (read stream t nil t)))

(set-macro-character #--\´ #--´single-quote-reader)

(Note that t is specified for the recursivep argument to read; see section 22.2.1.) The

function reads an object following the singlequote and returns a list of the symbol

quote and that object. The char argument is ignored.

540 COMMON LISP

The function may choose instead to return zero values (for example, by using

(values) as the return expression). In this case, the macro character and whatever it

may have read contribute nothing to the object being read. As an example, here is a

plausible definition for the standard semicolon (comment) character:

(defun semicolon-reader (stream char)

(declare (ignore char))

;; First swallow the rest of the current input line.

;; End-of-file is acceptable for terminating the comment.

(do () ((char−− (read-char stream nil #--\Newline t) #--\Newline)))

;; Return zero values.

(values))

(set-macro-character #--\; #--´semicolon-reader)

(Note that t is specified for the recursivep argument to read-char; see section 22.2.1.)

The function should not have any side effects other than on the stream. Because

of backtracking and restarting of the read operation, front ends (such as editors and

rubout handlers) to the reader may cause function to be called repeatedly during the

reading of a single expression in which the macro character only appears once.

Compatibility note: The ability to return either zero or one value is the closest Common

Lisp macro characters come to the splicing macro characters of MacLisp or the splice macro

characters of Interlisp. The Common Lisp definition does not allow the splicing of arbitrarily

many values, but it does allow a macrocharacter function to decide after it is invoked whether

or not to yield a value, an option not possible in MacLisp or Interlisp.

MacLisp has nothing equivalent to nonterminating macro characters. The Interlisp equiv

alents of terminating and nonterminating macro characters are macro characters with the

ALWAYS or FIRST option, respectively. Common Lisp has nothing equivalent to the Interlisp

ALONE macrocharacter option.

Here is an example of a more elaborate set of readmacro characters that I used in

the implementation of the original simulator for Connection Machine Lisp [44, 57], a

parallel dialect of Common Lisp. This simulator was used to gain experience with the

language before freezing its design for fullscale implementation on a Connection

Machine computer system. This example illustrates the typical manner in which

a language designer can embed a new language within the syntactic and semantic

framework of Lisp, saving the effort of designing an implementation from scratch.

Connection Machine Lisp introduces a new data type called a xapping, which is

simply an unordered set of ordered pairs of Lisp objects. The first element of each

pair is called the index and the second element the value. We say that the xapping

INPUT/OUTPUT 541

maps each index to its corresponding value. No two pairs of the same xapping may

have the same (that is, eql) index. Xappings may be finite or infinite sets of pairs;

only certain kinds of infinite xappings are required, and special representations are

used for them.

A finite xapping is notated by writing the pairs between braces, separated by

whitespace. A pair is notated by writing the index and the value, separated by a

right arrow (or an exclamation point if the host Common Lisp has no rightarrow

character).

Remark: The original language design used the right arrow; the exclamation point was

chosen to replace it on ASCIIonly terminals because it is one of the six characters [] { }
! ? reserved by Common Lisp to the user.

While preparing the TEX manuscript for this book I made a mistake in font selection and

discovered that by an absolutely incredible coincidence the right arrow has the same numerical

code (octal 41) within TEX fonts as the ASCII exclamation point. The result was that although

the manuscript called for right arrows, exclamation points came out in the printed copy.

Imagine my astonishment!

Here is an example of a xapping that maps three symbols to strings:

{moe⇒"Oh, a wise guy, eh?" larry⇒"Hey, what´s the idea?"

curly⇒"Nyuk, nyuk, nyuk!"}

For convenience there are certain abbreviated notations. If the index and value for

a pair are the same object x, then instead of having to write “x⇒ x” (or, worse yet,

“#--43−−x⇒#--43#--”) we may write simply x for the pair. If all pairs of a xapping are of

this form, we call the xapping a xet. For example, the notation

{baseball chess cricket curling bocce 43-man-squamish}

is entirely equivalent in meaning to

{baseball⇒baseball curling⇒curling cricket⇒cricket

chess⇒chess bocce⇒bocce 43-man-squamish⇒43-man-squamish}

namely a xet of symbols naming six sports.

Another useful abbreviation covers the situation where the n pairs of a finite

xapping are integers, collectively covering a range from zero to n − 1. This kind of

xapping is called a xector and may be notated by writing the values between brackets

in ascending order of their indices. Thus

[tinker evers chance]

is merely an abbreviation for

542 COMMON LISP

{tinker⇒0 evers⇒1 chance⇒2}

There are two kinds of infinite xapping: constant and universal. A constant xapping

{⇒z} maps every object to the same value z. The universal xapping {⇒} maps every

object to itself and is therefore the xet of all Lisp objects, sometimes called simply the

universe. Both kinds of infinite xet may be modified by explicitly writing exceptions.

One kind of exception is simply a pair, which specifies the value for a particular

index; the other kind of exception is simply k⇒ indicating that the xapping does not

have a pair with index k after all. Thus the notation

{sky⇒blue grass⇒green idea⇒ glass⇒ ⇒red}

indicates a xapping that maps sky to blue, grass to green, and every other object

except idea and glass to red. Note well that the presence or absence of whitespace

on either side of an arrow is crucial to the correct interpretation of the notation.

Here is the representation of a xapping as a structure:

(defstruct

(xapping (:print-function print-xapping)

(:constructor xap

(domain range &optional

(default ´:unknown defaultp)

(infinite (and defaultp :constant))

(exceptions ´()))))

domain

range

default

(infinite nil :type (member nil :constant :universal)

exceptions)

The explicit pairs are represented as two parallel lists, one of indexes (domain) and one

of values (range). The default slot is the default value, relevant only if the infinite

slot is :constant. The exceptions slot is a list of indices for which there are no values.

(See the end of section 22.3.3 for the definition of print-xapping.)

Here, then, is the code for reading xectors in bracket notation:

(defun open-bracket-macro-char (stream macro-char)

(declare (ignore macro-char))

(let ((range (read-delimited-list #--\] stream t)))

(xap (iota-list (length range)) range)))

INPUT/OUTPUT 543

(set-macro-character #--\[#--´open-bracket-macro-char)

(set-macro-character #--\] (get-macro-character #--\)))

(defun iota-list (n) ;Return list of integers from 0 to n − 1

(do ((j (- n 1) (- j 1))

(z ´() (cons j z)))

((< j 0) z)))

The code for reading xappings in the more general brace notation, with all the

possibilities for xets (or individual xet pairs), infinite xappings, and exceptions, is a

bit more complicated; it is shown in table 225. That code is used in conjunction

with the initializations

(set-macro-character #--\{ #--´open-brace-macro-char)

(set-macro-character #--\} (get-macro-character #--\)))

[Function]make-dispatch-macro-character char &optional

non-terminating-p readtable

This causes the character char to be a dispatching macro character in readtable

(which defaults to the current readtable). If nonterminatingp is not nil (it defaults

to nil), then it will be a nonterminating macro character: it may be embedded within

extended tokens. make-dispatch-macro-character returns t.

Initially every character in the dispatch table has a charactermacro function that

signals an error. Use set-dispatch-macro-character to define entries in the dispatch

table.

X3J13 voted in January 1989 〈7〉 to clarify that char must be a character.

[Function]set-dispatch-macro-character disp-char sub-char function &optional

readtable

[Function]get-dispatch-macro-character disp-char sub-char &optional

readtable

set-dispatch-macro-character causes function to be called when the dispchar fol

lowed by subchar is read. The readtable defaults to the current readtable. The

arguments and return values for function are the same as for normal macro characters

except that function gets subchar, not dispchar, as its second argument and also

receives a third argument that is the nonnegative integer whose decimal representa

tion appeared between dispchar and subchar, or nil if no decimal integer appeared

there.

544 COMMON LISP

Table 225: Macro Character Definition for Xapping Syntax

(defun open-brace-macro-char (s macro-char)

(declare (ignore macro-char))

(do ((ch (peek-char t s t nil t) (peek-char t s t nil t))

(domain ´()) (range ´()) (exceptions ´()))

((char−− ch #--\})

(read-char s t nil t)

(construct-xapping (reverse domain) (reverse range)))

(cond ((char−− ch #--\⇒)

(read-char s t nil t)

(let ((nextch (peek-char nil s t nil t)))

(cond ((char−− nextch #--\})

(read-char s t nil t)

(return (xap (reverse domain)

(reverse range)

nil :universal exceptions)))

(t (let ((item (read s t nil t)))

(cond ((char−− (peek-char t s t nil t) #--\})

(read-char s t nil t)

(return (xap (reverse domain)

(reverse range)

item :constant

exceptions)))

(t (reader-error s

"Default ⇒ item must be last"))))))))

(t (let ((item (read-preserving-whitespace s t nil t))

(nextch (peek-char nil s t nil t)))

(cond ((char−− nextch #--\⇒)

(read-char s t nil t)

(cond ((member (peek-char nil s t nil t)

´(#--\Space #--\Tab #--\Newline))

(push item exceptions))

(t (push item domain)

(push (read s t nil t) range))))

((char−− nch #--\})

(read-char s t nil t)

(push item domain)

(push item range)

(return (xap (reverse domain) (reverse range))))

(t (push item domain)

(push item range))))))))

INPUT/OUTPUT 545

The subchar may not be one of the ten decimal digits; they are always reserved for

specifying an infix integer argument. Moreover, if subchar is a lowercase character

(see lower-case-p), its uppercase equivalent is used instead. (This is how the rule is

enforced that the case of a dispatch subcharacter doesn’t matter.)

set-dispatch-macro-character returns t.

get-dispatch-macro-character returns the macrocharacter function for subchar

under dispchar, or nil if there is no function associated with subchar.

If the subchar is one of the ten decimal digits 0 1 2 3 4 5 6 7 8 9, get-dispatch-

macro-character always returns nil. If subchar is a lowercase character, its uppercase

equivalent is used instead.

X3J13 voted in January 1989 〈95〉 to specify that if nil is explicitly passed as

the second argument to get-dispatch-macro-character, then the standard readtable is

used. This is consistent with the behavior of copy-readtable.

For either function, an error is signaled if the specified dispchar is not in fact a

dispatch character in the specified readtable. It is necessary to use make-dispatch-

macro-character to set up the dispatch character before specifying its subcharacters.

As an example, suppose one would like #--$foo to be read as if it were (dollars foo).

One might say:

(defun |#--$-reader| (stream subchar arg)

(declare (ignore subchar arg))

(list ´dollars (read stream t nil t)))

(set-dispatch-macro-character #--\#-- #--\$ #--´|#--$-reader|)

Compatibility note: This macrocharacter mechanism is different from those in MacLisp,

Interlisp, and Lisp Machine Lisp. Recently Lisp systems have implemented very general

readers, even readers so programmable that they can parse arbitrary compiled BNF grammars.

Unfortunately, these readers can be complicated to use. This design is an attempt to make

the reader as simple as possible to understand, use, and implement. Splicing macros have

been eliminated; a recent informal poll indicates that no one uses them to produce other than

zero or one value. The ability to access parts of the object preceding the macro character has

been eliminated. The MacLisp singlecharacterobject feature has been eliminated because it

is seldom used and trivially obtainable by defining a macro.

The user is encouraged to turn off most macro characters, turn others into singlecharacter

object macros, and then use read purely as a lexical analyzer on top of which to build a parser. It

is unnecessary, however, to cater to more complex lexical analysis or parsing than that needed

for Common Lisp.

[Function]readtable-case readtable

X3J13 voted in June 1989 〈150〉 to introduce the function readtable-case to control

546 COMMON LISP

the reader’s interpretation of case. It provides access to a slot in a readtable, and

may be used with setf to alter the state of that slot. The possible values for the slot

are :upcase, :downcase, :preserve, and :invert; the readtable-case for the standard

readtable is :upcase. Note that copy-readtable is required to copy the readtable-case

slot along with all other readtable information.

Once the reader has accumulated a token as described in section 22.1.1, if the token

is a symbol, “replaceable” characters (unescaped uppercase or lowercase constituent

characters) may be modified under the control of the readtable-case of the current

readtable:

. For :upcase, replaceable characters are converted to uppercase. (This was the

behavior specified by the first edition.)

. For :downcase, replaceable characters are converted to lowercase.

. For :preserve, the cases of all characters remain unchanged.

. For :invert, if all of the replaceable letters in the extended token are of the same

case, they are all converted to the opposite case; otherwise the cases of all characters

in that token remain unchanged.

As an illustration, consider the following code.

(let ((*readtable* (copy-readtable nil)))

(format t "READTABLE-CASE Input Symbol-name˜

˜%-----------------------------------˜

˜%")

(dolist (readtable-case ´(:upcase :downcase :preserve :invert))

(setf (readtable-case *readtable*) readtable-case)

(dolist (input ´("ZEBRA" "Zebra" "zebra"))

(format t ":˜A˜16T˜A˜24T˜A˜%"

(string-upcase readtable-case)

input

(symbol-name (read-from-string input)))))))

The output from this test code should be

READTABLE-CASE Input Symbol-name

:UPCASE ZEBRA ZEBRA

:UPCASE Zebra ZEBRA

:UPCASE zebra ZEBRA

:DOWNCASE ZEBRA zebra

:DOWNCASE Zebra zebra

INPUT/OUTPUT 547

:DOWNCASE zebra zebra

:PRESERVE ZEBRA ZEBRA

:PRESERVE Zebra Zebra

:PRESERVE zebra zebra

:INVERT ZEBRA zebra

:INVERT Zebra Zebra

:INVERT zebra ZEBRA

The readtable-case of the current readtable also affects the printing of symbols

(see *print-case* and *print-escape*).

22.1.6. What the Print Function Produces

The Common Lisp printer is controlled by a number of special variables. These are

referred to in the following discussion and are fully documented at the end of this

section.

How an expression is printed depends on its data type, as described in the following

paragraphs.

Integers

If appropriate, a radix specifier may be printed; see the variable *print-radix*. If an

integer is negative, a minus sign is printed and then the absolute value of the integer is

printed. Integers are printed in the radix specified by the variable *print-base* in the

usual positional notation, most significant digit first. The number zero is represented

by the single digit 0 and never has a sign. A decimal point may then be printed,

depending on the value of *print-radix*.

Ratios

If appropriate, a radix specifier may be printed; see the variable *print-radix*. If the

ratio is negative, a minus sign is printed. Then the absolute value of the numerator

is printed, as for an integer; then a /; then the denominator. The numerator and

denominator are both printed in the radix specified by the variable *print-base*; they

are obtained as if by the numerator and denominator functions, and so ratios are always

printed in reduced form (lowest terms).

Floatingpoint numbers

If the sign of the number (as determined by the function float-sign) is negative, then

a minus sign is printed. Then the magnitude is printed in one of two ways. If the

magnitude of the floatingpoint number is either zero or between 10−3 (inclusive) and

548 COMMON LISP

107 (exclusive), it may be printed as the integer part of the number, then a decimal

point, followed by the fractional part of the number; there is always at least one digit

on each side of the decimal point. If the format of the number does not match that

specified by the variable *read-default-float-format*, then the exponent marker for

that format and the digit 0 are also printed. For example, the base of the natural

logarithms as a shortformat floatingpoint number might be printed as 2.71828S0.

For nonzero magnitudes outside of the range 10−3 to 107, a floatingpoint number

will be printed in “computerized scientific notation.” The representation of the

number is scaled to be between 1 (inclusive) and 10 (exclusive) and then printed,

with one digit before the decimal point and at least one digit after the decimal point.

Next the exponent marker for the format is printed, except that if the format of the

number matches that specified by the variable *read-default-float-format*, then the

exponent marker E is used. Finally, the power of 10 by which the fraction must be

multiplied to equal the original number is printed as a decimal integer. For example,

Avogadro’s number as a shortformat floatingpoint number might be printed as

6.02S23.

Complex numbers

A complex number is printed as #--C, an open parenthesis, the printed representation

of its real part, a space, the printed representation of its imaginary part, and finally a

close parenthesis.

Characters..

When *print-escape* is nil, a character prints as itself; it is sent directly to the output

stream. When *print-escape* is not nil, then #--\ syntax is used. For example, the

printed representation of the character #--\A with control and meta bits on would be

#--\CONTROL-META-A, and that of #--\a with control and meta bits on would be #--\CONTROL-

META-\a.

X3J13 voted in June 1989 〈40〉 to specify that if *print-readably* is not nil then

every object must be printed in a readable form, regardless of other printer control

variables. For characters, the simplest approach is always to use #--\ syntax when

print-readably is not nil, regardless of the value of *print-escape*.

Symbols..

When *print-escape* is nil, only the characters of the print name of the symbol are

output (but the case in which to print any uppercase characters in the print name is

controlled by the variable *print-case*).

X3J13 voted in June 1989 〈150〉 to specify that the new readtable-case slot of

the current readtable also controls the case in which letters (whether uppercase or

INPUT/OUTPUT 549

lowercase) in the print name of a symbol are output, no matter what the value of

print-escape.

The remaining paragraphs describing the printing of symbols cover the situation
...

when *print-escape* is not nil.

X3J13 voted in June 1989 〈40〉 to specify that if *print-readably* is not nil

then every object must be printed in a readable form, regardless of other printer

control variables. For symbols, the simplest approach is to print them, when *print-

readably* is not nil, as if *print-escape* were not nil, regardless of the actual value

of *print-escape*.

Backslashes \ and vertical bars | are included as required. In particular, backslash

or verticalbar syntax is used when the name of the symbol would be otherwise treated

by the reader as a potential number (see section 22.1.2). In making this decision, it is

assumed that the value of *print-base* being used for printing would be used as the

value of *read-base* used for reading; the value of *read-base* at the time of printing

is irrelevant. For example, if the value of *print-base* were 16 when printing the

symbol face, it would have to be printed as \FACE or \Face or |FACE|, because the token

face would be read as a hexadecimal number (decimal value 64206) if *read-base*

were 16.

The case in which to print any uppercase characters in the print name is controlled
...

by the variable *print-case*.

X3J13 voted in June 1989 〈141〉 to clarify the interaction of *print-case* with

print-escape; see *print-case*.

As a special case [no pun intended], nil may sometimes be printed as () instead,

when *print-escape* and *print-pretty* are both not nil.

Package prefixes may be printed (using colon syntax) if necessary. The rules for

package qualifiers are as follows. When the symbol is printed, if it is in the keyword

package, then it is printed with a preceding colon; otherwise, if it is accessible in the

current package, it is printed without any qualification; otherwise, it is printed with

qualification. See chapter 11.

A symbol that is uninterned (has no home package) is printed preceded by #--: if the
...

variables *print-gensym* and *print-escape* are both nonnil; if either is nil, then

the symbol is printed without a prefix, as if it were in the current package.

X3J13 voted in June 1989 〈40〉 to specify that if *print-readably* is not nil then

every object must be printed in a readable form, regardless of other printer control

variables. For uninterned symbols, the simplest approach is to print them, when

print-readably is not nil, as if *print-escape* and *print-gensym* were not nil,

regardless of their actual values.

Implementation note: Because the #--: syntax does not intern the following symbol, it is

necessary to use circularlist syntax if *print-circle* is not nil and the same uninterned

550 COMMON LISP

symbol appears several times in an expression to be printed. For example, the result of

(let ((x (make-symbol "FOO"))) (list x x))

would be printed as

(#--:foo #--:foo)

if *print-circle* were nil, but as

(#--1−−#--:foo #--1#--)

if *print-circle* were not nil.

The case in which symbols are to be printed is controlled by the variable *print-
..

case*.

It is also controlled by *print-escape* and the readtable-case slot of the current

readtable (the value of *readtable*).

Strings...

The characters of the string are output in order. If *print-escape* is not nil, a double

quote is output before and after, and all double quotes and single escape characters

are preceded by backslash. The printing of strings is not affected by *print-array*.

If the string has a fill pointer, then only those characters below the fill pointer are

printed.

X3J13 voted in June 1989 〈40〉 to specify that if *print-readably* is not nil then

every object must be printed in a readable form, regardless of other printer control

variables. For strings, the simplest approach is to print them, when *print-readably*

is not nil, as if *print-escape* were not nil, regardless of the actual value of *print-

escape*.

Conses

Wherever possible, list notation is preferred over dot notation. Therefore the follow

ing algorithm is used:

1. Print an open parenthesis, (.

2. Print the car of the cons.

3. If the cdr is a cons, make it the current cons, print a space, and go to step 2.

4. If the cdr is not null, print a space, a dot, a space, and the cdr.

INPUT/OUTPUT 551

5. Print a close parenthesis,).

This form of printing is clearer than showing each individual cons cell. Although

the two expressions below are equivalent, and the reader will accept either one and

produce the same data structure, the printer will always print such a data structure in

the second form.

(a . (b . ((c . (d . nil)) . (e . nil))))

(a b (c d) e)

The printing of conses is affected by the variables *print-level* and *print-
..

length*.

X3J13 voted in June 1989 〈40〉 to specify that if *print-readably* is not nil then

every object must be printed in a readable form, regardless of other printer control

variables. For conses, the simplest approach is to print them, when *print-readably*

is not nil, as if *print-level* and *print-length* were nil, regardless of their actual

values.

Bitvectors..

A bitvector is printed as #--* followed by the bits of the bitvector in order. If *print-

array* is nil, however, then the bitvector is printed in a format (using #--<) that is

concise but not readable. If the bitvector has a fill pointer, then only those bits below

the fill pointer are printed.

X3J13 voted in June 1989 〈40〉 to specify that if *print-readably* is not nil then

every object must be printed in a readable form, regardless of other printer control

variables. For bitvectors, the simplest approach is to print them, when *print-

readably* is not nil, as if *print-array* were not nil, regardless of the actual value

of *print-array*.

Vectors

Any vector other than a string or bitvector is printed using generalvector syntax;

this means that information about specialized vector representations will be lost. The

printed representation of a zerolength vector is #--(). The printed representation of a

nonzerolength vector begins with #--(. Following that, the first element of the vector

is printed. If there are any other elements, they are printed in turn, with a space

printed before each additional element. A close parenthesis after the last element

terminates the printed representation of the vector.

The printing of vectors is affected by the variables *print-level* and *print-
..

length*. If the vector has a fill pointer, then only those elements below the fill pointer

are printed.

...

552 COMMON LISP

If *print-array* is nil, however, then the vector is not printed as described above,

but in a format (using #--<) that is concise but not readable.

X3J13 voted in June 1989 〈40〉 to specify that if *print-readably* is not nil then

every object must be printed in a readable form, regardless of other printer control

variables. For vectors, the simplest approach is to print them, when *print-readably*

is not nil, as if *print-level* and *print-length* were nil and *print-array* were

not nil, regardless of their actual values.

Arrays

Normally any array other than a vector is printed using #--nA format. Let n be the

rank of the array. Then #-- is printed, then n as a decimal integer, then A, then n

open parentheses. Next the elements are scanned in rowmajor order. Imagine the

array indices being enumerated in odometer fashion, recalling that the dimensions

are numbered from 0 to n − 1. Every time the index for dimension j is incremented,

the following actions are taken:

1. If j < n − 1, then print a close parenthesis.

2. If incrementing the index for dimension j caused it to equal dimension j, reset that

index to zero and increment dimension j− 1 (thereby performing these three steps

recursively), unless j = 0, in which case simply terminate the entire algorithm. If

incrementing the index for dimension j did not cause it to equal dimension j, then

print a space.

3. If j < n − 1, then print an open parenthesis.

This causes the contents to be printed in a format suitable for use as the :initial-

contents argument to make-array.

The lists effectively printed by this procedure are subject to truncation by *print-
...

level* and *print-length*.

If the array is of a specialized type, containing bits or stringcharacters, then the

innermost lists generated by the algorithm given above may instead be printed using

bitvector or string syntax, provided that these innermost lists would not be subject to

truncation by *print-length*. For example, a 3by2by4 array of stringcharacters

that would ordinarily be printed as

#--3A(((#--\s #--\t #--\o #--\p) (#--\s #--\p #--\o #--\t))

((#--\p #--\o #--\s #--\t) (#--\p #--\o #--\t #--\s))

((#--\t #--\o #--\p #--\s) (#--\o #--\p #--\t #--\s)))

may instead be printed more concisely as

...

INPUT/OUTPUT 553

#--3A(("stop" "spot") ("post" "pots") ("tops" "opts"))

If *print-array* is nil, then the array is printed in a format (using #--<) that is concise
...

but not readable.

X3J13 voted in June 1989 〈40〉 to specify that if *print-readably* is not nil then

every object must be printed in a readable form, regardless of other printer control

variables. For arrays, the simplest approach is to print them, when *print-readably*

is not nil, as if *print-level* and *print-length* were nil and *print-array* were

not nil, regardless of their actual values.

Randomstates

Common Lisp does not specify a specific syntax for printing objects of type random-

state. However, every implementation must arrange to print a randomstate object

in such a way that, within the same implementation of Common Lisp, the function

read can construct from the printed representation a copy of the randomstate object

as if the copy had been made by make-random-state.

Pathnames...

Common Lisp does not specify a specific syntax for printing objects of type pathname.

However, every implementation must arrange to print a pathname in such a way that,

within the same implementation of Common Lisp, the function read can construct

from the printed representation an equivalent instance of the pathname object.

X3J13 voted in June 1989 〈131〉 to specify that if *print-escape* is true, a pathname

should be printed by write as #--P"..." where "..." is the namestring representation

of the pathname. If *print-escape* is false, write prints a pathname by printing its

namestring (presumably without escape characters or surrounding double quotes).

X3J13 voted in June 1989 〈40〉 to specify that if *print-readably* is not nil then

every object must be printed in a readable form, regardless of other printer control

variables. For pathnames, the simplest approach is to print them, when *print-

readably* is not nil, as if *print-escape* were nil, regardless of its actual value.

Structures defined by defstruct are printed under the control of the userspecified

:print-function option to defstruct. If the user does not provide a printing function

explicitly, then a default printing function is supplied that prints the structure using

#--S syntax (see section 22.1.4).

Any other types are printed in an implementationdependent manner. It is rec
..

ommended that printed representations of all such objects begin with the characters

#--< and end with > so that the reader will catch such objects and not permit them to

be read under normal circumstances. It is specifically and purposely not required

that a Common Lisp implementation be able to print an object of type hash-table,

...

554 COMMON LISP

readtable, package, stream, or function in a way that can be read back in successfully

by read; the use of #--< syntax is especially recommended for the printing of such

objects.

X3J13 voted in June 1989 〈40〉 to specify that if *print-readably* is not nil then

every object must be printed in a readable form, regardless of the values of other

printer control variables; if this is not possible, then an error of type print-not-

readable must be signaled to avoid printing an unreadable syntax such as #--<...>.

X3J13 voted in June 1989 〈40〉 to add print-unreadable-object, a macro that

prints an object using #--<...> syntax and also takes care of checking the variable

print-readably.

When debugging or when frequently dealing with large or deep objects at top level,

the user may wish to restrict the printer from printing large amounts of information.

The variables *print-level* and *print-length* allow the user to control how deep

the printer will print and how many elements at a given level the printer will print.

Thus the user can see enough of the object to identify it without having to wade

through the entire expression.

[Variable]*print-readably*

The default value of *print-readably* is nil. If *print-readably* is true, then printing

any object must either produce a printed representation that the reader will accept

or signal an error. If printing is successful, the reader will, on reading the printed

representation, produce an object that is “similar as a constant” (see section 25.1.4)

to the object that was printed.

If *print-readably* is true and printing a readable printed representation is not

possible, the printer signals an error of type print-not-readable rather than using

an unreadable syntax such as #--<. The printed representation produced when *print-

readably* is true might or might not be the same as the printed representation produced

when *print-readably* is false.

If *print-readably* is true and another printer control variable (such as

print-length, *print-level*, *print-escape*, *print-gensym*, *print-array*, or an

implementationdefined printer control variable) would cause the preceding require

ments to be violated, that other printer control variable is ignored.

The printing of interned symbols is not affected by *print-readably*.

Note that the “similar as a constant” rule for readable printing implies that #--A or #--(

syntax cannot be used for arrays of elementtype other than t. An implementation will

have to use another syntax or signal a print-not-readable error. A print-not-readable

error will not be signaled for strings or bitvectors.

All methods for print-object must obey *print-readably*. This rule applies to

both userdefined methods and implementationdefined methods.

INPUT/OUTPUT 555

The reader control variable *read-eval* also affects printing. If *read-eval* is false

and *print-readably* is true, any print-object method that would otherwise output

a #--. reader macro must either output something different or signal an error of type

print-not-readable.

Readable printing of structures and objects of type standard-object is controlled

by their print-object methods, not by their make-load-form methods. “Similarity

as a constant” for these objects is applicationdependent and hence is defined to be

whatever these methods do.

print-readably allows errors involving data with no readable printed representa

tion to be detected when writing the file rather than later on when the file is read.

print-readably is more rigorous than *print-escape*; output printed with es

capes must be merely generally recognizable by humans, with a good chance of

being recognizable by computers, whereas output printed readably must be reliably

recognizable by computers.

[Variable]*print-escape*

When this flag is nil, then escape characters are not output when an expression is

printed. In particular, a symbol is printed by simply printing the characters of its

print name. The function princ effectively binds *print-escape* to nil.

When this flag is not nil, then an attempt is made to print an expression in such

a way that it can be read again to produce an equal structure. The function prin1

effectively binds *print-escape* to t. The initial value of this variable is t.

Compatibility note: *print-escape* controls what was called slashification in MacLisp.

[Variable]*print-pretty*

When this flag is nil, then only a small amount of whitespace is output when printing

an expression.

When this flag is not nil, then the printer will endeavor to insert extra whitespace

where appropriate to make the expression more readable. A few other simple changes

may be made, such as printing ´foo instead of (quote foo).

The initial value of *print-pretty* is implementationdependent.

X3J13 voted in January 1989 〈139〉 to adopt a facility for usercontrolled pretty

printing in Common Lisp (see chapter 27).

...

556 COMMON LISP

[Variable]*print-circle*

When this flag is nil (the default), then the printing process proceeds by recursive

descent; an attempt to print a circular structure may lead to looping behavior and

failure to terminate.

When this flag is not nil, then the printer will endeavor to detect cycles in the
...

structure to be printed, and to use #--n−− and #--n#-- syntax to indicate the circularities.

X3J13 voted in June 1989 〈142〉 to specify that if *print-circle* is true, the printer

is required to detect not only cycles but shared substructure, indicating both through

the use of #--n−− and #--n#-- syntax. As an example, under the specification of the first

edition

(print ´(#--1−−(a #--1#--) #--1#--))

might legitimately print (#--1−−(A #--1#--) #--1#--) or (#--1−−(A #--1#--) #--2−−(A #--2#--)); the vote spec

ifies that the first form is required.

X3J13 voted in January 1989 〈143〉 to specify that userdefined printing functions

for the defstruct :print-function option, as well as userdefined methods for the

CLOS generic function print-object, may print objects to the supplied stream using

write, print1, princ, format, or print-object and expect circularities to be detected

and printed using #--n#-- syntax (when *print-circle* is nonnil, of course).

It seems to me that the same ought to apply to abbreviation as controlled by

print-level and *print-length*, but that was not addressed by this vote.

[Variable]*print-base*

The value of *print-base* determines in what radix the printer will print rationals.

This may be any integer from 2 to 36, inclusive; the default value is 10 (decimal radix).

For radices above 10, letters of the alphabet are used to represent digits above 9.

Compatibility note: MacLisp calls this variable base, and its default value is 8, not 10.

In both MacLisp and Common Lisp, floatingpoint numbers are always printed in decimal,

no matter what the value of *print-base*.

[Variable]*print-radix*

If the variable *print-radix* is nonnil, the printer will print a radix specifier to

indicate the radix in which it is printing a rational number. To prevent confusion of

the letter O with the digit 0, and of the letter B with the digit 8, the radix specifier is

always printed using lowercase letters. For example, if the current base is twentyfour

(decimal), the decimal integer twentythree would print as #--24rN. If *print-base* is 2,

INPUT/OUTPUT 557

8, or 16, then the radix specifier used is #--b, #--o, or #--x. For integers, base ten is indicated

by a trailing decimal point instead of a leading radix specifier; for ratios, however,

#--10r is used. The default value of *print-radix* is nil.

[Variable]*print-case*

The read function normally converts lowercase characters appearing in symbols to

corresponding uppercase characters, so that internally print names normally contain

only uppercase characters. However, users may prefer to see output using lowercase

letters or letters of mixed case. This variable controls the case (upper, lower, or

mixed) in which to print any uppercase characters in the names of symbols when

verticalbar syntax is not used. The value of *print-case* should be one of the

keywords :upcase, :downcase, or :capitalize; the initial value is :upcase.

Lowercase characters in the internal print name are always printed in lowercase,and

are preceded by a single escape character or enclosed by multiple escape characters.

Uppercase characters in the internal print name are printed in uppercase, in lowercase,

or in mixed case so as to capitalize words, according to the value of *print-case*.

The convention for what constitutes a “word” is the same as for the function string-

capitalize.

X3J13 voted in June 1989 〈141〉 to clarify the interaction of *print-case* with

print-escape. When *print-escape* is nil, *print-case* determines the case in

which to print all uppercase characters in the print name of the symbol. When *print-

escape* is not nil, the implementation has some freedom as to which characters will

be printed so as to appear in an “escape context” (after an escape character, typically \,

or between multiple escape characters, typically |); *print-case* determines the case

in which to print all uppercase characters that will not appear in an escape context. For

example, when the value of *print-case* is :upcase, an implementation might choose

to print the symbol whose print name is "(S)HE" as \(S\)HE or as |(S)HE|, among other

possibilities. When the value of *print-case* is :downcase, the corresponding output

should be \(s\)he or |(S)HE|, respectively.

Consider the following test code. (For the sake of this example assume that

readtable-case is :upcase in the current readtable; this is discussed further below.)

(let ((tabwidth 11))

(dolist (sym ´(|x| |FoObAr| |fOo|))

(let ((tabstop -1))

(format t "˜&")

(dolist (escape ´(t nil))

(dolist (case ´(:upcase :downcase :capitalize))

558 COMMON LISP

(format t "˜VT" (* (incf tabstop) tabwidth))

(write sym :escape escape :case case)))))

(format t " %"))

An implementation that leans heavily on multipleescape characters (vertical bars)

might produce the following output:

|x| |x| |x| x x x

|FoObAr| |FoObAr| |FoObAr| FoObAr foobar Foobar

|fOo| |fOo| |fOo| fOo foo foo

An implementation that leans heavily on singleescape characters (backslashes) might

produce the following output:

\x \x \x x x x

F\oO\bA\r f\oo\ba\r F\oo\ba\r FoObAr foobar Foobar

\fO\o \fo\o \fo\o fOo foo foo

These examples are not exhaustive; output using both kinds of escape characters (for

example, |FoO|\bA\r) is permissible (though ugly).

X3J13 voted in June 1989 〈150〉 to add a new readtable-case slot to readtables

to control automatic case conversion during the reading of symbols. The value of

readtable-case in the current readtable also affects the printing of unescaped letters

(letters appearing in an escape context are always printed in their own case).

. If readtable-case is :upcase, unescaped uppercase letters are printed in the case

specified by *print-case* and unescaped lowercase letters are printed in their

own case. (If *print-escape* is nonnil, all lowercase letters will necessarily be

escaped.)

. If readtable-case is :downcase, unescaped lowercase letters are printed in the case

specified by *print-case* and unescaped uppercase letters are printed in their

own case. (If *print-escape* is nonnil, all uppercase letters will necessarily be

escaped.)

. If readtable-case is :preserve, all unescaped letters are printed in their own case,

regardless of the value of *print-case*. There is no need to escape any letters,

even if *print-escape* is nonnil, though the X3J13 vote did not prohibit escaping

letters in this situation.

. If readtable-case is :invert, and if all unescaped letters are of the same case, then

the case of all the unescaped letters is inverted; but if the unescaped letters are not

all of the same case then each is printed in its own case. (Thus :invert does not

always invert the case; the inversion is conditional.) There is no need to escape any

INPUT/OUTPUT 559

letters, even if *print-escape* is nonnil, though the X3J13 vote did not prohibit

escaping letters in this situation.

Consider the following code.

;;; Generate a table illustrating READTABLE-CASE and *PRINT-CASE*.

(let ((*readtable* (copy-readtable nil))

(*print-case* *print-case*))

(format t "READTABLE-CASE *PRINT-CASE* Symbol-name Output˜

˜%--˜

˜%")

(dolist (readtable-case ´(:upcase :downcase :preserve :invert))

(setf (readtable-case *readtable*) readtable-case)

(dolist (print-case ´(:upcase :downcase :capitalize))

(dolist (sym ´(|ZEBRA| |Zebra| |zebra|))

(setq *print-case* print-case)

(format t ":˜A˜15T:˜A˜29T˜A˜42T˜A˜%"

(string-upcase readtable-case)

(string-upcase print-case)

(symbol-name sym)

(prin1-to-string sym)))))))

Note that the call to prin1-to-string (the last argument in the call to format that is

within the nested loops) effectively uses a nonnil value for *print-escape*.

Assuming an implementation that uses vertical bars around a symbol name if any

characters need escaping, the output from this test code should be

READTABLE-CASE *PRINT-CASE* Symbol-name Output

--

:UPCASE :UPCASE ZEBRA ZEBRA

:UPCASE :UPCASE Zebra |Zebra|

:UPCASE :UPCASE zebra |zebra|

:UPCASE :DOWNCASE ZEBRA zebra

:UPCASE :DOWNCASE Zebra |Zebra|

:UPCASE :DOWNCASE zebra |zebra|

:UPCASE :CAPITALIZE ZEBRA Zebra

:UPCASE :CAPITALIZE Zebra |Zebra|

:UPCASE :CAPITALIZE zebra |zebra|

:DOWNCASE :UPCASE ZEBRA |ZEBRA|

:DOWNCASE :UPCASE Zebra |Zebra|

:DOWNCASE :UPCASE zebra ZEBRA

560 COMMON LISP

:DOWNCASE :DOWNCASE ZEBRA |ZEBRA|

:DOWNCASE :DOWNCASE Zebra |Zebra|

:DOWNCASE :DOWNCASE zebra zebra

:DOWNCASE :CAPITALIZE ZEBRA |ZEBRA|

:DOWNCASE :CAPITALIZE Zebra |Zebra|

:DOWNCASE :CAPITALIZE zebra Zebra

:PRESERVE :UPCASE ZEBRA ZEBRA

:PRESERVE :UPCASE Zebra Zebra

:PRESERVE :UPCASE zebra zebra

:PRESERVE :DOWNCASE ZEBRA ZEBRA

:PRESERVE :DOWNCASE Zebra Zebra

:PRESERVE :DOWNCASE zebra zebra

:PRESERVE :CAPITALIZE ZEBRA ZEBRA

:PRESERVE :CAPITALIZE Zebra Zebra

:PRESERVE :CAPITALIZE zebra zebra

:INVERT :UPCASE ZEBRA zebra

:INVERT :UPCASE Zebra Zebra

:INVERT :UPCASE zebra ZEBRA

:INVERT :DOWNCASE ZEBRA zebra

:INVERT :DOWNCASE Zebra Zebra

:INVERT :DOWNCASE zebra ZEBRA

:INVERT :CAPITALIZE ZEBRA zebra

:INVERT :CAPITALIZE Zebra Zebra

:INVERT :CAPITALIZE zebra ZEBRA

This illustrates all combinations for readtable-case and *print-case*.

INPUT/OUTPUT 561

Table 226: Examples of Print Level and Print Length Abbreviation

v n Output

0 1 #--

1 1 (if ...)

1 2 (if #-- ...)

1 3 (if #-- #-- ...)

1 4 (if #-- #-- #--)

2 1 (if ...)

2 2 (if (member x ...) ...)

2 3 (if (member x y) (+ #-- 3) ...)

3 2 (if (member x ...) ...)

3 3 (if (member x y) (+ (car x) 3) ...)

3 4 (if (member x y) (+ (car x) 3) ´(foo . #--(a b c d ...)))

3 5 (if (member x y) (+ (car x) 3) ´(foo . #--(a b c d "Baz")))

[Variable]*print-gensym*

The *print-gensym* variable controls whether the prefix #--: is printed before symbols

that have no home package. The prefix is printed if the variable is not nil. The initial

value of *print-gensym* is t.

[Variable]*print-level*

[Variable]*print-length*

The *print-level* variable controls how many levels deep a nested data object

will print. If *print-level* is nil (the initial value), then no control is exercised.

Otherwise, the value should be an integer, indicating the maximum level to be

printed. An object to be printed is at level 0; its components (as of a list or vector) are

at level 1; and so on. If an object to be recursively printed has components and is at

a level equal to or greater than the value of *print-level*, then the object is printed

as simply #--.

The *print-length* variable controls how many elements at a given level are

printed. A value of nil (the initial value) indicates that there be no limit to the

number of components printed. Otherwise, the value of *print-length* should be an

integer. Should the number of elements of a data object exceed the value *print-

length*, the printer will print three dots, ..., in place of those elements beyond the

number specified by *print-length*. (In the case of a dotted list, if the list contains

exactly as many elements as the value of *print-length*, and in addition has the

562 COMMON LISP

nonnull atom terminating it, that terminating atom is printed rather than the three

dots.)

print-level and *print-length* affect the printing not only of lists but also of

vectors, arrays, and any other object printed with a listlike syntax. They do not affect

the printing of symbols, strings, and bitvectors.

The Lisp reader will normally signal an error when reading an expression that has

been abbreviated because of level or length limits. This signal is given because the #--

dispatch character normally signals an error when followed by whitespace or), and

because ... is defined to be an illegal token, as are all tokens consisting entirely of

periods (other than the single dot used in dot notation).

As an example, table 226 shows the ways the object

(if (member x y) (+ (car x) 3) ´(foo . #--(a b c d "Baz")))

would be printed for various values of *print-level* (in the column labeled v) and

print-length (in the column labeled n).

[Variable]*print-array*

If *print-array* is nil, then the contents of arrays other than strings are never printed.

Instead, arrays are printed in a concise form (using #--<) that gives enough information

for the user to be able to identify the array but does not include the entire array

contents. If *print-array* is not nil, nonstring arrays are printed using #--(, #--*, or #--nA

syntax.

Notice of correction. In the first edition, the preceding paragraph mentioned the

nonexistent variable print-array instead of *print-array*.

The initial value of *print-array* is implementationdependent.

[Macro]with-standard-io-syntax {declaration}∗ { form}∗

X3J13 voted in June 1989 〈40〉 to add the macro with-standard-io-syntax. Within

the dynamic extent of the body, all reader/printer control variables, including any

implementationdefined ones not specified by Common Lisp, are bound to values

that produce standard read/print behavior. Table 227 shows the values to which

standard Common Lisp variables are bound.

The values returned by with-standard-io-syntax are the values of the last body

form, or nil if there are no body forms.

The intent is that a pair of executions, as shown in the following example, should

provide reasonable reliable communication of data from one Lisp process to another:

INPUT/OUTPUT 563

Table 227: Standard Bindings for I/O Control Variables

Variable Value

package the common-lisp-user package

print-array t

print-base 10

print-case :upcase

print-circle nil

print-escape t

print-gensym t

print-length nil

print-level nil

print-lines nil *

print-miser-width nil *

print-pprint-dispatch nil *

print-pretty nil

print-radix nil

print-readably t

print-right-margin nil *

read-base 10

read-default-float-format single-float

read-eval t

read-suppress nil

readtable the standard readtable

* X3J13 voted in June 1989 〈139〉 to introduce the printer control variables *print-right-

margin*, *print-miser-width*, *print-lines*, and *print-pprint-dispatch* (see section 27.2) but

did not specify the values to which with-standard-io-syntax should bind them. I recommend

that all four should be bound to nil.

;;; Write DATA to a file.

(with-open-file (file pathname :direction :output)

(with-standard-io-syntax

(print data file)))

;;; ... Later, in another Lisp:

(with-open-file (file pathname :direction :input)

(with-standard-io-syntax

(setq data (read file))))

Using with-standard-io-syntax to bind all the variables, instead of using let and

explicit bindings, ensures that nothing is overlooked and avoids problems with

564 COMMON LISP

implementationdefined reader/printer control variables. If the user wishes to use

a nonstandard value for some variable, such as *package* or *read-eval*, it can be

bound by let inside the body of with-standard-io-syntax. For example:

;;; Write DATA to a file. Forbid use of #--. syntax.

(with-open-file (file pathname :direction :output)

(let ((*read-eval* nil))

(with-standard-io-syntax

(print data file))))

;;; Read DATA from a file. Forbid use of #--. syntax.

(with-open-file (file pathname :direction :input)

(let ((*read-eval* nil))

(with-standard-io-syntax

(setq data (read file)))))

Similarly, a user who dislikes the arbitrary choice of values for *print-circle* and

print-pretty can bind these variables to other values inside the body.

The X3J13 vote left it unclear whether with-standard-io-syntax permits declara

tions to appear before the body of the macro call. I believe that was the intent, and

this is reflected in the syntax shown above; but this is only my interpretation.

22.2. Input Functions

The input functions are divided into two groups: those that operate on streams of

characters and those that operate on streams of binary data.

22.2.1. Input from Character Streams

Many character input functions take optional arguments called inputstream, eof

errorp, and eofvalue. The inputstream argument is the stream from which to

obtain input; if unsupplied or nil it defaults to the value of the special variable

standard-input. One may also specify t as a stream, meaning the value of the

special variable *terminal-io*.

The eoferrorp argument controls what happens if input is from a file (or any other

input source that has a definite end) and the end of the file is reached. If eoferrorp

is true (the default), an error will be signaled at end of file. If it is false, then no error

is signaled, and instead the function returns eofvalue.

X3J13 voted in January 1989 〈7〉 to clarify that an eofvalue argument may be any

Lisp datum whatsoever.

INPUT/OUTPUT 565

Functions such as read that read the representation of an object rather than a single

character will always signal an error, regardless of eoferrorp, if the file ends in the

middle of an object representation. For example, if a file does not contain enough

right parentheses to balance the left parentheses in it, read will complain. If a file

ends in a symbol or a number immediately followed by endoffile, read will read

the symbol or number successfully and when called again will see the endoffile

and only then act according to eoferrorp. Similarly, the function read-line will

successfully read the last line of a file even if that line is terminated by endoffile

rather than the newline character. If a file contains ignorable text at the end, such as

blank lines and comments, read will not consider it to end in the middle of an object.

Thus an eoferrorp argument controls what happens when the file ends between

objects.

Many input functions also take an argument called recursivep. If specified and

not nil, this argument specifies that this call is not a “toplevel” call to read but an

imbedded call, typically from the function for a macro character. It is important to

distinguish such recursive calls for three reasons.

First, a toplevel call establishes the context within which the #--n−− and #--n#-- syntax

is scoped. Consider, for example, the expression

(cons ´#--3−−(p q r) ´(x y . #--3#--))

If the singlequote macro character were defined in this way:

(set-macro-character #--\´
#--´(lambda (stream char)

(declare (ignore char))

(list ´quote (read stream))))

then the expression could not be read properly, because there would be no way to

know when read is called recursively by the first occurrence of ´ that the label #--3−−

would be referred to later in the containing expression. There would be no way

to know because read could not determine that it was called by a macrocharacter

function rather than from “top level.” The correct way to define the single quote

macro character uses the recursivep argument:

(set-macro-character #--\´
#--´(lambda (stream char)

(declare (ignore char))

(list ´quote (read stream t nil t))))

Second, a recursive call does not alter whether the reading process is to preserve

whitespace or not (as determined by whether the toplevel call was to read or read-

566 COMMON LISP

preserving-whitespace). Suppose again that the single quote had the first, incorrect,

macrocharacter definition shown above. Then a call to read-preserving-whitespace

that read the expression ´foo would fail to preserve the space character following

the symbol foo because the singlequote macrocharacter function calls read, not

read-preserving-whitespace, to read the following expression (in this case foo). The

correct definition, which passes the value t for the recursivep argument to read,

allows the toplevel call to determine whether whitespace is preserved.

Third, when endoffile is encountered and the eoferrorp argument is not nil, the

kind of error that is signaled may depend on the value of recursivep. If recursivep

is not nil, then the endoffile is deemed to have occurred within the middle of a

printed representation; if recursivep is nil, then the endoffile may be deemed to

have occurred between objects rather than within the middle of one.

[Function]read &optional input-stream eof-error-p eof-value recursive-p

read reads in the printed representation of a Lisp object from inputstream, builds a

corresponding Lisp object, and returns the object.

Note that when the variable *read-suppress* is not nil, then read reads in a printed

representation as best it can, but most of the work of interpreting the representation

is avoided (the intent being that the result is to be discarded anyway). For example,

all extended tokens produce the result nil regardless of their syntax.

[Variable]*read-default-float-format*

The value of this variable must be a type specifier symbol for a specific floatingpoint

format; these include short-float, single-float, double-float, and long-float and

may include implementationspecific types as well. The default value is single-float.

read-default-float-format indicates the floatingpoint format to be used for

reading floatingpoint numbers that have no exponent marker or have e or E for an

exponent marker. (Other exponent markers explicitly prescribe the floatingpoint

format to be used.) The printer also uses this variable to guide the choice of exponent

markers when printing floatingpoint numbers.

[Function]read-preserving-whitespace &optional in-stream eof-error-p

eof-value recursive-p

Certain printed representations given to read, notably those of symbols and numbers,

require a delimiting character after them. (Lists do not, because the close parenthesis

marks the end of the list.) Normally read will throw away the delimiting character if

it is a whitespace character; but read will preserve the character (using unread-char)

if it is syntactically meaningful, because it may be the start of the next expression.

INPUT/OUTPUT 567

X3J13 voted in January 1989 〈138〉 to clarify the interaction of unread-char

with echo streams. These changes indirectly affect the echoing behavior of read-

preserving-whitespace.

The function read-preserving-whitespace is provided for some specialized situ

ations where it is desirable to determine precisely what character terminated the

extended token.

As an example, consider this macrocharacter definition:

(defun slash-reader (stream char)

(declare (ignore char))

(do ((path (list (read-preserving-whitespace stream))

(cons (progn (read-char stream nil nil t)

(read-preserving-whitespace

stream))

path)))

((not (char−− (peek-char nil stream nil nil t) #--\/))

(cons ´path (nreverse path)))))

(set-macro-character #--\/ #--´slash-reader)

(This is actually a rather dangerous definition to make because expressions such as

(/ x 3) will no longer be read properly. The ability to reprogram the reader syntax

is very powerful and must be used with caution. This redefinition of / is shown here

purely for the sake of example.)

Consider now calling read on this expression:

(zyedh /usr/games/zork /usr/games/boggle)

The / macro reads objects separated by more / characters; thus /usr/games/zork is

intended to be read as (path usr games zork). The entire example expression should

therefore be read as

(zyedh (path usr games zork) (path usr games boggle))

However, if read had been used instead of read-preserving-whitespace, then after the

reading of the symbol zork, the following space would be discarded; the next call

to peek-char would see the following /, and the loop would continue, producing this

interpretation:

(zyedh (path usr games zork usr games boggle))

On the other hand, there are times when whitespace should be discarded. If a

command interpreter takes singlecharacter commands, but occasionally reads a Lisp

568 COMMON LISP

object, then if the whitespace after a symbol is not discarded it might be interpreted

as a command some time later after the symbol had been read.

Note that read-preserving-whitespace behaves exactly like read when the recursive

p argument is not nil. The distinction is established only by calls with recursivep

equal to nil or omitted.

[Function]read-delimited-list char &optional input-stream recursive-p

This reads objects from stream until the next character after an object’s representation

(ignoring whitespace characters and comments) is char. (The char should not have

whitespace syntax in the current readtable.) A list of the objects read is returned.

To be more precise, read-delimited-list looks ahead at each step for the next

nonwhitespace character and peeks at it as if with peek-char. If it is char, then the

character is consumed and the list of objects is returned. If it is a constituent or escape

character, then read is used to read an object, which is added to the end of the list. If

it is a macro character, the associated macro function is called; if the function returns

a value, that value is added to the list. The peekahead process is then repeated.

X3J13 voted in January 1989 〈138〉 to clarify the interaction of peek-char with

echo streams. These changes indirectly affect the echoing behavior of the function

read-delimited-list.

This function is particularly useful for defining new macro characters. Usually it

is desirable for the terminating character char to be a terminating macro character so

that it may be used to delimit tokens; however, read-delimited-list makes no attempt

to alter the syntax specified for char by the current readtable. The user must make

any necessary changes to the readtable syntax explicitly. The following example

illustrates this.

Suppose you wanted #--{a b c ... z} to be read as a list of all pairs of the elements

a, b, c, ..., z; for example:

#--{p q z a} reads as ((p q) (p z) (p a) (q z) (q a) (z a))

This can be done by specifying a macrocharacter definition for #--{ that does two

things: read in all the items up to the }, and construct the pairs. read-delimited-list

performs the first task.

Note that mapcon allows the mapped function to examine the items of the list after

the current one, and that mapcon uses nconc, which is all right because mapcar will

produce fresh lists.

INPUT/OUTPUT 569

(defun |#--{-reader| (stream char arg)

(declare (ignore char arg))

(mapcon #--´(lambda (x)

(mapcar #--´(lambda (y) (list (car x) y)) (cdr x)))

(read-delimited-list #--\} stream t)))

(set-dispatch-macro-character #--\#-- #--\{ #--´|#--{-reader|)

(set-macro-character #--\} (get-macro-character #--\) nil))

(Note that t is specified for the recursivep argument.)

It is necessary here to give a definition to the character } as well to prevent it from

being a constituent. If the line

(set-macro-character #--\} (get-macro-character #--\) nil))

shown above were not included, then the } in

#--{p q z a}

would be considered a constituent character, part of the symbol named a}. One could

correct for this by putting a space before the }, but it is better simply to use the call

to set-macro-character.

Giving } the same definition as the standard definition of the character) has the

twin benefit of making it terminate tokens for use with read-delimited-list and also

making it illegal for use in any other context (that is, attempting to read a stray } will

signal an error).

Note that read-delimited-list does not take an eoferrorp (or eofvalue) argument.

The reason is that it is always an error to hit endoffile during the operation of read-

delimited-list.

[Function]read-line &optional input-stream eof-error-p eof-value recursive-p

read-line reads in a line of text terminated by a newline. It returns the line as a

character string (without the newline character). This function is usually used to

get a line of input from the user. A second returned value is a flag that is false if

the line was terminated normally, or true if endoffile terminated the (nonempty)

line. If endoffile is encountered immediately (that is, appears to terminate an empty

line), then endoffile processing is controlled in the usual way by the eoferrorp,

eofvalue, and recursivep arguments.

The corresponding output function is write-line.

570 COMMON LISP

[Function]read-char &optional input-stream eof-error-p eof-value recursive-p

read-char inputs one character from inputstream and returns it as a character object.

The corresponding output function is write-char.

X3J13 voted in January 1989 〈138〉 to clarify the interaction of read-char with

echo streams (as created by make-echo-stream). A character is echoed from the input

stream to the associated output stream the first time it is seen. If a character is read

again because of an intervening unread-char operation, the character is not echoed

again when read for the second time or any subsequent time.

[Function]unread-char character &optional input-stream

unread-char puts the character onto the front of inputstream. The character must

be the same character that was most recently read from the inputstream. The

inputstream “backs up” over this character; when a character is next read from

inputstream, it will be the specified character followed by the previous contents of

inputstream. unread-char returns nil.

One may apply unread-char only to the character most recently read from input

stream. Moreover, one may not invoke unread-char twice consecutively without an

intervening read-char operation. The result is that one may back up only by one

character, and one may not insert any characters into the input stream that were not

already there.

X3J13 voted in January 1989 〈181〉 to clarify that one also may not invoke unread-

char after invoking peek-char without an intervening read-char operation. This is

consistent with the notion that peek-char behaves much like read-char followed by

unread-char.

Rationale: This is not intended to be a general mechanism, but rather an efficient mechanism

for allowing the Lisp reader and other parsers to perform onecharacter lookahead in the input

stream. This protocol admits a wide variety of efficient implementations, such as simply

decrementing a buffer pointer. To have to specify the character in the call to unread-char is

admittedly redundant, since at any given time there is only one character that may be legally

specified. The redundancy is intentional, again to give the implementation latitude.

X3J13 voted in January 1989 〈138〉 to clarify the interaction of unread-char with

echo streams (as created by make-echo-stream). When a character is “unread” from

an echo stream, no attempt is made to “unecho” the character. However, a character

placed back into an echo stream by unread-char will not be reechoed when it is

subsequently reread by read-char.

INPUT/OUTPUT 571

[Function]peek-char &optional peek-type input-stream eof-error-p eof-value

recursive-p

What peek-char does depends on the peektype, which defaults to nil. With a peek

type of nil, peek-char returns the next character to be read from inputstream, without

actually removing it from the input stream. The next time input is done from input

stream, the character will still be there. It is as if one had called read-char and then

unread-char in succession.

If peektype is t, then peek-char skips over whitespace characters (but not com

ments) and then performs the peeking operation on the next character. This is useful

for finding the (possible) beginning of the next printed representation of a Lisp object.

The last character examined (the one that starts an object) is not removed from the

input stream.

If peektype is a character object, then peek-char skips over input characters until a

character that is char−− to that object is found; that character is left in the input stream.

X3J13 voted in January 1989 〈138〉 to clarify the interaction of peek-char with echo

streams (as created by make-echo-stream). When a character from an echo stream is

only peeked at, it is not echoed at that time. The character remains in the input stream

and may be echoed when read by read-char at a later time. Note, however, that if

the peektype is not nil, then characters skipped over (and therefore consumed) by

peek-char are treated as if they had been read by read-char, and will be echoed if

read-char would have echoed them.

[Function]listen &optional input-stream

The predicate listen is true if there is a character immediately available from input

stream, and is false if not. This is particularly useful when the stream obtains

characters from an interactive device such as a keyboard. A call to read-char would

simply wait until a character was available, but listen can sense whether or not

input is available and allow the program to decide whether or not to attempt input.

On a noninteractive stream, the general rule is that listen is true except when at

endoffile.

[Function]read-char-no-hang &optional input-stream eof-error-p eof-value

recursive-p

This function is exactly like read-char, except that if it would be necessary to wait

in order to get a character (as from a keyboard), nil is immediately returned without

waiting. This allows one to efficiently check for input availability and get the input

if it is available. This is different from the listen operation in two ways. First, read-

char-no-hang potentially reads a character, whereas listen never inputs a character.

572 COMMON LISP

Second, listen does not distinguish between endoffile and no input being available,

whereas read-char-no-hang does make that distinction, returning eofvalue at endof

file (or signaling an error if no eoferrorp is true) but always returning nil if no input

is available.

[Function]clear-input &optional input-stream

This clears any buffered input associated with inputstream. It is primarily useful

for clearing typeahead from keyboards when some kind of asynchronous error has

occurred. If this operation doesn’t make sense for the stream involved, then clear-

input does nothing. clear-input returns nil.

[Function]read-from-string string &optional eof-error-p eof-value &key :start

:end :preserve-whitespace

The characters of string are given successively to the Lisp reader, and the Lisp object

built by the reader is returned. Macro characters and so on will all take effect.

The arguments :start and :end delimit a substring of string beginning at the

character indexed by :start and up to but not including the character indexed by

:end. By default :start is 0 (the beginning of the string) and :end is (length string).

This is the same as for other string functions.

The flag :preserve-whitespace, if provided and not nil, indicates that the operation

should preserve whitespace as for read-preserving-whitespace. It defaults to nil.

As with other reading functions, the arguments eoferrorp and eofvalue control

the action if the end of the (sub)string is reached before the operation is completed;

reaching the end of the string is treated as any other endoffile event.

read-from-string returns two values: the first is the object read, and the second is

the index of the first character in the string not read. If the entire string was read, the

second result will be either the length of the string or one greater than the length of

the string. The parameter :preserve-whitespace may affect this second value.

(read-from-string "(a b c)") ⇒ (a b c) and 7

[Function]parse-integer string &key :start :end :radix :junk-allowed

This function examines the substring of string delimited by :start and :end (which

default to the beginning and end of the string). It skips over whitespace characters

and then attempts to parse an integer. The :radix parameter defaults to 10 and must

be an integer between 2 and 36.

If :junk-allowed is not nil, then the first value returned is the value of the number

parsed as an integer or nil if no syntactically correct integer was seen.

INPUT/OUTPUT 573

If :junk-allowed is nil (the default), then the entire substring is scanned. The

returned value is the value of the number parsed as an integer. An error is signaled

if the substring does not consist entirely of the representation of an integer, possibly

surrounded on either side by whitespace characters.

In either case, the second value is the index into the string of the delimiter that

terminated the parse, or it is the index beyond the substring if the parse terminated at

the end of the substring (as will always be the case if :junk-allowed is false).

Note that parse-integer does not recognize the syntactic radixspecifier prefixes

#--O, #--B, #--X, and #--nR, nor does it recognize a trailing decimal point. It permits only an

optional sign (+ or -) followed by a nonempty sequence of digits in the specified

radix.

22.2.2. Input from Binary Streams

Common Lisp currently specifies only a very simple facility for binary input: the

reading of a single byte as an integer.

[Function]read-byte binary-input-stream &optional eof-error-p eof-value

read-byte reads one byte from the binaryinputstream and returns it in the form of

an integer.

22.3. Output Functions

The output functions are divided into two groups: those that operate on streams of

characters and those that operate on streams of binary data. The function format

operates on streams of characters but is described in a section separate from the other

characteroutput functions because of its great complexity.

22.3.1. Output to Character Streams

These functions all take an optional argument called outputstream, which is where

to send the output. If unsupplied or nil, outputstream defaults to the value of the

variable *standard-output*. If it is t, the value of the variable *terminal-io* is used.

[Function]write object &key :stream :escape :radix :base :circle :pretty
..

:level :length :case :gensym :array

The printed representation of object is written to the output stream specified by

:stream, which defaults to the value of *standard-output*.

...

574 COMMON LISP

The other keyword arguments specify values used to control the generation of

the printed representation. Each defaults to the value of the corresponding global

variable: see *print-escape*, *print-radix*, *print-base*, *print-circle*, *print-

pretty*, *print-level*, *print-length*, *print-case*, *print-array*, and *print-

gensym*. (This is the means by which these variables affect printing operations:

supplying default values for the write function.) Note that the printing of symbols is

also affected by the value of the variable *package*. write returns object.

X3J13 voted in June 1989 〈40〉 to add the keyword argument :readably to the

function write, and voted in June 1989 〈139〉 to add the keyword arguments :right-

margin, :miser-width, :lines, and :pprint-dispatch. The revised description is as

follows.

[Function]write object &key :stream :escape :radix :base :circle :pretty

:level :length :case :gensym :array :readably :right-margin :miser-width

:lines :pprint-dispatch

The printed representation of object is written to the output stream specified by

:stream, which defaults to the value of *standard-output*.

The other keyword arguments specify values used to control the generation

of the printed representation. Each defaults to the value of the correspond

ing global variable: see *print-escape*, *print-radix*, *print-base*, *print-

circle*, *print-pretty*, *print-level*, *print-length*, and *print-case*, in addition

to *print-array*, *print-gensym*, *print-readably*, *print-right-margin*, *print-

miser-width*, *print-lines*, and *print-pprint-dispatch*. (This is the means by

which these variables affect printing operations: supplying default values for the

write function.) Note that the printing of symbols is also affected by the value of the

variable *package*. write returns object.

[Function]prin1 object &optional output-stream

[Function]print object &optional output-stream

[Function]pprint object &optional output-stream

[Function]princ object &optional output-stream

prin1 outputs the printed representation of object to outputstream. Escape characters

are used as appropriate. Roughly speaking, the output from prin1 is suitable for input

to the function read. prin1 returns the object as its value.

(prin1 object outputstream)

≡ (write object :stream outputstream :escape t)

INPUT/OUTPUT 575

print is just like prin1 except that the printed representation of object is preceded

by a newline (see terpri) and followed by a space. print returns object.

pprint is just like print except that the trailing space is omitted and the object

is printed with the *print-pretty* flag nonnil to produce “pretty” output. pprint

returns no values (that is, what the expression (values) returns: zero values).

X3J13 voted in January 1989 〈139〉 to adopt a facility for usercontrolled pretty

printing (see chapter 27).

princ is just like prin1 except that the output has no escape characters. A symbol

is printed as simply the characters of its print name; a string is printed without

surrounding double quotes; and there may be differences for other data types as well.

The general rule is that output from princ is intended to look good to people, while

output from prin1 is intended to be acceptable to the function read.

X3J13 voted in June 1987 〈140〉 to clarify that princ prints a character in exactly

the same manner as write-char: the character is simply sent to the output stream.

This was implied by the specification in section 22.1.6 in the first edition, but is worth

pointing out explicitly here.

princ returns the object as its value.

(princ object outputstream)

≡ (write object :stream outputstream :escape nil)

Compatibility note: In MacLisp, the functions prin1, print, and princ return t, not the

argument object.

[Function]write-to-string object &key :escape :radix :base :circle :pretty
..

:level :length :case :gensym :array

[Function]prin1-to-string object

[Function]princ-to-string object

The object is effectively printed as if by write, prin1, or princ, respectively, and the

characters that would be output are made into a string, which is returned.

Compatibility note: The Interlisp function mkstring corresponds to the Common Lisp function

princ-to-string.

576 COMMON LISP

[Function]write-to-string object &key :escape :radix :base :circle :pretty

:level :length :case :gensym :array :readably :right-margin

:miser-width :lines :pprint-dispatch

X3J13 voted in June 1989 (〈40〉 and 〈139〉) to add keyword arguments to write;

presumably they should also be added to write-to-string.

[Function]write-char character &optional output-stream

write-char outputs the character to outputstream, and returns character.

[Function]write-string string &optional output-stream &key :start :end

[Function]write-line string &optional output-stream &key :start :end

write-string writes the characters of the specified substring of string to the output

stream. The :start and :end parameters delimit a substring of string in the usual

manner (see chapter 14). write-line does the same thing but then outputs a newline

afterwards. (See read-line.) In either case, the string is returned (not the substring

delimited by :start and :end). In some implementations these may be much more

efficient than an explicit loop using write-char.

[Function]terpri &optional output-stream

[Function]fresh-line &optional output-stream

The function terpri outputs a newline to outputstream. It is identical in effect to

(write-char #--\Newline output-stream); however, terpri always returns nil.

fresh-line is similar to terpri but outputs a newline only if the stream is not

already at the start of a line. (If for some reason this cannot be determined, then a

newline is output anyway.) This guarantees that the stream will be on a “fresh line”

while consuming as little vertical distance as possible. fresh-line is a predicate that

is true if it output a newline, and otherwise false.

[Function]finish-output &optional output-stream

[Function]force-output &optional output-stream

[Function]clear-output &optional output-stream

Some streams may be implemented in an asynchronous or buffered manner. The

function finish-output attempts to ensure that all output sent to outputstream has

reached its destination, and only then returns nil. force-output initiates the emptying

of any internal buffers but returns nil without waiting for completion or acknowl

edgment.

INPUT/OUTPUT 577

The function clear-output, on the other hand, attempts to abort any outstanding

output operation in progress in order to allow as little output as possible to continue to

the destination. This is useful, for example, to abort a lengthy output to the terminal

when an asynchronous error occurs. clear-output returns nil.

The precise actions of all three of these operations are implementationdependent.

[Macro]print-unreadable-object (object stream

[[:type type | :identity id]])

{declaration}∗ { form}∗

X3J13 voted in June 1989 〈40〉 to add print-unreadable-object, which will output

a printed representation of object on stream, beginning with #--< and ending with >.

Everything output to the stream during execution of the body forms is enclosed in

the angle brackets. If type is true, the body output is preceded by a brief description

of the object’s type and a space character. If id is true, the body output is followed

by a space character and a representation of the object’s identity, typically a storage

address.

If *print-readably* is true, print-unreadable-object signals an error of type print-

not-readable without printing anything.

The object, stream, type, and id arguments are all evaluated normally. The type

and id default to false. It is valid to provide no body forms. If type and id are both

true and there are no body forms, only one space character separates the printed type

and the printed identity.

The value returned by print-unreadable-object is nil.

(defmethod print-object ((obj airplane) stream)

(print-unreadable-object (obj stream :type t :identity t)

(princ (tail-number obj) stream)))

(print my-airplane) prints

#--<Airplane NW0773 777500123135> ;In implementation A

or perhaps

#--<FAA:AIRPLANE NW0773 17> ;In implementation B

The big advantage of print-unreadable-object is that it allows a user to write print-

object methods that adhere to implementationspecific style without requiring the

user to write implementationdependent code.

The X3J13 vote left it unclear whether print-unreadable-object permits declara

tions to appear before the body of the macro call. I believe that was the intent, and

this is reflected in the syntax shown above; but this is only my interpretation.

578 COMMON LISP

22.3.2. Output to Binary Streams

Common Lisp currently specifies only a very simple facility for binary output: the

writing of a single byte as an integer.

[Function]write-byte integer binary-output-stream

write-byte writes one byte, the value of integer. It is an error if integer is not of the

type specified as the :element-type argument to open when the stream was created.

The value integer is returned.

22.3.3. Formatted Output to Character Streams

The function format is very useful for producing nicely formatted text, producing

goodlooking messages, and so on. format can generate a string or output to a stream.

Formatted output is performed not only by the format function itself but by certain

other functions that accept a control string “the way format does.” For example,

errorsignaling functions such as cerror accept format control strings.

[Function]format destination control-string &rest arguments

format is used to produce formatted output. format outputs the characters of control

string, except that a tilde (˜) introduces a directive. The character after the tilde,

possibly preceded by prefix parameters and modifiers, specifies what kind of format

ting is desired. Most directives use one or more elements of arguments to create

their output; the typical directive puts the next element of arguments into the output,

formatted in some special way. It is an error if no argument remains for a direc

tive requiring an argument, but it is not an error if one or more arguments remain

unprocessed by a directive.

The output is sent to destination. If destination is nil, a string is created that

contains the output; this string is returned as the value of the call to format.

X3J13 voted in January 1989 〈167〉 to specify that when the first argument to

format is nil, format creates a stream of type string-stream in much the same manner

as with-output-to-string. (This stream may be visible to the user if, for example,

the ˜S directive is used to print a defstruct structure that has a usersupplied print

function.)

In all other cases format returns nil, performing output to destination as a side

effect. If destination is a stream, the output is sent to it. If destination is t, the output

is sent to the stream that is the value of the variable *standard-output*. If destination

INPUT/OUTPUT 579

is a string with a fill pointer, then in effect the output characters are added to the end

of the string (as if by use of vector-push-extend).

The format function includes some extremely complicated and specialized fea

tures. It is not necessary to understand all or even most of its features to use format

effectively. The beginner should skip over anything in the following documentation

that is not immediately useful or clear. The more sophisticated features (such as

conditionals and iteration) are there for the convenience of programs with especially

complicated formatting requirements.

A format directive consists of a tilde (˜), optional prefix parameters separated by

commas, optional colon (:) and atsign (@) modifiers, and a single character indicating

what kind of directive this is. The alphabetic case of the directive character is ignored.

The prefix parameters are generally integers, notated as optionally signed decimal

numbers.

X3J13 voted in June 1987 〈80〉 to specify that if both colon and atsign modifiers

are present, they may appear in either order; thus ˜:@R and ˜@:R mean the same thing.

However, it is traditional to put the colon first, and all the examples in this book put

colons before atsigns.

Examples of control strings:

"˜S" ;An ˜S directive with no parameters or modifiers

"˜3,-4:@s" ;An ˜S directive with two parameters, 3 and −4,

; and both the colon and atsign flags

"˜,+4S" ;First prefix parameter is omitted and takes

; on its default value; the second parameter is 4

Sometimes a prefix parameter is used to specify a character, for instance the padding

character in a right or leftjustifying operation. In this case a single quote (´)

followed by the desired character may be used as a prefix parameter, to mean the

character object that is the character following the single quote. For example, you

can use ˜5,´0d to print an integer in decimal radix in five columns with leading zeros,

or ˜5,´*d to get leading asterisks.

In place of a prefix parameter to a directive, you can put the letter V (or v), which

takes an argument from arguments for use as a parameter to the directive. Normally

this should be an integer or character object, as appropriate. This feature allows

variablewidth fields and the like. If the argument used by a V parameter is nil,

the effect is as if the parameter had been omitted. You may also use the character

#-- in place of a parameter; it represents the number of arguments remaining to be

processed.

It is an error to give a format directive more parameters than it is described here

as accepting. It is also an error to give colon or atsign modifiers to a directive in a

combination not specifically described here as being meaningful.

580 COMMON LISP

X3J13 voted in January 1989 〈85〉 to clarify the interaction between format and

the various printer control variables (those named *print-xxx*). This is important

because many format operations are defined, directly or indirectly, in terms of prin1

or princ, which are affected by the printer control variables. The general rule is that

format does not bind any of the standard printer control variables except as specified

in the individual descriptions of directives. An implementation may not bind any

standard printer control variable not specified in the description of a format directive,

nor may an implementation fail to bind any standard printer control variables that

is specified to be bound by such a description. (See these descriptions for specific

changes voted by X3J13.)

One consequence of this change is that the user is guaranteed to be able to use the

format ˜A and ˜S directives to do pretty printing, under control of the *print-pretty*

variable. Implementations have differed on this point in their interpretations of the

first edition. The new ˜W directive may be more appropriate than either ˜A and ˜S for

some purposes, whether for pretty printing or ordinary printing. See section 27.4 for

a discussion of ˜W and other new format directives related to pretty printing.

Here are some relatively simple examples to give you the general flavor of how

format is used.

(format nil "foo") ⇒ "foo"

(setq x 5)

(format nil "The answer is ˜D." x) ⇒ "The answer is 5."

(format nil "The answer is ˜3D." x) ⇒ "The answer is 5."

(format nil "The answer is ˜3,´0D." x) ⇒ "The answer is 005."

(format nil "The answer is ˜:D." (expt 47 x))

⇒ "The answer is 229,345,007."

(setq y "elephant")

(format nil "Look at the ˜A!" y) ⇒ "Look at the elephant!"

(format nil "Type ˜:C to ˜A."

(set-char-bit #--\D :control t)

"delete all your files")

⇒ "Type Control-D to delete all your files."

INPUT/OUTPUT 581

(setq n 3)

(format nil "˜D item˜:P found." n) ⇒ "3 items found."

(format nil "˜R dog˜:[s are˜; is˜] here." n (−− n 1))

⇒ "three dogs are here."

(format nil "˜R dog˜:*˜[s are˜; is˜:;s are˜] here." n)

⇒ "three dogs are here."

(format nil "Here ˜[are˜;is˜:;are˜] ˜:*˜R pupp˜:@P." n)

⇒ "Here are three puppies."

In the descriptions of the directives that follow, the term arg in general refers to

the next item of the set of arguments to be processed. The word or phrase at the

beginning of each description is a mnemonic (not necessarily an accurate one) for

the directive.

˜A

Ascii. An arg, any Lisp object, is printed without escape characters (as by princ). In

particular, if arg is a string, its characters will be output verbatim. If arg is nil, it will

be printed as nil; the colon modifier (˜:A) will cause an arg of nil to be printed as (),

but if arg is a composite structure, such as a list or vector, any contained occurrences

of nil will still be printed as nil.

˜mincolA inserts spaces on the right, if necessary, to make the width at least mincol

columns. The @ modifier causes the spaces to be inserted on the left rather than the

right.

˜mincol,colinc,minpad,padcharA is the full form of ˜A, which allows elaborate

control of the padding. The string is padded on the right (or on the left if the @ modifier

is used) with at least minpad copies of padchar; padding characters are then inserted

colinc characters at a time until the total width is at least mincol. The defaults are 0

for mincol and minpad, 1 for colinc, and the space character for padchar.

X3J13 voted in January 1989 〈85〉 to specify that format binds *print-escape* to

nil during the processing of the ˜A directive.

˜S

Sexpression. This is just like ˜A, but arg is printed with escape characters (as by

prin1 rather than princ). The output is therefore suitable for input to read. ˜S accepts

all the arguments and modifiers that ˜A does.

X3J13 voted in January 1989 〈85〉 to specify that format binds *print-escape* to t

during the processing of the ˜S directive.

582 COMMON LISP

˜D

Decimal. An arg, which should be an integer, is printed in decimal radix. ˜D will

never put a decimal point after the number.

˜mincolD uses a column width of mincol; spaces are inserted on the left if the

number requires fewer than mincol columns for its digits and sign. If the number

doesn’t fit in mincol columns, additional columns are used as needed.

˜mincol,padcharD uses padchar as the pad character instead of space.

If arg is not an integer, it is printed in ˜A format and decimal base.

X3J13 voted in January 1989 〈85〉 to specify that format binds *print-escape* to

nil, *print-radix* to nil, and *print-base* to 10 during processing of ˜D.

The @ modifier causes the number’s sign to be printed always; the default is

to print it only if the number is negative. The : modifier causes commas to be

printed between groups of three digits; the third prefix parameter may be used to

change the character used as the comma. Thus the most general form of ˜D is

˜mincol,padchar,commacharD.

X3J13 voted in March 1988 〈82〉 to add a fourth parameter, the commainterval.

This must be an integer; if it is not provided, it defaults to 3. This parameter controls

the number of digits in each group separated by the commachar.

By extension, each of the ˜B, ˜O, and ˜X directives accepts a commainterval as a

fourth parameter, and the ˜R directive accepts a commainterval as its fifth parameter.

Examples:

(format nil "˜,,´ ,4B" #--xFACE) ⇒ "1111 1010 1100 1110"

(format nil "˜,,´ ,4B" #--x1CE) ⇒ "1 1100 1110"

(format nil "˜19,,´ ,4B" #--xFACE) ⇒ "1111 1010 1100 1110"

(format nil "˜19,,´ ,4B" #--x1CE) ⇒ "0000 0001 1100 1110"

This is one of those little improvements that probably don’t matter much but aren’t

hard to implement either. It was pretty silly having the number 3 wired into the

definition of comma separation when it is just as easy to make it a parameter.

˜B

Binary. This is just like ˜D but prints in binary radix (radix 2) instead of decimal.

The full form is therefore ˜mincol,padchar,commacharB.

X3J13 voted in January 1989 〈85〉 to specify that format binds *print-escape* to

nil, *print-radix* to nil, and *print-base* to 2 during processing of ˜B.

˜O

Octal. This is just like ˜D but prints in octal radix (radix 8) instead of decimal. The

full form is therefore ˜mincol,padchar,commacharO.

INPUT/OUTPUT 583

X3J13 voted in January 1989 〈85〉 to specify that format binds *print-escape* to

nil, *print-radix* to nil, and *print-base* to 8 during processing of ˜O.

˜X

Hexadecimal. This is just like ˜D but prints in hexadecimal radix (radix 16) instead

of decimal. The full form is therefore ˜mincol,padchar,commacharX.

X3J13 voted in January 1989 〈85〉 to specify that format binds *print-escape* to

nil, *print-radix* to nil, and *print-base* to 16 during processing of ˜X.

Compatibility note: In MacLisp and Lisp Machine Lisp the ˜X directive outputs a space, and

˜nX outputs n spaces, in a manner analogous to Fortran X format. In Common Lisp the directive

˜@T is used for that purpose.

˜R

Radix. ˜nR prints arg in radix n. The modifier flags and any remaining parameters

are used as for the ˜D directive. Indeed, ˜D is the same as ˜10R. The full form here is

therefore ˜radix,mincol,padchar,commacharR.

X3J13 voted in January 1989 〈85〉 to specify that format binds *print-escape* to

nil, *print-radix* to nil, and *print-base* to the value of the first parameter during

the processing of the ˜R directive with a parameter.

If no parameters are given to ˜R, then an entirely different interpretation is given.

Notice of correction. In the first edition, this sentence referred to “arguments”

given to ˜R. The correct term is “parameters.”

The argument should be an integer; suppose it is 4. Then ˜R prints arg as a cardinal

English number: four; ˜:R prints arg as an ordinal English number: fourth; ˜@R prints

arg as a Roman numeral: IV; and ˜:@R prints arg as an old Roman numeral: IIII.

X3J13 voted in January 1989 〈85〉 to specify that format binds *print-base* to 10

during the processing of the ˜R directive with no parameter.

The first edition did not specify how ˜R and its variants should handle arguments

that are very large or not positive. Actual practice varies, and X3J13 has not yet

addressed the topic. Here is a sampling of current practice.

For ˜@R and ˜:@R, nearly all implementations produce Roman numerals only for

integers in the range 1 to 3999, inclusive. Some implementations will produce old

style Roman numerals for integers in the range 1 to 4999, inclusive. All other integers

are printed in decimal notation, as if ˜D had been used.

For zero, most implementations print zero for ˜R and zeroth for ˜:R.

For ˜R with a negative argument, most implementations simply print the word minus

followed by its absolute value as a cardinal in English.

584 COMMON LISP

For ˜:R with a negative argument, some implementations also print the word minus

followed by its absolute value as an ordinal in English; other implementations print

the absolute value followed by the word previous. Thus the argument -4 might

produce minus fourth or fourth previous. Each has its charm, but one is not always

a suitable substitute for the other; users should be careful.

There is standard English nomenclature for fairly large integers (up to 1060, at

least), based on appending the suffix illion to Latin names of integers. Thus we

have the names trillion, quadrillion, sextillion, septillion, and so on. For extremely

large integers, one may express powers of ten in English. One implementation gives

1606938044258990275541962092341162602522202993782792835301376 (which is 2200, the

result of (ash 1 200)) in this manner:

one times ten to the sixtieth power six hundred six times ten to the fifty-seventh power

nine hundred thirty-eight septdecillion forty-four sexdecillion two hundred fifty-eight

quindecillion nine hundred ninety quattuordecillion two hundred seventy-five tredecillion

five hundred forty-one duodecillion nine hundred sixty-two undecillion ninety-two

decillion three hundred forty-one nonillion one hundred sixty-two octillion six hundred

two septillion five hundred twenty-two sextillion two hundred two quintillion nine

hundred ninety-three quadrillion seven hundred eighty-two trillion seven hundred

ninety-two billion eight hundred thirty-five million three hundred one thousand three

hundred seventy-six

Another implementation prints it this way (note the use of plus):

one times ten to the sixtieth power plus six hundred six times ten to the fifty-seventh

power plus ... plus two hundred seventy-five times ten to the forty-second power plus

five hundred forty-one duodecillion nine hundred sixty-two undecillion ... three hundred

seventy-six

(I have elided some of the text here to save space.)

Unfortunately, the meaning of this nomenclature differs between American English

(in which killion means 103(k+1), so one trillion is 1012) and British English (in

which killion means 106k, so one trillion is 1018). To avoid both confusion and

prolixity, I recommend using decimal notation for all numbers above 999,999,999;

this is similar to the escape hatch used for Roman numerals.

˜P

Plural. If arg is not eql to the integer 1, a lowercase s is printed; if arg is eql to 1,

nothing is printed. (Notice that if arg is a floatingpoint 1.0, the s is printed.) ˜:P

does the same thing, after doing a ˜:* to back up one argument; that is, it prints a

lowercase s if the last argument was not 1. This is useful after printing a number

INPUT/OUTPUT 585

using ˜D. ˜@P prints y if the argument is 1, or ies if it is not. ˜:@P does the same thing,

but backs up first.

(format nil "˜D tr˜:@P/˜D win˜:P" 7 1) ⇒ "7 tries/1 win"

(format nil "˜D tr˜:@P/˜D win˜:P" 1 0) ⇒ "1 try/0 wins"

(format nil "˜D tr˜:@P/˜D win˜:P" 1 3) ⇒ "1 try/3 wins"

˜C

Character. The next arg should be a character; it is printed according to the modifier

flags.

˜C prints the character in an implementationdependent abbreviated format. This
..

format should be culturally compatible with the host environment.

X3J13 voted in June 1987 〈84〉 to specify that ˜C performs exactly the same action

as write-char if the character to be printed has zero for its bits attributes. X3J13 voted

in March 1989 〈11〉 to eliminate the bits and font attributes, replacing them with the

notion of implementationdefined attributes. The net effect is that characters whose

implementationdefined attributes all have the “standard” values should be printed

by ˜C in the same way that write-char would print them.

˜:C spells out the names of the control bits and represents nonprinting characters

by their names: Control-Meta-F, Control-Return, Space. This is a “pretty” format for

printing characters.

˜:@C prints what ˜:C would, and then if the character requires unusual shift keys on

the keyboard to type it, this fact is mentioned: Control-∂ (Top-F). This is the format

for telling the user about a key he or she is expected to type, in prompts, for instance.

The precise output may depend not only on the implementation but on the particular

I/O devices in use.

˜@C prints the character so that the Lisp reader can read it, using #--\ syntax.

X3J13 voted in January 1989 〈85〉 to specify that format binds *print-escape* to t

during the processing of the ˜@C directive. Other variants of the ˜C directive do not

bind any printer control variables.

Rationale: In some implementations the ˜S directive would do what ˜C does, but ˜C is

compatible with Lisp dialects such as MacLisp that do not have a character data type.

˜F

Fixedformat floatingpoint. The next arg is printed as a floatingpoint number.

The full form is ˜w,d,k,overflowchar,padcharF. The parameter w is the width of

the field to be printed; d is the number of digits to print after the decimal point; k is a

scale factor that defaults to zero.

586 COMMON LISP

Exactly w characters will be output. First, leading copies of the character padchar

(which defaults to a space) are printed, if necessary, to pad the field on the left. If the

arg is negative, then a minus sign is printed; if the arg is not negative, then a plus

sign is printed if and only if the @ modifier was specified. Then a sequence of digits,

containing a single embedded decimal point, is printed; this represents the magnitude

of the value of arg times 10k, rounded to d fractional digits. (When rounding up

and rounding down would produce printed values equidistant from the scaled value

of arg, then the implementation is free to use either one. For example, printing the

argument 6.375 using the format ˜4,2F may correctly produce either 6.37 or 6.38.)

Leading zeros are not permitted, except that a single zero digit is output before the

decimal point if the printed value is less than 1, and this single zero digit is not output

after all if w = d + 1.

If it is impossible to print the value in the required format in a field of width w, then

one of two actions is taken. If the parameter overflowchar is specified, then w copies

of that parameter are printed instead of the scaled value of arg. If the overflowchar

parameter is omitted, then the scaled value is printed using more than w characters,

as many more as may be needed.

If the w parameter is omitted, then the field is of variable width. In effect, a value

is chosen for w in such a way that no leading pad characters need to be printed and

exactly d characters will follow the decimal point. For example, the directive ˜,2F

will print exactly two digits after the decimal point and as many as necessary before

the decimal point.

If the parameter d is omitted, then there is no constraint on the number of digits

to appear after the decimal point. A value is chosen for d in such a way that as

many digits as possible may be printed subject to the width constraint imposed by the

parameter w and the constraint that no trailing zero digits may appear in the fraction,

except that if the fraction to be printed is zero, then a single zero digit should appear

after the decimal point if permitted by the width constraint.

If both w and d are omitted, then the effect is to print the value using ordinary

freeformat output; prin1 uses this format for any number whose magnitude is either

zero or between 10−3 (inclusive) and 107 (exclusive).

If w is omitted, then if the magnitude of arg is so large (or, if d is also omitted, so

small) that more than 100 digits would have to be printed, then an implementation is

free, at its discretion, to print the number using exponential notation instead, as if by

the directive ˜E (with all parameters to ˜E defaulted, not taking their values from the

˜F directive).

If arg is a rational number, then it is coerced to be a single-float and then printed.

(Alternatively, an implementation is permitted to process a rational number by any

other method that has essentially the same behavior but avoids such hazards as loss

of precision or overflow because of the coercion. However, note that if w and d are

INPUT/OUTPUT 587

unspecified and the number has no exact decimal representation, for example 1/3,

some precision cutoff must be chosen by the implementation: only a finite number

of digits may be printed.)

If arg is a complex number or some nonnumeric object, then it is printed using the

format directive ˜wD, thereby printing it in decimal radix and a minimum field width

of w. (If it is desired to print each of the real part and imaginary part of a complex

number using a ˜F directive, then this must be done explicitly with two ˜F directives

and code to extract the two parts of the complex number.)

X3J13 voted in January 1989 〈85〉 to specify that format binds *print-escape* to

nil during the processing of the ˜F directive.

(defun foo (x)

(format nil "˜6,2F|˜6,2,1,´*F|˜6,2,,´?F|˜6F|˜,2F|˜F"

x x x x x x))

(foo 3.14159) ⇒ " 3.14| 31.42| 3.14|3.1416|3.14|3.14159"

(foo -3.14159) ⇒ " -3.14|-31.42| -3.14|-3.142|-3.14|-3.14159"

(foo 100.0) ⇒ "100.00|******|100.00| 100.0|100.00|100.0"

(foo 1234.0) ⇒ "1234.00|******|??????|1234.0|1234.00|1234.0"

(foo 0.006) ⇒ " 0.01| 0.06| 0.01| 0.006|0.01|0.006"

Compatibility note: The ˜F directive is similar to the Fw.d edit descriptor in Fortran.

The presence or absence of the @ modifier corresponds to the effect of the Fortran SS or SP

edit descriptor; nothing in Common Lisp corresponds to the Fortran S edit descriptor.

The scale factor specified by the parameter k corresponds to the scale factor k specified by

the Fortran kP edit descriptor.

In Fortran, the leading zero that precedes the decimal point when the printed value is less

than 1 is optional; in Common Lisp, the implementation is required to print that zero digit.

In Common Lisp, the w and d parameters are optional; in Fortran, they are required.

In Common Lisp, the pad character and overflow character are userspecifiable; in Fortran,

they are always space and asterisk, respectively.

A Fortran implementation is prohibited from printing a representation of negative zero;

Common Lisp permits the printing of such a representation when appropriate.

In MacLisp and Lisp Machine Lisp, the ˜F format directive takes a single parameter: the

number of digits to use in the printed representation. This incompatibility between Common

Lisp and MacLisp was introduced for the sake of cultural compatibility with Fortran.

˜E

Exponential floatingpoint. The next arg is printed in exponential notation.

The full form is ˜w,d,e,k,overflowchar,padchar,exponentcharE. The parameter

w is the width of the field to be printed; d is the number of digits to print after the

588 COMMON LISP

decimal point; e is the number of digits to use when printing the exponent; k is a scale

factor that defaults to 1 (not zero).

Exactly w characters will be output. First, leading copies of the character padchar

(which defaults to a space) are printed, if necessary, to pad the field on the left. If the

arg is negative, then a minus sign is printed; if the arg is not negative, then a plus

sign is printed if and only if the @ modifier was specified. Then a sequence of digits,

containing a single embedded decimal point, is printed. The form of this sequence

of digits depends on the scale factor k. If k is zero, then d digits are printed after the

decimal point, and a single zero digit appears before the decimal point if the total

field width will permit it. If k is positive, then it must be strictly less than d + 2; k

significant digits are printed before the decimal point, and d− k + 1 digits are printed

after the decimal point. If k is negative, then it must be strictly greater than −d; a

single zero digit appears before the decimal point if the total field width will permit it,

and after the decimal point are printed first −k zeros and then d + k significant digits.

The printed fraction must be properly rounded. (When rounding up and rounding

down would produce printed values equidistant from the scaled value of arg, then

the implementation is free to use either one. For example, printing 637.5 using the

format ˜8,2E may correctly produce either 6.37E+02 or 6.38E+02.)

Following the digit sequence, the exponent is printed. First the character parameter

exponentchar is printed; if this parameter is omitted, then the exponent marker that

prin1 would use is printed, as determined from the type of the floatingpoint number

and the current value of *read-default-float-format*. Next, either a plus sign or a

minus sign is printed, followed by e digits representing the power of 10 by which the

printed fraction must be multiplied to properly represent the rounded value of arg.

If it is impossible to print the value in the required format in a field of width

w, possibly because k is too large or too small or because the exponent cannot be

printed in e character positions, then one of two actions is taken. If the parameter

overflowchar is specified, then w copies of that parameter are printed instead of the

scaled value of arg. If the overflowchar parameter is omitted, then the scaled value is

printed using more than w characters, as many more as may be needed; if the problem

is that d is too small for the specified k or that e is too small, then a larger value is

used for d or e as may be needed.

If the w parameter is omitted, then the field is of variable width. In effect a value

is chosen for w in such a way that no leading pad characters need to be printed.

If the parameter d is omitted, then there is no constraint on the number of digits to

appear. A value is chosen for d in such a way that as many digits as possible may

be printed subject to the width constraint imposed by the parameter w, the constraint

of the scale factor k, and the constraint that no trailing zero digits may appear in the

fraction, except that if the fraction to be printed is zero, then a single zero digit should

appear after the decimal point if the width constraint allows it.

INPUT/OUTPUT 589

If the parameter e is omitted, then the exponent is printed using the smallest number

of digits necessary to represent its value.

If all of w, d, and e are omitted, then the effect is to print the value using ordinary

freeformat exponentialnotation output; prin1 uses this format for any nonzero

number whose magnitude is less than 10−3 or greater than or equal to 107.

X3J13 voted in January 1989 〈83〉 to amend the previous paragraph as follows:

If all of w, d, and e are omitted, then the effect is to print the value using ordinary

freeformat exponentialnotation output; prin1 uses a similar format for any nonzero

number whose magnitude is less than 10−3 or greater than or equal to 107. The

only difference is that the ˜E directive always prints a plus or minus sign before the

exponent, while prin1 omits the plus sign if the exponent is nonnegative.

(The amendment reconciles this paragraph with the specification several para

graphs above that ˜E always prints a plus or minus sign before the exponent.)

If arg is a rational number, then it is coerced to be a single-float and then printed.

(Alternatively, an implementation is permitted to process a rational number by any

other method that has essentially the same behavior but avoids such hazards as loss

of precision or overflow because of the coercion. However, note that if w and d are

unspecified and the number has no exact decimal representation, for example 1/3,

some precision cutoff must be chosen by the implementation: only a finite number

of digits may be printed.)

If arg is a complex number or some nonnumeric object, then it is printed using the

format directive ˜wD, thereby printing it in decimal radix and a minimum field width

of w. (If it is desired to print each of the real part and imaginary part of a complex

number using a ˜E directive, then this must be done explicitly with two ˜E directives

and code to extract the two parts of the complex number.)

X3J13 voted in January 1989 〈85〉 to specify that format binds *print-escape* to

nil during the processing of the ˜E directive.

(defun foo (x)

(format nil

"˜9,2,1,,´*E|˜10,3,2,2,´?,,´$E|˜9,3,2,-2,´%@E|˜9,2E"

x x x x))

(foo 3.14159) ⇒ " 3.14E+0| 31.42$-01|+.003E+03| 3.14E+0"

(foo -3.14159) ⇒ " -3.14E+0|-31.42$-01|-.003E+03| -3.14E+0"

(foo 1100.0) ⇒ " 1.10E+3| 11.00$+02|+.001E+06| 1.10E+3"

(foo 1100.0L0) ⇒ " 1.10L+3| 11.00$+02|+.001L+06| 1.10L+3"

(foo 1.1E13) ⇒ "*********| 11.00$+12|+.001E+16| 1.10E+13"

(foo 1.1L120) ⇒ "*********|??????????|%%%%%%%%%|1.10L+120"

(foo 1.1L1200) ⇒ "*********|??????????|%%%%%%%%%|1.10L+1200"

590 COMMON LISP

Here is an example of the effects of varying the scale factor:

(dotimes (k 13)

(format t " %Scale factor 2D: | 13,6,2,VE|"

(- k 5) 3.14159)) ;Prints 13 lines

Scale factor -5: | 0.000003E+06|

Scale factor -4: | 0.000031E+05|

Scale factor -3: | 0.000314E+04|

Scale factor -2: | 0.003142E+03|

Scale factor -1: | 0.031416E+02|

Scale factor 0: | 0.314159E+01|

Scale factor 1: | 3.141590E+00|

Scale factor 2: | 31.41590E-01|

Scale factor 3: | 314.1590E-02|

Scale factor 4: | 3141.590E-03|

Scale factor 5: | 31415.90E-04|

Scale factor 6: | 314159.0E-05|

Scale factor 7: | 3141590.E-06|

Compatibility note: The ˜E directive is similar to the Ew.d and Ew.dEe edit descriptors in

Fortran.

The presence or absence of the @ modifier corresponds to the effect of the Fortran SS or SP

edit descriptor; nothing in Common Lisp corresponds to the Fortran S edit descriptor.

The scale factor specified by the parameter k corresponds to the scale factor k specified by

the Fortran kP edit descriptor; note, however, that the default value for k is 1 in Common Lisp,

as opposed to the default value of zero in Fortran. (On the other hand, note that a scale factor

of 1 is used for Fortran listdirected output, which is roughly equivalent to using ˜E with the

w, d, e, and overflowchar parameters omitted.)

In Common Lisp, the w and d parameters are optional; in Fortran, they are required.

In Fortran, omitting e causes the exponent to be printed using either two or three digits; if

three digits are required, then the exponent marker is omitted. In Common Lisp, omitting e

causes the exponent to be printed using as few digits as possible; the exponent marker is never

omitted.

In Common Lisp, the pad character and overflow character are userspecifiable; in Fortran

they are always space and asterisk, respectively.

A Fortran implementation is prohibited from printing a representation of negative zero;

Common Lisp permits the printing of such a representation when appropriate.

In MacLisp and Lisp Machine Lisp, the ˜E format directive takes a single parameter: the

number of digits to use in the printed representation. This incompatibility between Common

Lisp and MacLisp was introduced for the sake of cultural compatibility with Fortran.

INPUT/OUTPUT 591

˜G

General floatingpoint. The next arg is printed as a floatingpoint number in either

fixedformat or exponential notation as appropriate.

The full form is ˜w,d,e,k,overflowchar,padchar,exponentcharG. The format in

which to print arg depends on the magnitude (absolute value) of the arg. Let n be

an integer such that 10n−1 ≤ arg < 10n. (If arg is zero, let n be 0.) Let ee equal

e + 2, or 4 if e is omitted. Let ww equal w − ee, or nil if w is omitted. If d is omitted,

first let q be the number of digits needed to print arg with no loss of information and

without leading or trailing zeros; then let d equal (max q (min n 7)). Let dd equal

d − n.

If 0 ≤ dd ≤ d, then arg is printed as if by the format directives

˜ww,dd,,overflowchar,padcharF˜ee@T

Note that the scale factor k is not passed to the ˜F directive. For all other values of

dd, arg is printed as if by the format directive

˜w,d,e,k,overflowchar,padchar,exponentcharE

In either case, an @ modifier is specified to the ˜F or ˜E directive if and only if one

was specified to the ˜G directive.

X3J13 voted in January 1989 〈85〉 to specify that format binds *print-escape* to

nil during the processing of the ˜G directive.

Examples:
...

(defun foo (x)

(format nil

"˜9,2,1,,´*G|˜9,3,2,3,´?,,´$G|˜9,3,2,0,´%G|˜9,2G"

x x x))

(foo 0.0314159) ⇒ " 3.14E-2|314.2$-04|0.314E-01| 3.14E-2"

(foo 0.314159) ⇒ " 0.31 |0.314 |0.314 | 0.31 "

(foo 3.14159) ⇒ " 3.1 | 3.14 | 3.14 | 3.1 "

(foo 31.4159) ⇒ " 31. | 31.4 | 31.4 | 31. "

(foo 314.159) ⇒ " 3.14E+2| 314. | 314. | 3.14E+2"

(foo 3141.59) ⇒ " 3.14E+3|314.2$+01|0.314E+04| 3.14E+3"

(foo 3141.59L0) ⇒ " 3.14L+3|314.2$+01|0.314L+04| 3.14L+3"

(foo 3.14E12) ⇒ "*********|314.0$+10|0.314E+13| 3.14E+12"

(foo 3.14L120) ⇒ "*********|?????????|%%%%%%%%%|3.14L+120"

(foo 3.14L1200) ⇒ "*********|?????????|%%%%%%%%%|3.14L+1200"

592 COMMON LISP

Notice of correction. In the first edition, the example for the value 3.14E12contained

two typographical errors:

(foo 3.14E12) ⇒ "*********|314.2$+10|0.314E+13| 3.14L+12"

↑ ↑
should be 0 should be E

These have been corrected above.

Compatibility note: The ˜G directive is similar to the Gw.d edit descriptor in Fortran.

The Common Lisp rules for deciding between the use of ˜F and ˜E are compatible with the

rules used by Fortran but have been extended to cover the cases where w or d is omitted or

where e is specified.

In MacLisp and Lisp Machine Lisp, the ˜G format directive is equivalent to the Common

Lisp ˜@* directive. This incompatibility between Common Lisp and MacLisp was introduced

for the sake of cultural compatibility with Fortran.

˜$

Dollars floatingpoint. The next arg is printed as a floatingpoint number in fixed

format notation. This format is particularly convenient for printing a value as dollars

and cents.

The full form is ˜d,n,w,padchar$. The parameter d is the number of digits to print

after the decimal point (default value 2); n is the minimum number of digits to print

before the decimal point (default value 1); w is the minimum total width of the field

to be printed (default value 0).

First padding and the sign are output. If the arg is negative, then a minus sign

is printed; if the arg is not negative, then a plus sign is printed if and only if the @

modifier was specified. If the : modifier is used, the sign appears before any padding,

and otherwise after the padding. If w is specified and the number of other characters

to be output is less than w, then copies of padchar (which defaults to a space) are

output to make the total field width equal w. Then n digits are printed for the integer

part of arg, with leading zeros if necessary; then a decimal point; then d digits of

fraction, properly rounded.

If the magnitude of arg is so large that more than m digits would have to be

printed, where m is the larger of w and 100, then an implementation is free, at

its discretion, to print the number using exponential notation instead, as if by the

directive ˜w,q,,,,padcharE, where w and padchar are present or omitted according

to whether they were present or omitted in the ˜$ directive, and where q = d + n − 1,

where d and n are the (possibly default) values given to the ˜$ directive.

INPUT/OUTPUT 593

If arg is a rational number, then it is coerced to be a single-float and then printed.

(Alternatively, an implementation is permitted to process a rational number by any

other method that has essentially the same behavior but avoids such hazards as loss

of precision or overflow because of the coercion.)

If arg is a complex number or some nonnumeric object, then it is printed using the

format directive ˜wD, thereby printing it in decimal radix and a minimum field width

of w. (If it is desired to print each of the real part and imaginary part of a complex

number using a ˜$ directive, then this must be done explicitly with two ˜$ directives

and code to extract the two parts of the complex number.)

X3J13 voted in January 1989 〈85〉 to specify that format binds *print-escape* to

nil during the processing of the ˜$ directive.

˜%

This outputs a #--\Newline character, thereby terminating the current output line and

beginning a new one (see terpri).

˜n% outputs n newlines.

No arg is used. Simply putting a newline in the control string would work, but ˜%

is often used because it makes the control string look nicer in the middle of a Lisp

program.

˜&

Unless it can be determined that the output stream is already at the beginning of a

line, this outputs a newline (see fresh-line).

˜n& calls fresh-line and then outputs n − 1 newlines. ˜0& does nothing.

˜|

This outputs a page separator character, if possible. ˜n| does this n times. | is vertical

bar, not capital I.

˜˜

Tilde. This outputs a tilde. ˜n˜ outputs n tildes.

˜〈newline〉
Tilde immediately followed by a newline ignores the newline and any following non

newline whitespace characters. With a :, the newline is ignored, but any following

whitespace is left in place. With an @, the newline is left in place, but any following

whitespace is ignored. This directive is typically used when a format control string

is too long to fit nicely into one line of the program:

594 COMMON LISP

(defun type-clash-error (fn nargs argnum right-type wrong-type)

(format *error-output*

"˜&Function ˜S requires its ˜:[˜:R˜;˜*˜] ˜
argument to be of type ˜S,˜%but it was called ˜
with an argument of type ˜S.˜%"

fn (eql nargs 1) argnum right-type wrong-type))

(type-clash-error ´aref nil 2 ´integer ´vector) prints:

Function AREF requires its second argument to be of type INTEGER,

but it was called with an argument of type VECTOR.

(type-clash-error ´car 1 1 ´list ´short-float) prints:

Function CAR requires its argument to be of type LIST,

but it was called with an argument of type SHORT-FLOAT.

Note that in this example newlines appear in the output only as specified by the ˜&

and ˜% directives; the actual newline characters in the control string are suppressed

because each is preceded by a tilde.

˜T

Tabulate. This spaces over to a given column. ˜colnum,colincT will output sufficient

spaces to move the cursor to column colnum. If the cursor is already at or beyond

column colnum, it will output spaces to move it to column colnum+k*colinc for the

smallest positive integer k possible, unless colinc is zero, in which case no spaces

are output if the cursor is already at or beyond column colnum. colnum and colinc

default to 1.

Ideally, the current column position is determined by examination of the destina

tion, whether a stream or string. (Although no userlevel operation for determining

the column position of a stream is defined by Common Lisp, such a facility may

exist at the implementation level.) If for some reason the current absolute column

position cannot be determined by direct inquiry, format may be able to deduce the

current column position by noting that certain directives (such as ˜%, or ˜&, or ˜A

with the argument being a string containing a newline) cause the column position to

be reset to zero, and counting the number of characters emitted since that point. If

that fails, format may attempt a similar deduction on the riskier assumption that the

destination was at column zero when format was invoked. If even this heuristic fails

or is implementationally inconvenient, at worst the ˜T operation will simply output

two spaces. (All this implies that code that uses format is more likely to be portable

if all format control strings that use the ˜T directive either begin with ˜% or ˜& to force

a newline or are designed to be used only when the destination is known from other

INPUT/OUTPUT 595

considerations to be at column zero.)

˜@T performs relative tabulation. ˜colrel,colinc@T outputs colrel spaces and then

outputs the smallest nonnegative number of additional spaces necessary to move the

cursor to a column that is a multiple of colinc. For example, the directive ˜3,8@T

outputs three spaces and then moves the cursor to a “standard multipleofeight tab

stop” if not at one already. If the current output column cannot be determined,

however, then colinc is ignored, and exactly colrel spaces are output.

X3J13 voted in June 1989 〈139〉 to define ˜:T and ˜:@T to perform tabulation

relative to a point defined by the pretty printing process (see section 27.4).

˜*

The next arg is ignored. ˜n* ignores the next n arguments.

˜:* “ignores backwards”; that is, it backs up in the list of arguments so that the

argument last processed will be processed again. ˜n:* backs up n arguments.

When within a ˜{ construct (see below), the ignoring (in either direction) is relative

to the list of arguments being processed by the iteration.

˜n@* is an “absolute goto” rather than a “relative goto”: it goes to the nth arg, where

0 means the first one; n defaults to 0, so ˜@* goes back to the first arg. Directives

after a ˜n@* will take arguments in sequence beginning with the one gone to. When

within a ˜{ construct, the “goto” is relative to the list of arguments being processed

by the iteration.

˜?

Indirection. The next arg must be a string, and the one after it a list; both are

consumed by the ˜? directive. The string is processed as a format control string,

with the elements of the list as the arguments. Once the recursive processing of the

control string has been finished, then processing of the control string containing the

˜? directive is resumed. Example:

(format nil "˜? ˜D" "<˜A ˜D>" ´("Foo" 5) 7) ⇒ "<Foo 5> 7"

(format nil "˜? ˜D" "<˜A ˜D>" ´("Foo" 5 14) 7) ⇒ "<Foo 5> 7"

Note that in the second example three arguments are supplied to the control string

"<˜A ˜D>", but only two are processed and the third is therefore ignored.

With the @ modifier, only one arg is directly consumed. The arg must be a string;

it is processed as part of the control string as if it had appeared in place of the ˜@?

construct, and any directives in the recursively processed control string may consume

arguments of the control string containing the ˜@? directive. Example:

(format nil "˜@? ˜D" "<˜A ˜D>" "Foo" 5 7) ⇒ "<Foo 5> 7"

596 COMMON LISP

(format nil "˜@? ˜D" "<˜A ˜D>" "Foo" 5 14 7) ⇒ "<Foo 5> 14"

Here is a rather sophisticated example. The format function itself, as implemented

at one time in Lisp Machine Lisp, used a routine internal to the format package called

format-error to signal error messages; format-error in turn used error, which used

format recursively. Now format-error took a string and arguments, just like format,

but also printed the control string to format (which at this point was available in the

global variable *ctl-string*) and a little arrow showing where in the processing of

the control string the error occurred. The variable *ctl-index* pointed one character

after the place of the error.

(defun format-error (string &rest args) ;Example

(error nil "˜?˜%˜V@T⇓˜%˜3@T\"˜A\"˜%"
string args (+ *ctl-index* 3) *ctl-string*))

(The character set used in the Lisp Machine Lisp implementation contains a down

arrow character ⇓, which is not a standard Common Lisp character.) This first

processed the given string and arguments using ˜?, then output a newline, tabbed a

variable amount for printing the downarrow, and printed the control string between

double quotes (note the use of \" to include double quotes within the control string).

The effect was something like this:

(format t "The item is a ˜[Foo˜;Bar˜;Loser˜]." ´quux)

>>ERROR: The argument to the FORMAT "˜[" command

must be a number.

⇓
"The item is a ˜[Foo˜;Bar˜;Loser˜]."

Implementation note: Implementors may wish to report errors occurring within format control

strings in the manner outlined here. It looks pretty flashy when done properly.

X3J13 voted in June 1989 〈139〉 to introduce certain format directives to support

the user interface to the pretty printer described in detail in chapter 27.

˜_

Conditional newline. Without any modifiers, the directive ˜_ is equivalent to (pprint-

newline :linear). The directive ˜@_ is equivalent to (pprint-newline :miser). The

directive ˜:_ is equivalent to (pprint-newline :fill). The directive ˜:@_ is equivalent

to (pprint-newline :mandatory).

INPUT/OUTPUT 597

˜W

Write. An arg, any Lisp object, is printed obeying every printer control variable (as

by write). See section 27.4 for details.

˜I

Indent. The directive ˜nI is equivalent to (pprint-indent :block n). The directive

˜:nI is equivalent to (pprint-indent :current n). In both cases, n defaults to zero, if

it is omitted.

The format directives after this point are much more complicated than the forego

ing; they constitute control structures that can perform case conversion, conditional

selection, iteration, justification, and nonlocal exits. Used with restraint, they can

perform powerful tasks. Used with abandon, they can produce completely unreadable

and unmaintainable code.

The caseconversion, conditional, iteration, and justification constructs can contain

other formatting constructs by bracketing them. These constructs must nest properly

with respect to each other. For example, it is not legitimate to put the start of a case

conversion construct in each arm of a conditional and the end of the caseconversion

construct outside the conditional:

(format nil "˜:[abc˜:@(def˜;ghi˜:@(jkl˜]mno˜)" x) ;Illegal!

One might expect this to produce either "abcDEFMNO" or "ghiJKLMNO", depending on

whether x is false or true; but in fact the construction is illegal because the [̃...˜;...˜]

and ˜(...˜) constructs are not properly nested.

The processing indirection caused by the ˜? directive is also a kind of nesting for

the purposes of this rule of proper nesting. It is not permitted to start a bracketing

construct within a string processed under control of a ?̃ directive and end the construct

at some point after the ˜? construct in the string containing that construct, or vice

versa. For example, this situation is illegal:

(format nil "˜?ghi˜)" "abc˜@(def") ;Illegal!

One might expect it to produce "abcDEFGHI", but in fact the construction is illegal

because the ˜? and ˜(...˜) constructs are not properly nested.

˜(str˜)

Case conversion. The contained control string str is processed, and what it produces

is subject to case conversion: ˜(converts every uppercase character to the corre

sponding lowercase character; ˜:(capitalizes all words, as if by string-capitalize;

˜@(capitalizes just the first word and forces the rest to lowercase; ˜:@(converts every

598 COMMON LISP

lowercase character to the corresponding uppercase character. In this example, ˜@(

is used to cause the first word produced by ˜@R to be capitalized:

(format nil "˜@R ˜(˜@R˜)" 14 14) ⇒ "XIV xiv"

(defun f (n) (format nil "˜@(˜R˜) error˜:P detected." n))

(f 0) ⇒ "Zero errors detected."

(f 1) ⇒ "One error detected."

(f 23) ⇒ "Twenty-three errors detected."

˜[str0˜;str1˜;...˜;strn˜]

Conditional expression. This is a set of control strings, called clauses, one of which

is chosen and used. The clauses are separated by ˜; and the construct is terminated

by ˜]. For example,

"˜[Siamese˜;Manx˜;Persian˜] Cat"

The argth clause is selected, where the first clause is number 0. If a prefix parameter

is given (as ˜n[), then the parameter is used instead of an argument. (This is useful

only if the parameter is specified by #--, to dispatch on the number of arguments

remaining to be processed.) If arg is out of range, then no clause is selected (and

no error is signaled). After the selected alternative has been processed, the control

string continues after the ˜].

˜[str0˜;str1˜;...˜;strn˜:;default˜] has a default case. If the last ˜; used to separate

clauses is ˜:; instead, then the last clause is an “else” clause that is performed if no

other clause is selected. For example:

"˜[Siamese˜;Manx˜;Persian˜:;Alley˜] Cat"

˜:[false˜;true˜] selects the false control string if arg is nil, and selects the true

control string otherwise.

˜@[true˜] tests the argument. If it is not nil, then the argument is not used up by

the ˜@[command but remains as the next one to be processed, and the one clause

true is processed. If the arg is nil, then the argument is used up, and the clause is

not processed. The clause therefore should normally use exactly one argument, and

may expect it to be nonnil. For example:

(setq *print-level* nil *print-length* 5)

(format nil "˜@[print level −− ˜D˜]˜@[print length −− ˜D˜]"

print-level *print-length*)

⇒ " print length −− 5"

INPUT/OUTPUT 599

The combination of ˜[and #-- is useful, for example, for dealing with English

conventions for printing lists:

(setq foo "Items:˜#--[none˜; ˜S˜; ˜S and ˜S˜

˜:;˜@{˜#--[˜; and˜] ˜S˜ˆ,˜}˜].")

(format nil foo)

⇒ "Items: none."

(format nil foo ´foo)

⇒ "Items: FOO."

(format nil foo ´foo ´bar)

⇒ "Items: FOO and BAR."

(format nil foo ´foo ´bar ´baz)

⇒ "Items: FOO, BAR, and BAZ."

(format nil foo ´foo ´bar ´baz ´quux)

⇒ "Items: FOO, BAR, BAZ, and QUUX."

˜;

This separates clauses in ˜[and ˜< constructions. It is an error elsewhere.

˜]

This terminates a ˜[. It is an error elsewhere.

˜{str˜}

Iteration. This is an iteration construct. The argument should be a list, which is

used as a set of arguments as if for a recursive call to format. The string str is used

repeatedly as the control string. Each iteration can absorb as many elements of the

list as it likes as arguments; if str uses up two arguments by itself, then two elements

of the list will get used up each time around the loop. If before any iteration step the

list is empty, then the iteration is terminated. Also, if a prefix parameter n is given,

then there will be at most n repetitions of processing of str. Finally, the ˜ˆ directive

can be used to terminate the iteration prematurely.

Here are some simple examples:

(format nil

"The winners are:˜{ ˜S˜}."

´(fred harry jill))

⇒ "The winners are: FRED HARRY JILL."

(format nil "Pairs:˜{ <˜S,˜S>˜}." ´(a 1 b 2 c 3))

⇒ "Pairs: <A,1> <B,2> <C,3>."

600 COMMON LISP

˜:{str˜} is similar, but the argument should be a list of sublists. At each repetition

step, one sublist is used as the set of arguments for processing str; on the next

repetition, a new sublist is used, whether or not all of the last sublist had been

processed. Example:

(format nil "Pairs:˜:{ <˜S,˜S>˜}."

´((a 1) (b 2) (c 3)))

⇒ "Pairs: <A,1> <B,2> <C,3>."

˜@{str˜} is similar to ˜{str˜}, but instead of using one argument that is a list, all the

remaining arguments are used as the list of arguments for the iteration. Example:

(format nil "Pairs:˜@{ <˜S,˜S>˜}."

´a 1 ´b 2 ´c 3)

⇒ "Pairs: <A,1> <B,2> <C,3>."

If the iteration is terminated before all the remaining arguments are consumed, then

any arguments not processed by the iteration remain to be processed by any directives

following the iteration construct.

˜:@{str˜} combines the features of ˜:{str˜} and ˜@{str˜}. All the remaining argu

ments are used, and each one must be a list. On each iteration, the next argument is

used as a list of arguments to str. Example:

(format nil "Pairs:˜:@{ <˜S,˜S>˜}."

´(a 1) ´(b 2) ´(c 3))

⇒ "Pairs: <A,1> <B,2> <C,3>."

Terminating the repetition construct with ˜:} instead of ˜} forces str to be processed

at least once, even if the initial list of arguments is null (however, it will not override

an explicit prefix parameter of zero).

If str is empty, then an argument is used as str. It must be a string and precede any

arguments processed by the iteration. As an example, the following are equivalent:

(apply #--´format stream string arguments)

(format stream "˜1{˜:}" string arguments)

This will use string as a formatting string. The ˜1{ says it will be processed at most

once, and the ˜:} says it will be processed at least once. Therefore it is processed

exactly once, using arguments as the arguments. This case may be handled more

clearly by the ˜? directive, but this general feature of ˜{ is more powerful than ˜?.

INPUT/OUTPUT 601

˜}

This terminates a ˜{. It is an error elsewhere.

˜mincol,colinc,minpad,padchar<str >̃

Justification. This justifies the text produced by processing str within a field at least

mincol columns wide. str may be divided up into segments with ˜;, in which case

the spacing is evenly divided between the text segments.

With no modifiers, the leftmost text segment is leftjustified in the field, and the

rightmost text segment rightjustified; if there is only one text element, as a special

case, it is rightjustified. The : modifier causes spacing to be introduced before the

first text segment; the @ modifier causes spacing to be added after the last. The

minpad parameter (default 0) is the minimum number of padding characters to be

output between each segment. The padding character is specified by padchar, which

defaults to the space character. If the total width needed to satisfy these constraints is

greater than mincol, then the width used is mincol+k*colinc for the smallest possible

nonnegative integer value k; colinc defaults to 1, and mincol defaults to 0.

(format nil "˜10<foo˜;bar˜>") ⇒ "foo bar"

(format nil "˜10:<foo˜;bar˜>") ⇒ " foo bar"

(format nil "˜10:@<foo˜;bar˜>") ⇒ " foo bar "

(format nil "˜10<foobar˜>") ⇒ " foobar"

(format nil "˜10:<foobar˜>") ⇒ " foobar"

(format nil "˜10@<foobar˜>") ⇒ "foobar "

(format nil "˜10:@<foobar˜>") ⇒ " foobar "

Note that str may include format directives. All the clauses in str are processed in

order; it is the resulting pieces of text that are justified.

The ˜ˆ directive may be used to terminate processing of the clauses prematurely,

in which case only the completely processed clauses are justified.

If the first clause of a ˜< is terminated with ˜:; instead of ˜;, then it is used in a

special way. All of the clauses are processed (subject to ˜ˆ, of course), but the first

one is not used in performing the spacing and padding. When the padded result has

been determined, then if it will fit on the current line of output, it is output, and the

text for the first clause is discarded. If, however, the padded text will not fit on the

current line, then the text segment for the first clause is output before the padded text.

The first clause ought to contain a newline (such as a ˜% directive). The first clause

is always processed, and so any arguments it refers to will be used; the decision is

whether to use the resulting segment of text, not whether to process the first clause. If

the ˜:; has a prefix parameter n, then the padded text must fit on the current line with

602 COMMON LISP

n character positions to spare to avoid outputting the first clause’s text. For example,

the control string

"˜%;; ˜{˜<˜%;; ˜1:; ˜S˜>˜ˆ,˜}.˜%"

can be used to print a list of items separated by commas without breaking items

over line boundaries, beginning each line with ;; . The prefix parameter 1 in ˜1:;

accounts for the width of the comma that will follow the justified item if it is not the

last element in the list, or the period if it is. If ˜:; has a second prefix parameter, then

it is used as the width of the line, thus overriding the natural line width of the output

stream. To make the preceding example use a line width of 50, one would write

"˜%;; ˜{˜<˜%;; ˜1,50:; ˜S˜>˜ˆ,˜}.˜%"

If the second argument is not specified, then format uses the line width of the output

stream. If this cannot be determined (for example, when producing a string result),

then format uses 72 as the line length.

˜>

Terminates a ˜<. It is an error elsewhere.

X3J13 voted in June 1989 〈139〉 to introduce certain format directives to support

the user interface to the pretty printer. If ˜:> is used to terminate a ˜<... directive, the

directive is equivalent to a call on pprint-logical-block. See section 27.4 for details.

˜ˆ

Up and out. This is an escape construct. If there are no more arguments remaining to

be processed, then the immediately enclosing ˜{ or ˜< construct is terminated. If there

is no such enclosing construct, then the entire formatting operation is terminated. In

the ˜< case, the formatting is performed, but no more segments are processed before

doing the justification. The ˜ˆ should appear only at the beginning of a ˜< clause,

because it aborts the entire clause it appears in (as well as all following clauses). ˜ˆ
may appear anywhere in a ˜{ construct.

(setq donestr "Done.˜ˆ ˜D warning˜:P.˜ˆ ˜D error˜:P.")

(format nil donestr) ⇒ "Done."

(format nil donestr 3) ⇒ "Done. 3 warnings."

(format nil donestr 1 5) ⇒ "Done. 1 warning. 5 errors."

If a prefix parameter is given, then termination occurs if the parameter is zero.

(Hence ˜ˆ is equivalent to ˜#--ˆ.) If two parameters are given, termination occurs if

INPUT/OUTPUT 603

they are equal. If three parameters are given, termination occurs if the first is less

than or equal to the second and the second is less than or equal to the third. Of course,

this is useless if all the prefix parameters are constants; at least one of them should

be a #-- or a V parameter.

If ˜ˆ is used within a ˜:{ construct, then it merely terminates the current iteration

step (because in the standard case it tests for remaining arguments of the current

step only); the next iteration step commences immediately. To terminate the entire

iteration process, use ˜:ˆ.

X3J13 voted in March 1988 〈81〉 to clarify the behavior of ˜:ˆ as follows. It may

be used only if the command it would terminate is ˜:{ or ˜:@{. The entire iteration

process is terminated if and only if the sublist that is supplying the arguments for the

current iteration step is the last sublist (in the case of terminating a ˜:{ command) or

the last argument to that call to format (in the case of terminating a ˜:@{ command).

Note furthermore that while ˜ˆ is equivalent to ˜#--ˆ in all circumstances, ˜:ˆ is not

equivalent to ˜:#--ˆ because the latter terminates the entire iteration if and only if

no arguments remain for the current iteration step (as opposed to no arguments

remaining for the entire iteration process).

Here are some examples of the differences in the behaviors of ˜ˆ, ˜:ˆ, and ˜:#--ˆ.

(format nil

"˜:{/˜S˜ˆ ...˜}"

´((hot dog) (hamburger) (ice cream) (french fries)))

⇒ "/HOT .../HAMBURGER/ICE .../FRENCH ..."

For each sublist, “ ...” appears after the first word unless there are no additional

words.

(format nil

"˜:{/˜S˜:ˆ ...˜}"

´((hot dog) (hamburger) (ice cream) (french fries)))

⇒ "/HOT .../HAMBURGER .../ICE .../FRENCH"

For each sublist, “ ...” always appears after the first word, unless it is the last sublist,

in which case the entire iteration is terminated.

(format nil

"˜:{/˜S˜:#--ˆ ...˜}"

´((hot dog) (hamburger) (ice cream) (french fries)))

⇒ "/HOT .../HAMBURGER"

604 COMMON LISP

For each sublist, “ ...” appears after the first word, but if the sublist has only one

word then the entire iteration is terminated.

If ˜ˆ appears within a control string being processed under the control of a ˜?

directive, but not within any ˜{ or ˜< construct within that string, then the string

being processed will be terminated, thereby ending processing of the ˜? directive.

Processing then continues within the string containing the ˜? directive at the point

following that directive.

If ˜ˆ appears within a ˜[or ˜(construct, then all the commands up to the ˜ˆ are

properly selected or caseconverted, the ˜[or ˜(processing is terminated, and the

outward search continues for a ˜{ or ˜< construct to be terminated. For example:

(setq tellstr "˜@(˜@[˜R˜]˜ˆ ˜A.˜)")

(format nil tellstr 23) ⇒ "Twenty-three."

(format nil tellstr nil "losers") ⇒ "Losers."

(format nil tellstr 23 "losers") ⇒ "Twenty-three losers."

Here are some examples of the use of ˜ˆ within a ˜< construct.

(format nil "˜15<˜S˜;˜ˆ˜S˜;˜ˆ˜S˜>" ´foo)

⇒ " FOO"

(format nil "˜15<˜S˜;˜ˆ˜S˜;˜ˆ˜S˜>" ´foo ´bar)

⇒ "FOO BAR"

(format nil "˜15<˜S˜;˜ˆ˜S˜;˜ˆ˜S˜>" ´foo ´bar ´baz)

⇒ "FOO BAR BAZ"

Compatibility note: The ˜Q directive and userdefined directives of Zetalisp have been omitted
...

here, as well as control lists (as opposed to strings), which are rumored to be changing in

meaning.

X3J13 voted in June 1989 〈139〉 to introduce userdefined directives in the form

of the ˜/.../ directive. See section 27.4 for details.

The hairiest format control string I have ever seen in shown in table 228. It started

innocently enough as part of the simulator for Connection Machine Lisp [44, 57];

the xapping data type, defined by defstruct, needed a :print-function option so that

xappings would print properly. As this data type became more complicated, step by

step, so did the format control string.

See the description of set-macro-character for a discussion of xappings and the

defstruct definition. Assume that the predicate xectorp is true of a xapping if it is a

xector, and that the predicate finite-part-is-xetp is true if every value in the range

is the same as its corresponding index.

INPUT/OUTPUT 605

Table 228: Print Function for the Xapping Data Type

(defun print-xapping (xapping stream depth)

(declare (ignore depth))

(format stream

;; Are you ready for this one?

"˜:[{˜;[˜]˜:{˜S˜:[⇒˜S˜;˜*˜]˜:ˆ ˜}˜:[˜; ˜]˜

˜{˜S⇒˜ˆ ˜}˜:[˜; ˜]˜[˜*˜;⇒˜S˜;⇒˜*˜]˜:[}˜;]˜]"

;; Is that clear?

(xectorp xapping)

(do ((vp (xectorp xapping))

(sp (finite-part-is-xetp xapping))

(d (xapping-domain xapping) (cdr d))

(r (xapping-range xapping) (cdr r))

(z ´() (cons (list (if vp (car r) (car d))

(or vp sp)

(car r))

z)))

((null d) (reverse z)))

(and (xapping-domain xapping)

(or (xapping-exceptions xapping)

(xapping-infinite xapping)))

(xapping-exceptions xapping)

(and (xapping-exceptions xapping)

(xapping-infinite xapping))

(ecase (xapping-infinite xapping)

((nil) 0)

(:constant 1)

(:universal 2))

(xapping-default xapping)

(xectorp xapping)))

See section 22.1.5 for the defstruct definition of the xapping data type, whose accessor functions

are used in this code.

Here is a blowbyblow description of the parts of this format string:

606 COMMON LISP

˜:[{˜;[˜] Print “[” for a xector, and “{” otherwise.

˜:{˜S˜:[⇒˜S˜;˜*˜]˜:ˆ ˜} Given a list of lists, print the pairs. Each sublist

has three elements: the index (or the value if we’re

printing a xector); a flag that is true for either a

xector or xet (in which case no arrow is printed);

and the value. Note the use of ˜:{ to iterate, and the

use of ˜:ˆ to avoid printing a separating space after

the final pair (or at all, if there are no pairs).

˜:[˜; ˜] If there were pairs and there are exceptions or an

infinite part, print a separating space.

˜〈newline〉 Do nothing. This merely allows the format control

string to be broken across two lines.

˜{˜S⇒˜ˆ ˜} Given a list of exception indices, print them. Note

the use of ˜{ to iterate, and the use of ˜ˆ to avoid

printing a separating space after the final exception

(or at all, if there are no exceptions).

˜:[˜; ˜] If there were exceptions and there is an infinite part,

print a separating space.

˜[˜*˜;⇒˜S˜;⇒˜*˜] Use ˜[to choose one of three cases for printing the

infinite part.

˜:[}˜;]˜] Print “]” for a xector, and “}” otherwise.

22.4. Querying the User

The following functions provide a convenient and consistent interface for asking

questions of the user. Questions are printed and the answers are read using the stream

query-io, which normally is synonymous with *terminal-io* but can be rebound to

another stream for special applications.

[Function]y-or-n-p &optional format-string &rest arguments

This predicate is for asking the user a question whose answer is either “yes” or

“no.” It types out a message (if supplied), reads an answer in some implementation

dependent manner (intended to be short and simple, like reading a single character

such as Y or N), and is true if the answer was “yes” or false if the answer was “no.”

If the formatstring argument is supplied and not nil, then a fresh-line operation

is performed; then a message is printed as if the formatstring and arguments were

given to format. Otherwise it is assumed that any message has already been printed

by other means. If you want a question mark at the end of the message, you must put

INPUT/OUTPUT 607

it there yourself; y-or-n-p will not add it. However, the message should not contain

an explanatory note such as (Y or N), because the nature of the interface provided

for y-or-n-p by a given implementation might not involve typing a character on a

keyboard; y-or-n-p will provide such a note if appropriate.

All input and output are performed using the stream in the global variable *query-

io*.

Here are some examples of the use of y-or-n-p:

(y-or-n-p "Produce listing file?")

(y-or-n-p "Cannot connect to network host ˜S. Retry?" host)

y-or-n-p should only be used for questions that the user knows are coming or in

situations where the user is known to be waiting for a response of some kind. If

the user is unlikely to anticipate the question, or if the consequences of the answer

might be grave and irreparable, then y-or-n-p should not be used because the user

might type ahead and thereby accidentally answer the question. For such questions

as “Shall I delete all of your files?” it is better to use yes-or-no-p.

[Function]yes-or-no-p &optional format-string &rest arguments

This predicate, like y-or-n-p, is for asking the user a question whose answer is either

“yes” or “no.” It types out a message (if supplied), attracts the user’s attention (for

example, by ringing the terminal’s bell), and reads a reply in some implementation

dependent manner. It is intended that the reply require the user to take more action

than just a single keystroke, such as typing the full word yes or no followed by a

newline.

If the formatstring argument is supplied and not nil, then a fresh-line operation

is performed; then a message is printed as if the formatstring and arguments were

given to format. Otherwise it is assumed that any message has already been printed

by other means. If you want a question mark at the end of the message, you must

put it there yourself; yes-or-no-p will not add it. However, the message should not

contain an explanatory note such as (Yes or No) because the nature of the interface

provided for yes-or-no-p by a given implementation might not involve typing the

reply on a keyboard; yes-or-no-p will provide such a note if appropriate.

All input and output are performed using the stream in the global variable *query-

io*.

To allow the user to answer a yesorno question with a single character, use y-or-

n-p. yes-or-no-p should be used for unanticipated or momentous questions; this is

why it attracts attention and why it requires a multipleaction sequence to answer it.

23

File System Interface

A frequent use of streams is to communicate with a file system to which groups of

data (files) can be written and from which files can be retrieved.

Common Lisp defines a standard interface for dealing with such a file system. This

interface is designed to be simple and general enough to accommodate the facilities

provided by “typical” operating system environments within which Common Lisp is

likely to be implemented. The goal is to make Common Lisp programs that perform

only simple operations on files reasonably portable.

To this end, Common Lisp assumes that files are named, that given a name one

can construct a stream connected to a file of that name, and that the names can be fit

into a certain canonical, implementationindependent form called a pathname.

Facilities are provided for manipulating pathnames, for creating streams connected

to files, and for manipulating the file system through pathnames and streams.

23.1. File Names

Common Lisp programs need to use names to designate files. The main difficulty

in dealing with names of files is that different file systems have different naming

formats for files. For example, here is a table of several file systems (actually,

operating systems that provide file systems) and what equivalent file names might

look like for each one:

System File Name

TOPS20 <LISPIO>FORMAT.FASL.13

TOPS10 FORMAT.FAS[1,4]

ITS LISPIO;FORMAT FASL

MULTICS >udd>LispIO>format.fasl

TENEX <LISPIO>FORMAT.FASL;13

VAX/VMS [LISPIO]FORMAT.FAS;13

UNIX /usr/lispio/format.fasl

608

FILE SYSTEM INTERFACE 609

It would be impossible for each program that deals with file names to know about each

different file name format that exists; a new Common Lisp implementation might use a

format different from any of its predecessors. Therefore, Common Lisp provides two

ways to represent file names: namestrings, which are strings in the implementation

dependent form customary for the file system, and pathnames, which are special

abstract data objects that represent file names in an implementationindependent

way. Functions are provided to convert between these two representations, and

all manipulations of files can be expressed in machineindependent terms by using

pathnames.

In order to allow Common Lisp programs to operate in a network environment that

may have more than one kind of file system, the pathname facility allows a file name

to specify which file system is to be used. In this context, each file system is called a

host, in keeping with the usual networking terminology.

Different hosts may use different notations for file names. Common Lisp allows

customary notation to be used for each host, but also supports a system of logical

pathnames that provides a standard framework for naming files in a portable manner

(see section 23.1.5).

23.1.1. Pathnames

All file systems dealt with by Common Lisp are forced into a common framework,

in which files are named by a Lisp data object of type pathname.

A pathname always has six components, described below. These components are

the common interface that allows programs to work the same way with different file

systems; the mapping of the pathname components into the concepts peculiar to each

file system is taken care of by the Common Lisp implementation.

host

The name of the file system on which the file resides.

device

Corresponds to the “device” or “file structure” concept in many host file systems: the

name of a (logical or physical) device containing files.

directory

Corresponds to the “directory” concept in many host file systems: the name of a

group of related files (typically those belonging to a single user or project).

name

The name of a group of files that can be thought of as the “same” file.

610 COMMON LISP

type

Corresponds to the “filetype” or “extension” concept in many host file systems;

identifies the type of file. Files with the same names but different types are usually

related in some specific way, for instance, one being a source file, another the compiled

form of that source, and a third the listing of error messages from the compiler.

version

Corresponds to the “version number” concept in many host file systems. Typically

this is a number that is incremented every time the file is modified.

Note that a pathname is not necessarily the name of a specific file. Rather, it

is a specification (possibly only a partial specification) of how to access a file. A

pathname need not correspond to any file that actually exists, and more than one

pathname can refer to the same file. For example, the pathname with a version of

“newest” may refer to the same file as a pathname with the same components except

a certain number as the version. Indeed, a pathname with version “newest” may refer

to different files as time passes, because the meaning of such a pathname depends on

the state of the file system. In file systems with such facilities as “links,” multiple

file names, logical devices, and so on, two pathnames that look quite different may

turn out to address the same file. To access a file given a pathname, one must do a

file system operation such as open.

Two important operations involving pathnames are parsing and merging. Pars

ing is the conversion of a namestring (which might be something supplied interac

tively by the user when asked to supply the name of a file) into a pathname object.

This operation is implementationdependent, because the format of namestrings is

implementationdependent. Merging takes a pathname with missing components and

supplies values for those components from a source of defaults.

Not all of the components of a pathname need to be specified. If a component of a

pathname is missing, its value is nil. Before the file system interface can do anything

interesting with a file, such as opening the file, all the missing components of a

pathname must be filled in (typically from a set of defaults). Pathnames with missing

components may be used internally for various purposes; in particular, parsing a

namestring that does not specify certain components will result in a pathname with

missing components.

X3J13 voted in January 1989 〈136〉 to permit any component of a pathname to

have the value :unspecific, meaning that the component simply does not exist, for

file systems in which such a value makes sense. (For example, a UNIX file system

usually does not support version numbers, so the version component of a pathname

for a UNIX host might be :unspecific. Similarly, the file type is usually regarded in

FILE SYSTEM INTERFACE 611

a UNIX file system as the part of a name after a period, but some file names contain

no periods and therefore have no file types.)

When a pathname is converted to a namestring, the values nil and :unspecific

have the same effect: they are treated as if the component were empty (that is, they

each cause the component not to appear in the namestring). When merging, however,

only a nil value for a component will be replaced with the default for that component;

the value :unspecific will be left alone as if the field were filled.

The results are undefined if :unspecific is supplied to a file system in a component

for which :unspecific does not make sense for that file system.

Programming hint: portable programs should be prepared to handle the value

:unspecific in the device, directory, type, or version field in some implementations.

Portable programs should not explicitly place :unspecific in any field because it

might not be permitted in some situations, but portable programs may sometimes do

so implicitly (by copying such a value from another pathname, for example).

A component of a pathname can also be the keyword :wild. This is only useful
..

when the pathname is being used with a directorymanipulating operation, where it

means that the pathname component matches anything. The printed representation of

a pathname typically designates :wild by an asterisk; however, this is hostdependent.

See section 23.1.4 for a discussion of new wildcard pathname facilities.

What values are allowed for components of a pathname depends, in general, on

the pathname’s host. However, in order for pathnames to be usable in a system

independent way, certain global conventions are adhered to. These conventions are

stronger for the type and version than for the other components, since the type and

version are explicitly manipulated by many programs, while the other components

are usually treated as something supplied by the user that just needs to be remembered

and copied from place to place.

The type is always a string or nil or :wild. It is expected that most programs that

deal with files will supply a default type for each file.

The version is either a positive integer or a special symbol. The meanings of niland

:wild have been explained above. The keyword :newest refers to the largest version

number that already exists in the file system when reading a file, or to a version

number greater than any already existing in the file system when writing a new

file. Some Common Lisp implementors may choose to define other special version

symbols. Some semistandard names, suggested but not required to be supported

by every Common Lisp implementation, are :oldest, to refer to the smallest version

number that exists in the file system; :previous, to refer to the version previous to

the newest version; and :installed, to refer to a version that is officially installed

for users (as opposed to a working or development version). Some Common Lisp

implementors may also choose to attach a meaning to nonpositive version numbers

(a typical convention is that 0 is synonymous with :newest and -1 with :previous),

612 COMMON LISP

but such interpretations are implementationdependent.

The host may be a string, indicating a file system, or a list of strings, of which the

first names the file system and the rest may be used for such a purpose as internetwork

routing.

The device, directory, and name can each be a string (with hostdependent rules on
...

allowed characters and length) or possibly some other Common Lisp data structure

(in which case such a component is said to be structured and has an implementation

dependent format). Structured components may be used to handle such file system

features as hierarchical directories. Common Lisp programs do not need to know

about structured components unless they do hostdependent operations. Specifying a

string as a pathname component for a host that requires a structured component will

cause conversion of the string to the appropriate form.

X3J13 voted in June 1989 〈133〉 to define a specific format for structured directories

(see section 23.1.3).

X3J13 voted in June 1989 〈129〉 to approve the following clarifications and speci

fications of precisely what are valid values for the various components of a pathname.

Pathname component value strings never contain the punctuation characters that

are used to separate fields in a namestring (for example, slashes and periods as

used in UNIX file systems). Punctuation characters appear only in namestrings.

Characters used as punctuation can appear in pathname component values with a

nonpunctuation meaning if the file system allows it (for example, UNIX file systems

allow a file name to begin with a period).

When examining pathname components, conforming programs must be prepared

to encounter any of the following siutations:

. Any component can be nil, which means the component has not been specified.

. Any component can be :unspecific, which means the component has no meaning

in this particular pathname.

. The device, directory, name, and type can be strings.

. The host can be any object, at the discretion of the implementation.

. The directory can be a list of strings and symbols as described in section 23.1.3.

. The version can be any symbol or any integer. The symbol :newest refers to

the largest version number that already exists in the file system when reading,

overwriting, appending, superseding, or directorylisting an existing file; it refers

to the smallest version number greater than any existing version number when

creating a new file. Other symbols and integers have implementationdefined

meaning. It is suggested, but not required, that implementations use positive

integers starting at 1 as version numbers, recognize the symbol :oldest to designate

FILE SYSTEM INTERFACE 613

the smallest existing version number, and use keyword symbols for other special

versions.

When examining wildcard components of a wildcard pathname, conforming pro

grams must be prepared to encounter any of the following additional values in any

component or any element of a list that is the directory component:

. The symbol :wild, which matches anything.

. A string containing implementationdependent special wildcard characters.

. Any object, representing an implementationdependent wildcard pattern.

When constructing a pathname from components, conforming programs must

follow these rules:

. Any component may be nil. Specifying nil for the host may, in some implemen

tations, result in using a default host rather than an actual nil value.

. The host, device, directory, name, and type may be strings. There are

implementationdependent limits on the number and type of characters in these

strings. A plausible assumption is that letters (of a single case) and digits are

acceptable to most file systems.

. The directory may be a list of strings and symbols as described in section 23.1.3.

There are implementationdependent limits on the length and contents of the list.

. The version may be :newest.

. Any component may be taken from the corresponding component of another path

name. When the two pathnames are for different file systems (in implementations

that support multiple file systems), an appropriate translation occurs. If no mean

ingful translation is possible, an error is signaled. The definitions of “appropriate”

and “meaningful” are implementationdependent.

. When constructing a wildcard pathname, the name, type, or version may be :wild,

which matches anything.

. An implementation might support other values for some components, but a

portable program should not use those values. A conforming program can use

implementationdependent values but this can make it nonportable; for example,

it might work only with UNIX file systems.

614 COMMON LISP

The best way to compare two pathnames for equality is with equal, not eql. (On

pathnames, eql is simply the same as eq.) Two pathname objects are equal if and

only if all the corresponding components (host, device, and so on) are equivalent.

(Whether or not uppercase and lowercase letters are considered equivalent in strings

appearing in components depends on the file name conventions of the file system.)

Pathnames that are equal should be functionally equivalent.

Some host file systems have features that do not fit into this pathname model. For
...

instance, directories might be accessible as files; there might be complicated structure

in the directories or names; or there might be a way to specify a directory relative

to a “current” directory, such as the < syntax in MULTICS or the special “..” file

name of UNIX. Such features are not allowed for by the standard Common Lisp file

system interface. An implementation is free to accommodate such features in its

pathname representation and provide a parser that can process such specifications in

namestrings; such features are then likely to work within that single implementation.

However, note that once a program depends explicitly on any such features, it will

not be portable.

X3J13 voted in June 1989 〈133〉 to define a specific format for structured directories

(see section 23.1.3), so some of the specific examples in the previous paragraph no

longer apply, but the principle is still correct.

23.1.2. Case Conventions

Issues of alphabetic case in pathnames are a major source of problems. In some file

systems, the customary case is lowercase, in some uppercase, in some mixed. Some

file systems are casesensitive (that is, they treat FOO and foo as different file names)

and others are not.

There are two kinds of pathname case portability problems: moving programs

from one Common Lisp to another, and moving pathname component values from

one file system to another. The solution to the first problem is the requirement

that all Common Lisp implementations that support a particular file system must

use compatible representations for pathname component values. The solution to

the second problem is the use of a common representation for the leastcommon

denominator pathname component values that exist on all interesting file systems.

Requiring a common representation directly conflicts with the desire among pro

grammers that use only one file system to work with the local conventions and to

ignore issues of porting to other file systems. The common representation cannot be

the same as local (varying) conventions.

X3J13 voted in June 1989 〈128〉 to add a keyword argument :case to each of

the functions make-pathname, pathname-host, pathname-device, pathname-directory,

FILE SYSTEM INTERFACE 615

pathname-name, and pathname-type. The possible values for the argument are :common

and :local. The default is :local.

The value :local means that strings given to make-pathname or returned by any

of the pathname component accessors follow the local file system’s conventions for

alphabetic case. Strings given to make-pathname will be used exactly as written if the

file system supports both cases. If the file system supports only one case, the strings

will be translated to that case.

The value :common means that strings given to make-pathname or returned by any of

the pathname component accessors follow this common convention:

. All uppercase means that a file system’s customary case will be used.

. All lowercase means that the opposite of the customary case will be used.

. Mixed case represents itself.

Uppercase is used as the common case for no better reason than consistency with Lisp

symbols. The second and third points allow translation from local representation to

common and back to be informationpreserving. (Note that translation from common

to local representation and back may or may not be informationpreserving,depending

on the nature of the local representation.)

Namestrings always use :local file system case conventions.

Finally, merge-pathnames and translate-pathname map customary case in the input

pathnames into customary case in the output pathname.

Examples of possible use of this convention:

. TOPS20 is casesensitive and prefers uppercase, translating lowercase to upper

case unless escaped with ˆV; for a TOPS20–based file system, a Common Lisp

implementation should use identical representations for common and local.

. UNIX is casesensitive and prefers lowercase; for a UNIXbased file system, a

Common Lisp implementation should translate between common and local repre

sentations by inverting the case of nonmixedcase strings.

. VAX/VMS is uppercaseonly (that is, the file system translates all file name ar

guments to uppercase); for a VAX/VMSbased file system, a Common Lisp im

plementation should translate common representation to local by converting to

uppercase and should translate local representation to common with no change.

. The Macintosh operating system is caseinsensitive and prefers lowercase, but

remembers the cases of letters actually used to name a file; for a Macintoshbased

file system, a Common Lisp implementation should translate between common and

local representations by inverting the case of nonmixedcase strings and should

ignore case when determining whether two pathnames are equal.

616 COMMON LISP

Here are some examples of this behavior. Assume that the host T runs TOPS20, U

runs UNIX, V runs VAX/VMS, and M runs the Macintosh operating system.

;;; Returns two values: the PATHNAME-NAME from a namestring

;;; in :COMMON and :LOCAL representations (in that order).

(defun pathname-example (name)

(let ((path (parse-namestring name))))

(values (pathname-name path :case :common)

(pathname-name path :case :local))))

;Common Local

(pathname-example "T:<ME>FOO.LISP") ⇒ "FOO" and "FOO"

(pathname-example "T:<ME>foo.LISP") ⇒ "FOO" and "FOO"

(pathname-example "T:<ME>ˆVfˆVoˆVo.LISP") ⇒ "foo" and "foo"

(pathname-example "T:<ME>TeX.LISP") ⇒ "TEX" and "TEX"

(pathname-example "T:<ME>TˆVeX.LISP") ⇒ "TeX" and "TeX"

(pathname-example "U:/me/FOO.lisp") ⇒ "foo" and "FOO"

(pathname-example "U:/me/foo.lisp") ⇒ "FOO" and "foo"

(pathname-example "U:/me/TeX.lisp") ⇒ "TeX" and "TeX"

(pathname-example "V:[me]FOO.LISP") ⇒ "FOO" and "FOO"

(pathname-example "V:[me]foo.LISP") ⇒ "FOO" and "FOO"

(pathname-example "V:[me]TeX.LISP") ⇒ "TEX" and "TEX"

(pathname-example "M:FOO.LISP") ⇒ "foo" and "FOO"

(pathname-example "M:foo.LISP") ⇒ "FOO" and "foo"

(pathname-example "M:TeX.LISP") ⇒ "TeX" and "TeX"

The following example illustrates the creation of new pathnames. The name is

converted from common representation to local because namestrings always use

local conventions.

(defun make-pathname-example (h n)

(namestring (make-pathname :host h :name n :case :common))

(make-pathname-example "T" "FOO") ⇒ "T:FOO"

(make-pathname-example "T" "foo") ⇒ "T:ˆVfˆVoˆVo"

(make-pathname-example "T" "TeX") ⇒ "T:TˆVeX"

(make-pathname-example "U" "FOO") ⇒ "U:foo"

(make-pathname-example "U" "foo") ⇒ "U:FOO"

(make-pathname-example "U" "TeX") ⇒ "U:TeX"

(make-pathname-example "V" "FOO") ⇒ "V:FOO"

(make-pathname-example "V" "foo") ⇒ "V:FOO"

FILE SYSTEM INTERFACE 617

(make-pathname-example "V" "TeX") ⇒ "V:TeX"

(make-pathname-example "M" "FOO") ⇒ "M:foo"

(make-pathname-example "M" "foo") ⇒ "M:FOO"

(make-pathname-example "M" "TeX") ⇒ "M:TeX"

A big advantage of this set of conventions is that one can, for example, call

make-pathname with :type "LISP" and :case :common, and the result will appear in

a namestring as .LISP or .lisp, whichever is appropriate.

23.1.3. Structured Directories

X3J13 voted in June 1989 〈133〉 to define a specific pathname component format for

structured directories.

The value of a pathname’s directory component may be a list. The car of the

list should be a keyword, either :absolute or :relative. Each remaining element

of the list should be a string or a symbol (see below). Each string names a single

level of directory structure and should consist of only the directory name without any

punctuation characters.

A list whose car is the symbol :absolute represents a directory path starting from

the root directory. For example, the list (:absolute) represents the root directory

itself; the list (:absolute "foo" "bar" "baz") represents the directory that in a UNIX

file system would be called /foo/bar/baz.

A list whose car is the symbol :relative represents a directory path starting

from a default directory. The list (:relative) has the same meaning as nil and

hence normally is not used. The list (:relative "foo" "bar") represents the directory

named bar in the directory named foo in the default directory.

In place of a string, at any point in the list, a symbol may occur to indicate a special

file notation. The following symbols have standard meanings.

:wild Wildcard match of one level of directory structure

:wild-inferiors Wildcard match of any number of directory levels

:up Go upward in directory structure (semantic)

:back Go upward in directory structure (syntactic)

(See section 23.1.4 for a discussion of wildcard pathnames.)

Implementations are permitted to add additional objects of any nonstring type if

necessary to represent features of their file systems that cannot be represented with

the standard strings and symbols. Supplying any nonstring, including any of the

symbols listed below, to a file system for which it does not make sense signals an error

618 COMMON LISP

of type file-error. For example, most implementations of the UNIX file system do

not support :wild-inferiors. Any directory list in which :absolute or :wild-inferiors

is immediately followed by :up or :back is illegal and when processed causes an error

to be signaled.

The keyword :back has a “syntactic” meaning that depends only on the pathname

and not on the contents of the file system. The keyword :up has a “semantic” meaning

that depends on the contents of the file system; to resolve a pathname containing :up to

a pathname whose directory component contains only :absolute and strings requires

a search of the file system. Note that use of :up instead of :back can result in

designating a different actual directory only in file systems that support multiple

names for directories, perhaps via symbolic links. For example, suppose that there

is a directory link such that

(:absolute "X" "Y") is linked to (:absolute "A" "B")

and there also exist directories

(:absolute "A" "Q") and (:absolute "X" "Q")

Then

(:absolute "X" "Y" :up "Q") designates (:absolute "A" "Q")

but

(:absolute "X" "Y" :back "Q") designates (:absolute "X" "Q")

If a string is used as the value of the :directory argument to make-pathname, it should

be the name of a toplevel directory and should not contain any punctuation characters.

Specifying a string s is equivalent to specifying the list (:absolute s). Specifying

the symbol :wild is equivalent to specifying the list (:absolute :wild-inferiors) (or

(:absolute :wild) in a file system that does not support :wild-inferiors).

The function pathname-directory always returns nil, :unspecific, or a list—never

a string, never :wild. If a list is returned, it is not guaranteed to be freshly consed;

the consequences of modifying this list are undefined.

In nonhierarchical file systems, the only valid list values for the directory compo

nent of a pathname are (:absolute s) (where s is a string) and (:absolute :wild). The

keywords :relative, :wild-inferiors, :up, and :back are not used in nonhierarchical

file systems.

Pathname merging treats a relative directory specially. Let pathname and defaults

be the first two arguments to merge-pathnames. If (pathname-directory pathname) is

a list whose car is :relative, and (pathname-directory defaults) is a list, then the

merged directory is the value of

FILE SYSTEM INTERFACE 619

(append (pathname-directory defaults)

(cdr ;Remove :relative from the front

(pathname-directory pathname)))

except that if the resulting list contains a string or :wild immediately followed by

:back, both of them are removed. This removal of redundant occurrences of :back

is repeated as many times as possible. If (pathname-directory defaults) is not a list

or (pathname-directory pathname) is not a list whose car is :relative, the merged

directory is the value of

(or (pathname-directory pathname)

(pathname-directory defaults))

A relative directory in the pathname argument to a function such as open is merged

with the value of *default-pathname-defaults* before the file system is accessed.

Here are some examples of the use of structured directories. Suppose that host L

supports a Symbolics Lisp Machine file system, host U supports a UNIX file system,

and host V supports a VAX/VMS file system.

(pathname-directory (parse-namestring "V:[FOO.BAR]BAZ.LSP"))

⇒ (:ABSOLUTE "FOO" "BAR")

(pathname-directory (parse-namestring "U:/foo/bar/baz.lisp"))

⇒ (:ABSOLUTE "foo" "bar")

(pathname-directory (parse-namestring "U:../baz.lisp"))

⇒ (:RELATIVE :UP)

(pathname-directory (parse-namestring "U:/foo/bar/../mum/baz"))

⇒ (:ABSOLUTE "foo" "bar" :UP "mum")

(pathname-directory (parse-namestring "U:bar/../../ztesch/zip"))

⇒ (:RELATIVE "bar" :UP :UP "ztesch")

(pathname-directory (parse-namestring "L:>foo>**>bar>baz.lisp"))

⇒ (:ABSOLUTE "FOO" :WILD-INFERIORS "BAR")

(pathname-directory (parse-namestring "L:>foo>*>bar>baz.lisp"))

⇒ (:ABSOLUTE "FOO" :WILD "BAR")

23.1.4. Extended Wildcards

Some file systems provide more complex conventions for wildcards than simple

componentwise wildcards representable by :wild. For example, the namestring

620 COMMON LISP

"F*O" might mean a normal threecharacter name; a threecharacter name with the

middle character wild; a name with at least two characters, beginning with F and

ending with O; or perhaps a wild match spanning multiple directories. Similarly, the

namestring ">foo>**>bar>" might imply that the middle directory is named "**"; the

middle directory is :wild; there are zero or more middle directories that are :wild;

or perhaps that the middle directory name matches any twoletter name. Some file

systems support even more complex wildcards, such as regular expressions.

X3J13 voted in June 1989 〈137〉 to provide some facilities for dealing with more

general wildcard pathnames in a fairly portable manner.

[Function]wild-pathname-p pathname &optional field-key

Tests a pathname for the presence of wildcard components. If the first argument is

not a pathname, string, or file stream, an error of type type-error is signaled.

If no fieldkey is provided, or the fieldkey is nil, the result is true if and only if

pathname has any wildcard components.

If a nonnull fieldkey is provided, it must be one of :host, :device, :directory,

:name, :type, or :version. In this case, the result is true if and only if the indicated

component of pathname is a wildcard.

Note that X3J13 voted in June 1989 〈129〉 to specify that an implementation need

not support wildcards in all fields; the only requirement is that the name, type, or

version may be :wild. However, portable programs should be prepared to encounter

either :wild or implementationdependent wildcards in any pathname component.

The function wild-pathname-p provides a portable way for testing the presence of

wildcards.

[Function]pathname-match-p pathname wildname

This predicate is true if and only if the pathname matches the wildname. The matching

rules are implementationdefined but should be consistent with the behavior of the

directory function. Missing components of wildname default to :wild.

If either argument is not a pathname, string, or file stream, an error of type type-

error is signaled. It is valid for pathname to be a wild pathname; a wildcard field in

pathname will match only a wildcard field in wildname; that is, pathname-match-p is

not commutative. It is valid for wildname to be a nonwild pathname; I believe that

in this case pathname-match-p will have the same behavior as equal, though the X3J13

specification did not say so.

FILE SYSTEM INTERFACE 621

[Function]translate-pathname source from-wildname to-wildname &key

Translates the pathname source, which must match fromwildname, into a corre

sponding pathname (call it result), which is constructed so as to match towildname,

and returns result.

The pathname result is a copy of towildname with each missing or wildcard field

replaced by a portion of source; for this purpose a wildcard field is a pathname

component with a value of :wild, a :wild element of a listvalued directory com

ponent, or an implementationdefined portion of a component, such as the * in the

complex wildcard string "foo*bar" that some implementations support. An imple

mentation that adds other wildcard features, such as regular expressions, must define

how translate-pathname extends to those features. A missing field is a pathname

component that is nil.

The portion of source that is copied into result is implementationdefined. Typically

it is determined by the user interface conventions of the file systems involved. Usually

it is the portion of source that matches a wildcard field of fromwildname that is in the

same position as the missing or wildcard field of towildname. If there is no wildcard

field in fromwildname at that position, then usually it is the entire corresponding

pathname component of source or, in the case of a listvalued directory component,

the entire corresponding list element. For example, if the name components of source,

fromwildname, and towildname are "gazonk", "gaz*", and "h*" respectively, then in

most file systems the wildcard fields of the name component of fromwildname and

towildname are each "*", the matching portion of source is "onk", and the name

component of result is "honk"; however, the exact behavior of translate-pathname

is not dictated by the Common Lisp language and may vary according to the user

interface conventions of the file systems involved.

During the copying of a portion of source into result, additional implementation

defined translations of alphabetic case or file naming conventions may occur, espe

cially when fromwildname and towildname are for different hosts.

If any of the first three arguments is not a pathname, string, or file stream, an

error of type type-error is signaled. It is valid for source to be a wild pathname; in

general this will produce a wild result pathname. It is valid for fromwildname or

towildname or both to be nonwild. An error is signaled if the source pathname does

not match the fromwildname, that is, if (pathname-match-p source from-wildname)

would not be true.

There are no specified keyword arguments for translate-pathname, but implementa

tions are permitted to extend it by adding keyword arguments. There is one specified

return value from translate-pathname; implementations are permitted to extend it by

returning additional values.

Here is an implementation suggestion. One file system performs this operation

622 COMMON LISP

by examining corresponding pieces of the three pathnames in turn, where a piece

is a pathname component or a list element of a structured component such as a

hierarchical directory. Hierarchical directory elements in fromwildname and to

wildname are matched by whether they are wildcards, not by depth in the directory

hierarchy. If the piece in towildname is present and not wild, it is copied into the

result. If the piece in towildname is :wild or nil, the corresponding piece in source

is copied into the result. Otherwise, the piece in towildname might be a complex

wildcard such as "foo*bar"; the portion of the piece in source that matches the

wildcard portion of the corresponding piece in fromwildname (or the entire source

piece, if the fromwildname piece is not wild and therefore equals the source piece)

replaces the wildcard portion of the piece in towildname and the value produced is

used in the result.

X3J13 voted in June 1989 〈128〉 to require translate-pathname to map custom

ary case in argument pathnames to the customary case in returned pathnames (see

section 23.1.2).

Here are some examples of the use of the new wildcard pathname facilities. These

examples are not portable. They are written to run with particular file systems and

particular wildcard conventions and are intended to be illustrative, not prescriptive.

Other implementations may behave differently.

(wild-pathname-p (make-pathname :name :wild)) ⇒ t

(wild-pathname-p (make-pathname :name :wild) :name) ⇒ t

(wild-pathname-p (make-pathname :name :wild) :type) ⇒ nil

(wild-pathname-p (pathname "S:>foo>**>")) ⇒ t ;Maybe

(wild-pathname-p (make-pathname :name "F*O")) ⇒ t ;Probably

One cannot rely on rename-file to handle wild pathnames in a predictable manner.

However, one can use translate-pathname explicitly to control the process.

(defun rename-files (from to)

"Rename all files that match the first argument by

translating their names to the form of the second

argument. Both arguments may be wild pathnames."

(dolist (file (directory from))

;; DIRECTORY produces only pathnames that match from-wildname.

(rename-file file (translate-pathname file from to))))

Assuming one particular set of popular wildcard conventions, this function might

exhibit the following behavior. Not all file systems will run this example exactly as

written.

FILE SYSTEM INTERFACE 623

(rename-files "/usr/me/*.lisp" "/dev/her/*.l")

renames /usr/me/init.lisp

to /dev/her/init.l

(rename-files "/usr/me/pcl*/*" "/sys/pcl/*/")

renames /usr/me/pcl-5-may/low.lisp

to /sys/pcl/pcl-5-may/low.lisp

(in some file systems the result might be /sys/pcl/5-may/low.lisp)

(rename-files "/usr/me/pcl*/*" "/sys/library/*/")

renames /usr/me/pcl-5-may/low.lisp

to /sys/library/pcl-5-may/low.lisp

(in some file systems the result might be /sys/library/5-may/low.lisp)

(rename-files "/usr/me/foo.bar" "/usr/me2/")

renames /usr/me/foo.bar

to /usr/me2/foo.bar

(rename-files "/usr/joe/*-recipes.text"

"/usr/jim/personal/cookbook/joe´s-*-rec.text")

renames /usr/joe/lamb-recipes.text

to /usr/jim/personal/cookbook/joe´s-lamb-rec.text

renames /usr/joe/veg-recipes.text

to /usr/jim/personal/cookbook/joe´s-veg-rec.text

renames /usr/joe/cajun-recipes.text

to /usr/jim/personal/cookbook/joe´s-cajun-rec.text

renames /usr/joe/szechuan-recipes.text

to /usr/jim/personal/cookbook/joe´s-szechuan-rec.text

The following examples use UNIX syntax and the wildcard conventions of one

particular version of UNIX.

(namestring

(translate-pathname "/usr/dmr/hacks/frob.l"

"/usr/d*/hacks/*.l"

"/usr/d*/backup/hacks/backup-*.*"))

⇒ "/usr/dmr/backup/hacks/backup-frob.l"

624 COMMON LISP

(namestring

(translate-pathname "/usr/dmr/hacks/frob.l"

"/usr/d*/hacks/fr*.l"

"/usr/d*/backup/hacks/backup-*.*"))

⇒ "/usr/dmr/backup/hacks/backup-ob.l"

The following examples are similar to the preceding examples but use two different

hosts; host U supports a UNIX file system and host V supports a VAX/VMS file

system. Note the translation of file type (from l to LSP) and the change of alphabetic

case conventions.

(namestring

(translate-pathname "U:/usr/dmr/hacks/frob.l"

"U:/usr/d*/hacks/*.l"

"V:SYS$DISK:[D*.BACKUP.HACKS]BACKUP-*.*"))

⇒ "V:SYS$DISK:[DMR.BACKUP.HACKS]BACKUP-FROB.LSP"

(namestring

(translate-pathname "U:/usr/dmr/hacks/frob.l"

"U:/usr/d*/hacks/fr*.l"

"V:SYS$DISK:[D*.BACKUP.HACKS]BACKUP-*.*"))

⇒ "V:SYS$DISK:[DMR.BACKUP.HACKS]BACKUP-OB.LSP"

The next example is a version of the function translate-logical-pathname (simplified

a bit) for a logical host named FOO. The points of interest are the use of pathname-

match-p as a :test argument for assoc and the use of translate-pathname as a substrate

for translate-logical-pathname.

(define-condition logical-translation-error (file-error))

(defun my-translate-logical-pathname (pathname &key rules)

(let ((rule (assoc pathname rules :test #--´pathname-match-p)))

(unless rule

(error ´logical-translation-error :pathname pathname))

(translate-pathname pathname (first rule) (second rule))))

(my-translate-logical-pathname

"FOO:CODE;BASIC.LISP"

:rules ´(("FOO:DOCUMENTATION;" "U:/doc/foo/")

("FOO:CODE;" "U:/lib/foo/")

("FOO:PATCHES;*;" "U:/lib/foo/patch/*/")))

⇒ #--P"U:/lib/foo/basic.l"

FILE SYSTEM INTERFACE 625

23.1.5. Logical Pathnames

Pathname values are not portable,but sometimes they must be mentioned in a program

(for example, the names of files containing the program and the data used by the

program).

X3J13 voted in June 1989 〈130〉 to provide some facilities for portable pathname

values. The idea is to provide a portable framework for pathname values; these

logical pathnames are then mapped to physical (that is, actual) pathnames by a set

of implementationdependent or sitedependent rules. The logical pathname facility

therefore separates the concerns of program writing and user software architecture

from the details of how a software system is embedded in a particular file system or

operating environment.

Pathname values are not portable because not all Common Lisp implementations

use the same operating system and file name syntax varies widely among operating

systems. In addition, corresponding files at two different sites may have different

names even when the operating system is the same; for example, they may be on

different directories or different devices. The Common Lisp logical pathname system

defines a particular pathname structure and namestring syntax that must be supported

by all implementations.

[Class]logical-pathname

This is a subclass of pathname.

23.1.5.1. Syntax of Logical Pathname Namestrings

The syntax of a logical pathname namestring is as follows:

logicalnamestring ::= [host :] [;] {directory ;}∗ [name] [. type [. version]]

Note that a logical namestring has no device portion.

host ::= word

directory ::= word | wildcardword | wildcardinferiors

name ::= word | wildcardword

type ::= word | wildcardword

version ::= word | wildcardword

word ::= {letter | digit | -}+

wildcardword ::= [word] * {word *}∗ [word]

wildcardinferiors ::= **

626 COMMON LISP

A word consists of one or more uppercase letters, digits, and hyphens.

A wildcard word consists of one or more asterisks, uppercase letters, digits, and

hyphens, including at least one asterisk, with no two asterisks adjacent. Each asterisk

matches a sequence of zero or more characters. The wildcard word * parses as :wild;

all others parse as strings.

Lowercase letters may also appear in a word or wildcard word occurring in a

namestring. Such letters are converted to uppercase when the namestring is converted

to a pathname. The consequences of using other characters are unspecified.

The host is a word that has been defined as a logical pathname host by using setf

with the function logical-pathname-translations.

There is no device, so the device component of a logical pathname is always

:unspecific. No other component of a logical pathname can be :unspecific.

Each directory is a word, a wildcard word, or ** (which is parsed as :wild-

inferiors). If a semicolon precedes the directories, the directory component is

relative; otherwise it is absolute.

The name is a word or a wildcard word.

The type is a word or a wildcard word.

The version is a positive decimal integer or the word NEWEST (which is parsed

as :newest) or * (which is parsed as :wild). The letters in NEWEST can be in either

alphabetic case.

The consequences of using any value not specified here as a logical pathname

component are unspecified. The null string "" is not a valid value for any component

of a logical pathname, since the null string is not a word or a wildcard word.

23.1.5.2. Parsing of Logical Pathname Namestrings

Logical pathname namestrings are recognized by the functions logical-pathname and

translate-logical-pathname. The host portion of the logical pathname namestring

and its following colon must appear in the namestring arguments to these functions.

The function parse-namestring recognizes a logical pathname namestring when

the host argument is logical or the defaults argument is a logical pathname. In this

case the host portion of the logical pathname namestring and its following colon are

optional. If the host portion of the namestring and the host argument are both present

and do not match, an error is signaled. The host argument is logical if it is supplied and

came from pathname-host of a logical pathname. Whether a host argument is logical

if it is a string equal to a logical pathname host name is implementationdefined.

The function merge-pathnames recognizes a logical pathname namestring when the

defaults argument is a logical pathname. In this case the host portion of the logical

pathname namestring and its following colon are optional.

FILE SYSTEM INTERFACE 627

Whether the other functions that coerce strings to pathnames recognize logical

pathname namestrings is implementationdefined. These functions include parse-

namestring in circumstances other than those described above, merge-pathnames in

circumstances other than those described above, the :defaults argument to make-

pathname, and the following functions:

compile-file file-write-date pathname-name

compile-file-pathname host-namestring pathname-type

delete-file load pathname-version

directory namestring probe-file

directory-namestring open rename-file

dribble pathname translate-pathname

ed pathname-device truename

enough-namestring pathname-directory wild-pathname-p

file-author pathname-host with-open-file

file-namestring pathname-match-p

Note that many of these functions must accept logical pathnames even though they

do not accept logical pathname namestrings.

23.1.5.3. Using Logical Pathnames

Some real file systems do not have versions. Logical pathname translation to such a

file system ignores the version. This implies that a portable program cannot rely on

being able to store in a file system more than one version of a file named by a logical

pathname.

The type of a logical pathname for a Common Lisp source file is LISP. This should

be translated into whatever implementationdefined type is appropriate in a physical

pathname.

The logical pathname host name SYS is reserved for the implementation. The

existence and meaning of logical pathnames for logical host SYS is implementation

defined.

File manipulation functions must operate with logical pathnames according to the

following requirements:

. The following accept logical pathnames and translate them into physical pathnames

as if by calling the function translate-logical-pathname:

628 COMMON LISP

compile-file ed probe-file

compile-file-pathname file-author rename-file

delete-file file-write-date truename

directory load with-open-file

dribble open

. Applying the function pathname to a stream created by the function open or the

macro with-open-file using a logical pathname produces a logical pathname.

. The functions truename, probe-file, and directory never return logical pathnames.

. Calling rename-file with a logical pathname as the second argument returns a

logical pathname as the first value.

. make-pathname returns a logical pathname if and only if the host is logical. If the

:host argument to make-pathname is supplied, the host is logical if it came from the

pathname-host of a logical pathname. Whether a :host argument is logical if it is a

string equal to a logical pathname host name is implementationdefined.

[Function]logical-pathname pathname

Converts the argument to a logical pathname and returns it. The argument can be

a logical pathname, a logical pathname namestring containing a host component, or

a stream for which the pathname function returns a logical pathname. For any other

argument, logical-pathname signals an error of type type-error.

[Function]translate-logical-pathname pathname &key

Translates a logical pathname to the corresponding physical pathname. The pathname

argument is first coerced to a pathname. If it is not a pathname, string, or file stream,

an error of type type-error is signaled.

If the coerced argument is a physical pathname, it is returned.

If the coerced argument is a logical pathname, the first matching translation (ac

cording to pathname-match-p) of the logical pathname host is applied, as if by calling

translate-pathname. If the result is a logical pathname, this process is repeated. When

the result is finally a physical pathname, it is returned.

If no translation matches a logical pathname, an error of type file-error is signaled.

translate-logical-pathname may perform additional translations, typically to pro

vide translation of file types to local naming conventions, to accommodate physical

file systems with names of limited length, or to deal with special character require

ments such as translating hyphens to underscores or uppercase letters to lowercase.

FILE SYSTEM INTERFACE 629

Any such additional translations are implementationdefined. Some implementations

do no additional translations.

There are no specified keyword arguments for translate-logical-pathname but

implementations are permitted to extend it by adding keyword arguments. There

is one specified return value from translate-logical-pathname; implementations are

permitted to extend it by returning additional values.

[Function]logical-pathname-translations host

If the specified host is not the host component of a logical pathname and is not a

string that has been defined as a logical pathname host name by setf of logical-

pathname-translations, this function signals an error of type type-error; otherwise,

it returns the list of translations for the specified host. Each translation is a list of at

least two elements, fromwildname and towildname. Any additional elements are

implementationdefined. A fromwildname is a logical pathname whose host is the

specified host. A towildname is any pathname. Translations are searched in the

order listed, so more specific fromwildnames must precede more general ones.

(setf (logical-pathname-translations host) translations) sets the list of transla

tions for the logical pathname host to translations. If host is a string that has not

previously been used as logical pathname host, a new logical pathname host is de

fined; otherwise an existing host’s translations are replaced. Logical pathname host

names are compared with string-equal.

When setting the translations list, each fromwildname can be a logical pathname

whose host is host or a logical pathname namestring s parseable by (parse-namestring

s host-object), where hostobject is an appropriate object for representing the spec

ified host to parse-namestring. (This circuitous specification dodges the fact that

parse-namestring does not necessarily accept as its second argument any old string

that names a logical host.) Each towildname can be anything coercible to a pathname

by application of the function pathname. If towildname coerces to a logical pathname,

translate-logical-pathname will retranslate the result, repeatedly if necessary.

Implementations may define additional functions that operate on logical pathname

hosts (for example, to specify additional translation rules or options).

[Function]load-logical-pathname-translations host

If a logical pathname host named host (a string) is already defined, this function

returns nil. Otherwise, it searches for a logical pathname host definition in an

implementationdefined manner. If none is found, it signals an error. If a definition

is found, it installs the definition and returns t.

630 COMMON LISP

The search used by load-logical-pathname-translations should be documented, as

logical pathname definitions will be created by users as well as by Lisp implementors.

A typical search technique is to look in an implementationdefined directory for a file

whose name is derived from the host name in an implementationdefined fashion.

[Function]compile-file-pathname pathname &key :output-file

Returns the pathname that compile-filewould write into, if given the same arguments.

If the pathname argument is a logical pathname and the :output-file argument is

unspecified, the result is a logical pathname. If an implementation supports additional

keyword arguments to compile-file, compile-file-pathname must accept the same

arguments.

23.1.5.4. Examples of the Use of Logical Pathnames

Here is a very simple example of setting up a logical pathname host named FOO.

Suppose that no translations are necessary to get around file system restrictions, so

all that is necessary is to specify the root of the physical directory tree that contains

the logical file system. The namestring syntax in the towildname is implementation

specific.

(setf (logical-pathname-translations "foo")

´(("**;*.*.*" "MY-LISPM:>library>foo>**>")))

The following is a sample use of that logical pathname. All return values are of course

implementationspecific; all of the examples in this section are of course meant to be

illustrative and not prescriptive.

(translate-logical-pathname "foo:bar;baz;mum.quux.3")

⇒ #--P"MY-LISPM:>library>foo>bar>baz>mum.quux.3"

Next we have a more complex example, dividing the files among two file servers

(U, supporting a UNIX file system, and V, supporting a VAX/VMS file system) and

several different directories. This UNIX file system doesn’t support :wild-inferiors

in the directory, so each directory level must be translated individually. No file name

or type translations are required except for .MAIL to .MBX. The namestring syntax used

for the towildnames is implementationspecific.

(setf (logical-pathname-translations "prog")

´(("RELEASED;*.*.*" "U:/sys/bin/my-prog/")

("RELEASED;*;*.*.*" "U:/sys/bin/my-prog/*/")

FILE SYSTEM INTERFACE 631

("EXPERIMENTAL;*.*.*"

"U:/usr/Joe/development/prog/")

("EXPERIMENTAL;DOCUMENTATION;*.*.*"

"V:SYS$DISK:[JOE.DOC]")

("EXPERIMENTAL;*;*.*.*"

"U:/usr/Joe/development/prog/*/")

("MAIL;**;*.MAIL" "V:SYS$DISK:[JOE.MAIL.PROG...]*.MBX")

))

Here are sample uses of logical host PROG. All return values are of course

implementationspecific.

(translate-logical-pathname "prog:mail;save;ideas.mail.3")

⇒ #--P"V:SYS$DISK:[JOE.MAIL.PROG.SAVE]IDEAS.MBX.3"

(translate-logical-pathname "prog:experimental;spreadsheet.c")

⇒ #--P"U:/usr/Joe/development/prog/spreadsheet.c"

Suppose now that we have a program that uses three files logically named MAIN.LISP,

AUXILIARY.LISP, and DOCUMENTATION.LISP. The following translations might be provided

by a software supplier as examples.

For a UNIX file system with long file names:

(setf (logical-pathname-translations "prog")

´(("CODE;*.*.*" "/lib/prog/")))

(translate-logical-pathname "prog:code;documentation.lisp")

⇒ #--P"/lib/prog/documentation.lisp"

For a UNIX file system with 14character file names, using .lisp as the type:

(setf (logical-pathname-translations "prog")

´(("CODE;DOCUMENTATION.*.*" "/lib/prog/docum.*")

("CODE;*.*.*" "/lib/prog/")))

(translate-logical-pathname "prog:code;documentation.lisp")

⇒ #--P"/lib/prog/docum.lisp"

For a UNIX file system with 14character file names, using .l as the type (the second

translation shortens the compiled file type to .b):

632 COMMON LISP

(setf (logical-pathname-translations "prog")

`(("**;*.LISP.*" ,(logical-pathname "PROG:**;*.L.*"))

(,(compile-file-pathname

(logical-pathname "PROG:**;*.LISP.*"))

,(logical-pathname "PROG:**;*.B.*"))

("CODE;DOCUMENTATION.*.*" "/lib/prog/documentatio.*")

("CODE;*.*.*" "/lib/prog/")))

(translate-logical-pathname "prog:code;documentation.lisp")

⇒ #--P"/lib/prog/documentatio.l"

23.1.5.5. Discussion of Logical Pathnames

Large programs can be moved between sites without changing any pathnames, pro

vided all pathnames used are logical. A portable system construction tool can be

created that operates on programs defined as sets of files named by logical pathnames.

Logical pathname syntax was chosen to be easily translated into the formats of most

popular file systems, while still being powerful enough for storing large programs.

Although they have hierarchical directories, extended wildcard matching, versions,

and no limit on the length of names, logical pathnames can be mapped onto a less

capable real file system by translating each directory that is used into a flat directory

name, processing wildcards in the Lisp implementation rather than in the file system,

treating all versions as :newest, and using translations to shorten long names.

Logical pathname words are restricted to noncasesensitive letters, digits, and hy

phens to avoid creating problems with real file systems that support limited character

sets for file naming. (If logical pathnames were casesensitive, it would be very

difficult to map them into a file system that is not sensitive to case in its file names.)

It is not a goal of logical pathnames to be able to represent all possible file names.

Their goal is rather to represent just enough file names to be useful for storing

software. Real pathnames, in contrast, need to provide a uniform interface to all

possible file names, including names and naming conventions that are not under the

control of Common Lisp.

The choice of logical pathname syntax, using colon, semicolon, and period, was

guided by the goals of being visually distinct from real file systems and minimizing

the use of special characters.

The logical-pathname function is separate from the pathname function so that the

syntax of logical pathname namestrings does not constrain the syntax of physical

pathname namestrings in any way. Logical pathname syntax must be defined by

Common Lisp so that logical pathnames can be conveniently exchanged between

FILE SYSTEM INTERFACE 633

implementations, but physical pathname syntax is dictated by the operating environ

ments.

The compile-file-pathname function and the specification of LISP as the type of a

logical pathname for a Common Lisp source file together provide enough information

about compilation to make possible a portable system construction tool. Suppose

that it is desirable to call compile-file only if the source file is newer than the

compiled file. For this to succeed, it must be possible to know the name of the

compiled file without actually calling compile-file. In some implementations the

compiler produces one of several file types,depending on a variety of implementation

dependent circumstances, so it is not sufficient simply to prescribe a standard logical

file type for compiled files; compile-file-pathname provides access to the defaulting

that is performed by compile-file “in a manner appropriate to the implementation’s

file system conventions.”

The use of the logical pathname host name SYS for the implementation is current

practice. Standardizing on this name helps users choose logical pathname host names

that avoid conflicting with implementationdefined names.

Loading of logical pathname translations from a sitedependent file allows software

to be distributed using logical pathnames. The assumed model of software distribution

is a division of labor between the supplier of the software and the user installing it.

The supplier chooses logical pathnames to name all the files used or created by the

software, and supplies examples of logical pathname translations for a few popular

file systems. Each example uses an assumed directory and/or device name, assumes

local file naming conventions, and provides translations that will translate all the

logical pathnames used or generated by the particular software into valid physical

pathnames. For a powerful file system these translations can be quite simple. For a

more restricted file system, it may be necessary to list an explicit translation for every

logical pathname used (for example, when dealing with restrictions on the maximum

length of a file name).

The user installing the software decides on which device and directory to store the

files and edits the example logical pathname translations accordingly. If necessary,

the user also adjusts the translations for local file naming conventions and any other

special aspects of the user’s local file system policy and local Common Lisp imple

mentation. For example, the files might be divided among several file server hosts to

share the load. The process of defining sitecustomized logical pathname translations

is quite easy for a user of a popular file system for which the software supplier has

provided an example. A user of a more unusual file system might have to take more

time; the supplier can help by providing a list of all the logical pathnames used or

generated by the software.

Once the user has created and executed a suitable setf form for setting the logical-

pathname-translations of the relevant logical host, the software can be loaded and

634 COMMON LISP

run. It may be necessary to use the translations again, or on another workstation at the

same site, so it is best to save the setf form in the standard place where it can be found

later by load-logical-pathname-translations. Often a software supplier will include

a program for restoring software from the distribution medium to the file system and

a program for loading the software from the file system into a Common Lisp; these

programs will start by calling load-logical-pathname-translations to make sure that

the logical pathname host is defined.

Note that the setf of logical-pathname-translations form isn’t part of the program;

it is separate and is written by the user, not by the software supplier. That separation

and a uniform convention for doing the separation are the key aspects of logical

pathnames. For small programs involving only a handful of files, it doesn’t matter

much. The real benefits come with large programs with hundreds or thousands of

files and more complicated situations such as programgeneratedfile names or porting

a program developed on a system with long file names onto a system with a very

restrictive limit on the length of file names.

23.1.6. Pathname Functions

These functions are what programs use to parse and default file names that have been

typed in or otherwise supplied by the user.

Any argument called pathname in this book may actually be a pathname, a string
...

or symbol, or a stream. Any argument called defaults may likewise be a pathname,

a string or symbol, or a stream.

X3J13 voted in March 1988 〈134〉 to change the language so that a symbol is

never allowed as a pathname argument. More specifically, the following functions

are changed to disallow a symbol as a pathname argument:

pathname pathname-device namestring

truename pathname-directory file-namestring

parse-namestring pathname-name directory-namestring

merge-pathnames pathname-type host-namestring

pathname-host pathname-version enough-namestring

(The function requirewas also changed by this vote but was deleted from the language

by a vote in January 1989 〈154〉.) Furthermore, the vote reaffirmed that the following

functions do not accept symbols as file, filename, or pathname arguments:

open rename-file file-write-date

with-open-file delete-file file-author

load probe-file directory

compile-file

FILE SYSTEM INTERFACE 635

In older implementations of Lisp that did not have strings, for example MacLisp,

symbols were the only means for specifying pathnames. This was convenient only

because the file systems of the time allowed only uppercase letters in file names.

Typing (load ´foo) caused the function load to receive the symbol FOO (with uppercase

letters because of the way symbols are parsed) and therefore to load the file named

FOO. Now that many file systems, most notably UNIX, support casesensitive file

names, the use of symbols is less convenient and more errorprone.

X3J13 voted in March 1988 〈132〉 to specify that a stream may be used as a

pathname, file, or filename argument only if it was created by use of open or with-

open-file, or if it is a synonym stream whose symbol is bound to a stream that may

be used as a pathname.

If such a stream is used as a pathname, it is as if the pathname function were applied

to the stream and the resulting pathname used in place of the stream. This represents

the name used to open the file. This may be, but is not required to be, the actual name

of the file.

It is an error to attempt to obtain a pathname from a stream created by any of the

following:

make-two-way-stream make-string-input-stream

make-echo-stream make-string-output-stream

make-broadcast-stream with-input-from-string

make-concatenated-stream with-output-to-string

In the examples, it is assumed that the host named CMUC runs the TOPS20 operating

system, and therefore uses TOPS20 file system syntax; furthermore, an explicit host

name is indicated by following the host name with a double colon. Remember,

however, that namestring syntax is implementationdependent, and this syntax is

used here purely for the sake of examples.

[Function]pathname pathname

The pathname function converts its argument to be a pathname. The argument may be

a pathname, a string or symbol, or a stream; the result is always a pathname.

X3J13 voted in March 1988 not to permit symbols as pathnames 〈134〉 and to

specify exactly which streams may be used as pathnames 〈132〉.
X3J13 voted in January 1989 〈15〉 to specify that pathname is unaffected by whether

its argument, if a stream, is open or closed. X3J13 further commented that because

some implementations cannot provide the “true name” of a file until the file is closed,

in such an implementation pathname might, in principle, return a different (perhaps

more specific) file name after the stream is closed. However, such behavior is

636 COMMON LISP

prohibited; pathname must return the same pathname after a stream is closed as it

would have while the stream was open. See truename.

[Function]truename pathname

The truename function endeavors to discover the “true name” of the file associated

with the pathname within the file system. If the pathname is an open stream already

associated with a file in the file system, that file is used. The “true name” is returned

as a pathname. An error is signaled if an appropriate file cannot be located within

the file system for the given pathname.

The truename function may be used to account for any file name translations

performed by the file system, for example.

For example, suppose that DOC: is a TOPS20 logical device name that is translated

by the TOPS20 file system to be PS:<DOCUMENTATION>.

(setq file (open "CMUC::DOC:DUMPER.HLP"))

(namestring (pathname file)) ⇒ "CMUC::DOC:DUMPER.HLP"

(namestring (truename file))

⇒ "CMUC::PS:<DOCUMENTATION>DUMPER.HLP.13"

X3J13 voted in March 1988 not to permit symbols as pathnames 〈134〉 and to

specify exactly which streams may be used as pathnames 〈132〉.
X3J13 voted in January 1989 〈15〉 to specify that truename may be applied to a

stream whether the stream is open or closed. X3J13 further commented that because

some implementations cannot provide the “true name” of a file until the file is closed,

in principle it would be possible in such an implementation for truename to return

a different file name after the stream is closed. Such behavior is permitted; in this

respect truename differs from pathname.

X3J13 voted in June 1989 〈137〉 to clarify that truename accepts only nonwild

pathnames; an error is signaled if wild-pathname-p would be true of the pathname

argument.

X3J13 voted in June 1989 〈130〉 to require truename to accept logical pathnames

(see section 23.1.5). However, truename never returns a logical pathname.

[Function]parse-namestring thing &optional host defaults &key :start :end

:junk-allowed

This turns thing into a pathname. The thing is usually a string (that is, a namestring),
..

but it may be a symbol (in which case the print name is used) or a pathname or stream

(in which case no parsing is needed, but an error check may be made for matching

hosts).

FILE SYSTEM INTERFACE 637

X3J13 voted in March 1988 not to permit symbols as pathnames 〈134〉 and to

specify exactly which streams may be used as pathnames 〈132〉. The thing argument

may not be a symbol.

X3J13 voted in June 1989 〈130〉 to require parse-namestring to accept logical

pathname namestrings (see section 23.1.5).

This function does not, in general, do defaulting of pathname components, even

though it has an argument named defaults; it only does parsing. The host and defaults

arguments are present because in some implementations it may be that a namestring

can only be parsed with reference to a particular file name syntax of several available

in the implementation. If host is nonnil, it must be a host name that could appear in

the host component of a pathname, or nil; if host is nil then the host name is extracted

from the default pathname in defaults and used to determine the syntax convention.

The defaults argument defaults to the value of *default-pathname-defaults*.

For a string (or symbol) argument, parse-namestring parses a file name within it in

the range delimited by the :start and :end arguments (which are integer indices into

string, defaulting to the beginning and end of the string).

See chapter 14 for a discussion of :start and :end arguments.

If :junk-allowed is not nil, then the first value returned is the pathname parsed, or

nil if no syntactically correct pathname was seen.

If :junk-allowed is nil (the default), then the entire substring is scanned. The

returned value is the pathname parsed. An error is signaled if the substring does not

consist entirely of the representation of a pathname, possibly surrounded on either

side by whitespace characters if that is appropriate to the cultural conventions of the

implementation.

In either case, the second value is the index into the string of the delimiter that

terminated the parse, or the index beyond the substring if the parse terminated at the

end of the substring (as will always be the case if :junk-allowed is false).

If thing is not a string or symbol, then start (which defaults to zero in any case) is

always returned as the second value.

Parsing an empty string always succeeds, producing a pathname with all compo

nents (except the host) equal to nil.

Note that if host is specified and not nil, and thing contains a manifest host name,

an error is signaled if the hosts do not match.

If thing contains an explicit host name and no explicit device name, then it might

be appropriate, depending on the implementation environment, for parse-namestring

to supply the standard default device for that host as the device component of the

resulting pathname.

638 COMMON LISP

[Function]merge-pathnames pathname &optional defaults default-version

This is the function that most programs should call to process a file name supplied
...

by the user. It fills in unspecified components of pathname from the defaults, and

returns a new pathname. The pathname and defaults arguments may each be a

pathname, stream, string, or symbol. The result is always a pathname.

X3J13 voted in March 1988 not to permit symbols as pathnames 〈134〉 and to

specify exactly which streams may be used as pathnames 〈132〉.
X3J13 voted in June 1989 〈130〉 to require merge-namestrings to recognize a logical

pathname namestring as its first argument if its second argument is a logical pathname

(see section 23.1.5).

X3J13 voted in January 1989 〈15〉 to specify that merge-pathname is unaffected by

whether the first argument, if a stream, is open or closed. If the first argument is a

stream, merge-pathname behaves as if the function pathname were applied to the stream

and the resulting pathname used instead.

X3J13 voted in June 1989 〈128〉 to require merge-pathnames to map customary

case in argument pathnames to the customary case in returned pathnames (see sec

tion 23.1.2).

defaults defaults to the value of *default-pathname-defaults*.

defaultversion defaults to :newest.

Here is an example of the use of merge-pathnames:

(merge-pathnames "CMUC::FORMAT"

"CMUC::PS:<LISPIO>.FASL")

⇒ a pathname object that reexpressed as a namestring would be

"CMUC::PS:<LISPIO>FORMAT.FASL.0"

Defaulting of pathname components is done by filling in components taken from

another pathname. This is especially useful for cases such as a program that has

an input file and an output file, and asks the user for the name of both, letting the

unsupplied components of one name default from the other. Unspecified components

of the output pathname will come from the input pathname,except that the type should

default not to the type of the input but to the appropriate default type for output from

this program.

The pathname merging operation takes as input a given pathname, a defaults

pathname, and a default version, and returns a new pathname. Basically, the missing

components in the given pathname are filled in from the defaults pathname, except

that if no version is specified the default version is used. The default version is

usually :newest; if no version is specified the newest version in existence should be

used. The default version can be nil, to preserve the information that it was missing

in the input pathname.

FILE SYSTEM INTERFACE 639

If the given pathname explicitly specifies a host and does not supply a device,

then if the host component of the defaults matches the host component of the given

pathname, then the device is taken from the defaults; otherwise the device will be the

default file device for that host. Next, if the given pathname does not specify a host,

device, directory, name, or type, each such component is copied from the defaults.

The merging rules for the version are more complicated and depend on whether

the pathname specifies a name. If the pathname doesn’t specify a name, then the

version, if not provided, will come from the defaults, just like the other components.

However, if the pathname does specify a name, then the version is not affected by

the defaults. The reason is that the version “belongs to” some other file name and is

unlikely to have anything to do with the new one. Finally, if this process leaves the

version missing, the default version is used.

The net effect is that if the user supplies just a name, then the host, device,

directory, and type will come from the defaults, but the version will come from the

default version argument to the merging operation. If the user supplies nothing, or

just a directory, the name, type, and version will come over from the defaults together.

If the host’s file name syntax provides a way to input a version without a name or

type, the user can let the name and type default but supply a version different from

the one in the defaults.

X3J13 voted in June 1989 〈135〉 to agree to disagree: merge-pathname might or

might not perform plausibility checking on its arguments to ensure that the resulting

pathname can be converted a valid namestring. User beware: this could cause

portability problems.

For example, suppose that host LOSER constrains file types to be three characters

or fewer but host CMUC does not. Then "LOSER::FORMAT" is a valid namestring and

"CMUC::PS:<LISPIO>.FASL" is a valid namestring, but

(merge-pathnames "LOSER::FORMAT" "CMUC::PS:<LISPIO>.FASL")

might signal an error in some implementations because the hypothetical result would

be a pathname equivalent to the namestring "LOSER::FORMAT.FASL" which is illegal

because the file type FASL has more than three characters. In other implementations

merge-pathname might return a pathname but that pathname might cause namestring to

signal an error.

[Variable]*default-pathname-defaults*

This is the default pathnamedefaults pathname; if any pathname primitive that needs

a set of defaults is not given one, it uses this one. As a general rule, however, each

program should have its own pathname defaults rather than using this one.

...

640 COMMON LISP

[Function]make-pathname &key :host :device :directory :name :type :version
...

:defaults

Given some components, make-pathname constructs and returns a pathname. After the

components specified explicitly by the :host, :device, :directory, :name, :type, and

:version arguments are filled in, the merging rules used by merge-pathnames are used to

fill in any missing components from the defaults specified by the :defaults argument.

The default value of the :defaults argument is a pathname whose host component

is the same as the host component of the value of *default-pathname-defaults*, and

whose other components are all nil.

Whenever a pathname is constructed, whether by make-pathname or some other

function, the components may be canonicalized if appropriate. For example, if a

file system is insensitive to case, then alphabetic characters may be forced to be all

uppercase or all lowercase by the implementation.

The following example assumes the use of UNIX syntax and conventions.

(make-pathname :host "technodrome"

:directory ´(:absolute "usr" "krang")

:name "shredder")

⇒ #--P"technodrome:/usr/krang/shredder"

X3J13 voted in June 1989 〈128〉 to add a new keyword argument :case to make-

pathname. The new argument description is therefore as follows:

[Function]make-pathname &key :host :device :directory :name :type :version

:defaults :case

See section 23.1.2 for a description of the :case argument.

X3J13 voted in June 1989 〈135〉 to agree to disagree: make-pathname might or might

not check on its arguments to ensure that the resulting pathname can be converted to

a valid namestring. If make-pathname does not check its arguments and signal an error

in problematical cases, namestring yet might or might not signal an error when given

the resulting pathname. User beware: this could cause portability problems.

[Function]pathnamep object

This predicate is true if object is a pathname, and otherwise is false.

(pathnamep x) ≡ (typep x ´pathname)

...

FILE SYSTEM INTERFACE 641

[Function]pathname-host pathname
...

[Function]pathname-device pathname

[Function]pathname-directory pathname

[Function]pathname-name pathname

[Function]pathname-type pathname

[Function]pathname-version pathname

These return the components of the argument pathname, which may be a pathname,

string or symbol, or stream. The returned values can be strings, special symbols, or

some other object in the case of structured components. The type will always be a

string or a symbol. The version will always be a number or a symbol.

X3J13 voted in March 1988 not to permit symbols as pathnames 〈134〉 and to

specify exactly which streams may be used as pathnames 〈132〉.
X3J13 voted in January 1989 〈15〉 to specify that these operations are unaffected

by whether the first argument, if a stream, is open or closed. If the first argument is a

stream, each operation behaves as if the function pathname were applied to the stream

and the resulting pathname used instead.

X3J13 voted in June 1989 〈128〉 to add a keyword argument :case to all of the path

name accessor functions except pathname-version. The new argument descriptions

are therefore as follows:

[Function]pathname-host pathname &key :case

[Function]pathname-device pathname &key :case

[Function]pathname-directory pathname &key :case

[Function]pathname-name pathname &key :case

[Function]pathname-type pathname &key :case

[Function]pathname-version pathname

See section 23.1.2 for a description of the :case argument.

X3J13 voted in June 1989 〈133〉 to specify that pathname-directory always returns

nil, :unspecific, or a list—never a string, never :wild (see section 23.1.3). If a list

is returned, it is not guaranteed to be freshly consed; the consequences of modifying

this list are undefined.

[Function]namestring pathname

[Function]file-namestring pathname

[Function]directory-namestring pathname

[Function]host-namestring pathname

[Function]enough-namestring pathname &optional defaults

The pathname argument may be a pathname, a string or symbol, or a stream that is

642 COMMON LISP

or was open to a file. The name represented by pathname is returned as a namelist in

canonical form.

If pathname is a stream, the name returned represents the name used to open the

file, which may not be the actual name of the file (see truename).

X3J13 voted in March 1988 not to permit symbols as pathnames 〈134〉 and to

specify exactly which streams may be used as pathnames 〈132〉.
X3J13 voted in January 1989 〈15〉 to specify that these operations are unaffected

by whether the first argument, if a stream, is open or closed. If the first argument is a

stream, each operation behaves as if the function pathname were applied to the stream

and the resulting pathname used instead.

namestring returns the full form of the pathname as a string. file-namestring returns

a string representing just the name, type, and version components of the pathname;

the result of directory-namestring represents just the directoryname portion; and

host-namestring returns a string for just the hostname portion. Note that a valid

namestring cannot necessarily be constructed simply by concatenating some of the

three shorter strings in some order.

enough-namestring takes another argument, defaults. It returns an abbreviated

namestring that is just sufficient to identify the file named by pathname when con

sidered relative to the defaults (which defaults to the value of *default-pathname-

defaults*). That is, it is required that

(merge-pathnames (enough-namestring pathname defaults) defaults) ≡
(merge-pathnames (parse-namestring pathname nil defaults) defaults)

in all cases; and the result of enough-namestring is, roughly speaking, the shortest

reasonable string that will still satisfy this criterion.

X3J13 voted in June 1989 〈135〉 to agree to disagree: make-pathname and merge-

pathnames might or might not be able to produce pathnames that cannot be converted

to valid namestrings. User beware: this could cause portability problems.

[Function]user-homedir-pathname &optional host

Returns a pathname for the user’s “home directory” on host. The host argument

defaults in some appropriate implementationdependent manner. The concept of

“home directory” is itself somewhat implementationdependent, but from the point

of view of Common Lisp it is the directory where the user keeps personal files such

as initialization files and mail. If it is impossible to determine this information, then

nil is returned instead of a pathname; however, user-homedir-pathname never returns

nil if the host argument is not specified. This function returns a pathname without

any name, type, or version component (those components are all nil).

FILE SYSTEM INTERFACE 643

23.2. Opening and Closing Files

When a file is opened, a stream object is constructed to serve as the file system’s am

bassador to the Lisp environment; operations on the stream are reflected by operations

on the file in the file system. The act of closing the file (actually, the stream) ends the

association; the transaction with the file system is terminated, and input/output may

no longer be performed on the stream. The stream function close may be used to close

a file; the functions described below may be used to open them. The basic operation

is open, but with-open-file is usually more convenient for most applications.

[Function]open filename &key :direction :element-type :if-exists

:if-does-not-exist :external-format

X3J13 voted in June 1989 〈122〉 to add to the function open a new keyword

argument :external-format. This argument did not appear in the preceding argument

description in the first edition.

This returns a stream that is connected to the file specified by filename. The

filename is the name of the file to be opened; it may be a string, a pathname, or a

stream. (If the filename is a stream, then it is not closed first or otherwise affected; it

is used merely to provide a file name for the opening of a new stream.)

X3J13 voted in January 1989 〈167〉 to specify that the result of open, if it is a

stream, is always a stream of type file-stream.

X3J13 voted in March 1988 〈132〉 to specify exactly which streams may be used

as pathnames. See section 23.1.6.

X3J13 voted in January 1989 〈15〉 to specify that open is unaffected by whether

the first argument, if a stream, is open or closed. If the first argument is a stream,

open behaves as if the function pathname were applied to the stream and the resulting

pathname used instead.

X3J13 voted in June 1989 〈137〉 to clarify that open accepts only nonwild path

names; an error is signaled if wild-pathname-p would be true of filename.

X3J13 voted in June 1989 〈130〉 to require open to accept logical pathnames (see

section 23.1.5).

The keyword arguments specify what kind of stream to produce and how to handle

errors:

:direction

This argument specifies whether the stream should handle input, output, or both.

:input

The result will be an input stream. This is the default.

644 COMMON LISP

:output

The result will be an output stream.

:io

The result will be a bidirectional stream.

:probe

The result will be a nodirectional stream (in effect, the stream is created and then

closed). This is useful for determining whether a file exists without actually setting

up a complete stream.

:element-type

This argument specifies the type of the unit of transaction for the stream. Anything

that can be recognized as being a finite subtype of character or integer is acceptable.

In particular, the following types are recognized:

string-char...

The unit of transaction is a stringcharacter. The functions read-char and/or write-

char may be used on the stream. This is the default.

character

The unit of transaction is any character, not just a stringcharacter. The functions

read-char and/or write-char may be used on the stream.

X3J13 voted in June 1989 〈122〉 to eliminate the type string-char, add the type

base-character, and redefine open to use the type character as the default :element-

type.

The preceding two possibilities should therefore be replaced by the following.

character

The unit of transaction is any character, not just a stringcharacter. The functions

read-char and write-char (depending on the value of the :direction argument) may

be used on the stream. This is the default.

base-character

The unit of transaction is a base character. The functions read-char and write-char

(depending on the value of the :direction argument) may be used on the stream.

(unsigned-byte n)

The unit of transaction is an unsigned byte (a nonnegative integer) of size n. The

functions read-byte and/or write-byte may be used on the stream.

FILE SYSTEM INTERFACE 645

unsigned-byte

The unit of transaction is an unsigned byte (a nonnegative integer); the size of the

byte is determined by the file system. The functions read-byte and/or write-byte

may be used on the stream.

(signed-byte n)

The unit of transaction is a signed byte of size n. The functions read-byte and/or

write-byte may be used on the stream.

signed-byte

The unit of transaction is a signed byte; the size of the byte is determined by the

file system. The functions read-byte and/or write-byte may be used on the stream.

bit

The unit of transaction is a bit (values 0 and 1). The functions read-byte and/or

write-byte may be used on the stream.

(mod n)

The unit of transaction is a nonnegative integer less than n. The functions read-

byte and/or write-byte may be used on the stream.

:default

The unit of transaction is to be determined by the file system, based on the file it

finds. The type can be determined by using the function stream-element-type.

:if-exists

This argument specifies the action to be taken if the :direction is :output or :io and

a file of the specified name already exists. If the direction is :input or :probe, this

argument is ignored.

:error

Signals an error. This is the default when the version component of the filename

is not :newest.

:new-version

Creates a new file with the same file name but with a larger version number. This

is the default when the version component of the filename is :newest.

646 COMMON LISP

:rename

Renames the existing file to some other name and then creates a new file with the

specified name.

:rename-and-delete

Renames the existing file to some other name and then deletes it (but does not

expunge it, on those systems that distinguish deletion from expunging). Then

create a new file with the specified name.

:overwrite

Uses the existing file. Output operations on the stream will destructively modify

the file. If the :direction is :io, the file is opened in a bidirectional mode that

allows both reading and writing. The file pointer is initially positioned at the

beginning of the file; however, the file is not truncated back to length zero when it

is opened. This mode is most useful when the file-position function can be used

on the stream.

:append

Uses the existing file. Output operations on the stream will destructively modify the

file. The file pointer is initially positioned at the end of the file. If the :direction is

:io, the file is opened in a bidirectional mode that allows both reading and writing.

:supersede

Supersedes the existing file. If possible, the implementation should arrange not to

destroy the old file until the new stream is closed, against the possibility that the

stream will be closed in “abort” mode (see close). This differs from :new-version

in that :supersede creates a new file with the same name as the old one, rather than

a file name with a higher version number.

nil

Does not create a file or even a stream, but instead simply returns nil to indicate

failure.

If the :direction is :output or :io and the value of :if-exists is :new-version, then

the version of the (newly created) file that is opened will be a version greater than

that of any other file in the file system whose other pathname components are the

same as those of filename.

If the :direction is :input or :probe or the value of :if-exists is not :new-version,

and the version component of the filename is :newest, then the file opened is that file

already existing in the file system that has a version greater than that of any other

FILE SYSTEM INTERFACE 647

file in the file system whose other pathname components are the same as those of

filename.

Some file systems permit yet other actions to be taken when a file already exists;

therefore, some implementations provide implementationspecific :if-exist options.

Implementation note: The various file systems in existence today have widely differing

capabilities. A given implementation may not be able to support all of these options in exactly

the manner stated. An implementation is required to recognize all of these option keywords and

to try to do something “reasonable” in the context of the host operating system. Implementors

are encouraged to approximate the semantics specified here as closely as possible.

As an example, suppose that a file system does not support distinct file versions and does

not distinguish the notions of deletion and expunging (in some file systems file deletion is

reversible until an expunge operation is performed). Then :new-version might be treated the

same as :rename or :supersede, and :rename-and-delete might be treated the same as :supersede.

If it is utterly impossible for an implementation to handle some option in a manner close

to what is specified here, it may simply signal an error. The opening of files is an area where

complete portability is too much to hope for; the intent here is simply to make things as portable

as possible by providing specific names for a range of commonly supportable options.

:if-does-not-exist

This argument specifies the action to be taken if a file of the specified name does not

already exist.

:error

Signals an error. This is the default if the :direction is :input, or if the :if-exists

argument is :overwrite or :append.

:create

Creates an empty file with the specified name and then proceeds as if it had already

existed (but do not perform any processing directed by the :if-exists argument).

This is the default if the :direction is :output or :io, and the :if-exists argument

is anything but :overwrite or :append.

nil

Does not create a file or even a stream, but instead simply returns nil to indicate

failure. This is the default if the :direction is :probe.

648 COMMON LISP

X3J13 voted in June 1989 〈122〉 to add to the function open a new keyword

argument :external-format.

:external-format

This argument specifies an implementationrecognized scheme for representing char

acters in files. The default value is :default and is implementationdefined but must

support the base characters. An error is signaled if the implementation does recognize

the specified format.

This argument may be specified if the :direction argument is :input, :output, or

:io. It is an error to write a character to the resulting stream that cannot be represented

by the specified file format. (However, the #--\Newline character cannot produce such

an error; implementations must provide appropriate line division behavior for all

character streams.)

See stream-external-format.

When the caller is finished with the stream, it should close the file by using the

close function. The with-open-file form does this automatically, and so is preferred

for most purposes. open should be used only when the control structure of the program

necessitates opening and closing of a file in some way more complex than provided

by with-open-file. It is suggested that any program that uses open directly should use

the special form unwind-protect to close the file if an abnormal exit occurs.

[Macro]with-open-file (stream filename {options}∗)
{declaration}∗ { form}∗

with-open-file evaluates the forms of the body (an implicit progn) with the variable

stream bound to a stream that reads or writes the file named by the value of filename.

The options are evaluated and are used as keyword arguments to the function open.

When control leaves the body, either normally or abnormally (such as by use of

throw), the file is automatically closed. If a new output file is being written, and

control leaves abnormally, the file is aborted and the file system is left, so far as

possible, as if the file had never been opened. Because with-open-file always closes

the file, even when an error exit is taken, it is preferred over open for most applications.

filename is the name of the file to be opened; it may be a string, a pathname, or a

stream.

X3J13 voted in March 1988 〈132〉 to specify exactly which streams may be used

as pathnames. See section 23.1.6.

X3J13 voted in June 1989 〈137〉 to clarify that with-open-file accepts only non

wild pathnames; an error is signaled if wild-pathname-p would be true of the filename

argument.

FILE SYSTEM INTERFACE 649

X3J13 voted in June 1989 〈130〉 to require with-open-file to accept logical path

names (see section 23.1.5).

For example:

(with-open-file (ifile name

:direction :input)

(with-open-file (ofile (merge-pathname-defaults ifile

nil

"out")

:direction :output

:if-exists :supersede)

(transduce-file ifile ofile)))

X3J13 voted in June 1989 〈184〉 to specify that the variable stream is not always

bound to a stream; rather it is bound to whatever would be returned by a call to open.

For example, if the options include :if-does-not-exist nil, stream will be bound to

nil if the file does not exist. In this case the value of stream should be tested within

the body of the with-open-file form before it is used as a stream. For example:

(with-open-file (ifile name

:direction :input

:if-does-not-exist nil)

;; Process the file only if it actually exists.

(when (streamp name)

(compile-cobol-program ifile)))

Implementation note: While with-open-file tries to automatically close the stream on exit

from the construct, for robustness it is helpful if the garbage collector can detect discarded

streams and automatically close them.

23.3. Renaming, Deleting, and Other File Operations

These functions provide a standard interface to operations provided in some form by

most file systems. It may be that some implementations of Common Lisp cannot

support them all completely.

[Function]rename-file file new-name

The specified file is renamed to newname (which must be a file name). The file may

be a string, a pathname, or a stream. If it is an open stream associated with a file,

650 COMMON LISP

then the stream itself and the file associated with it are affected (if the file system

permits).

X3J13 voted in March 1988 〈132〉 to specify exactly which streams may be used

as pathnames. See section 23.1.6.

rename-file returns three values if successful. The first value is the newname with

any missing components filled in by performing a merge-pathnames operation using

file as the defaults. The second value is the truename of the file before it was renamed.

The third value is the truename of the file after it was renamed.

If the renaming operation is not successful, an error is signaled.

It is an error to specify a file name containing a :wild component, for file to contain
...

a nil component where the file system does not permit a nil component, or for

the result of defaulting missing components of newname from file to contain a nil

component where the file system does not permit a nil component.

X3J13 voted in June 1989 〈137〉 to specify that supplying a wild pathname as the

file argument to rename-file has implementationdependent consequences; rename-

file might signal an error, for example, or might rename all files that match the wild

pathname.

X3J13 voted in June 1989 〈130〉 to require rename-file to accept logical pathnames

(see section 23.1.5).

Compatibility note: This corresponds to the function called renamef in MacLisp and Lisp

Machine Lisp. The name renamef is not used in Common Lisp because the convention that a

trailing f means “file” conflicts with the use of a trailing f for forms related to setf.

[Function]delete-file file

The specified file is deleted. The file may be a string, a pathname, or a stream. If it

is an open stream associated with a file, then the stream itself and the file associated

with it are affected (if the file system permits), in which case the stream may or may

not be closed immediately, and the deletion may be immediate or delayed until the

stream is explicitly closed, depending on the requirements of the file system.

X3J13 voted in March 1988 〈132〉 to specify exactly which streams may be used

as pathnames. See section 23.1.6.

delete-file returns a nonnil value if successful. It is left to the discretion of the

implementation whether an attempt to delete a nonexistent file is considered to be

successful. If the deleting operation is not successful, an error is signaled.

It is an error to specify a file name that contains a :wild component or one that
..

contains a nil component where the file system does not permit a nil component.

X3J13 voted in June 1989 〈137〉 to clarify that supplying a wild pathname as the

file argument to delete-file has implementationdependent consequences; delete-

FILE SYSTEM INTERFACE 651

file might signal an error, for example, or might delete all files that match the wild

pathname.

X3J13 voted in June 1989 〈130〉 to require delete-file to accept logical pathnames

(see section 23.1.5).

Compatibility note: This corresponds to the function called deletef in MacLisp and Lisp

Machine Lisp.

[Function]probe-file file

This predicate is false if there is no file named file, and otherwise returns a pathname

that is the true name of the file (which may be different from file because of file links,

version numbers, or other artifacts of the file system). Note that if the file is an open

stream associated with a file, then probe-file cannot return nil but will produce the

true name of the associated file. See truename and the :probe value for the :direction

argument to open.

Compatibility note: This corresponds to the function called probef in MacLisp and Lisp

Machine Lisp.

X3J13 voted in March 1988 〈132〉 to specify exactly which streams may be used

as pathnames. See section 23.1.6.

X3J13 voted in June 1989 〈137〉 to clarify that probe-file accepts only nonwild

pathnames; an error is signaled if wild-pathname-p would be true of the file argument.

X3J13 voted in June 1989 〈130〉 to require probe-file to accept logical pathnames

(see section 23.1.5). However, probe-file never returns a logical pathname.

X3J13 voted in January 1989 〈15〉 to specify that probe-file is unaffected by

whether the first argument, if a stream, is open or closed. If the first argument is

a stream, probe-file behaves as if the function pathname were applied to the stream

and the resulting pathname used instead. However, X3J13 further commented that

the treatment of open streams may differ considerably from one implementation

to another; for example, in some operating systems open files are written under a

temporary or invisible name and later renamed when closed. In general, programmers

writing code intended to be portable should be very careful when using probe-file.

[Function]file-write-date file

file can be a file name or a stream that is open to a file. This returns the time at which

the file was created or last written as an integer in universal time format (see section

25.4.1), or nil if this cannot be determined.

652 COMMON LISP

X3J13 voted in March 1988 〈132〉 to specify exactly which streams may be used

as pathnames. See section 23.1.6.

X3J13 voted in June 1989 〈137〉 to clarify that file-write-date accepts only non

wild pathnames; an error is signaled if wild-pathname-p would be true of the file

argument.

X3J13 voted in June 1989 〈130〉 to require file-write-date to accept logical

pathnames (see section 23.1.5).

[Function]file-author file

file can be a file name or a stream that is open to a file. This returns the name of the

author of the file as a string, or nil if this cannot be determined.

X3J13 voted in March 1988 〈132〉 to specify exactly which streams may be used

as pathnames. See section 23.1.6.

X3J13 voted in June 1989 〈137〉 to clarify that file-author accepts only nonwild

pathnames; an error is signaled if wild-pathname-p would be true of the file argument.

X3J13 voted in June 1989 〈130〉 to require file-author to accept logical pathnames

(see section 23.1.5).

[Function]file-position file-stream &optional position

file-position returns or sets the current position within a randomaccess file.

(file-position file-stream) returns a nonnegative integer indicating the current

position within the filestream, or nil if this cannot be determined. The file position

at the start of a file will be zero. The value returned by file-position increases

monotonically as input or output operations are performed. For a character file,

performing a single read-char or write-char operation may cause the file position to

be increased by more than 1 because of characterset translations (such as translating

between the Common Lisp #--\Newline character and an external ASCII carriage

return/linefeed sequence) and other aspects of the implementation. For a binary file,

every read-byte or write-byte operation increases the file position by 1.

(file-position file-stream position) sets the position within filestream to be posi

tion. The position may be an integer, or :start for the beginning of the stream, or :end

for the end of the stream. If the integer is too large or otherwise inappropriate, an error

is signaled (the file-length function returns the length beyond which file-position

may not access). An integer returned by file-position of one argument should, in

general, be acceptable as a second argument for use with the same file. With two

arguments, file-position returns t if the repositioning was performed successfully,

or nil if it was not (for example, because the file was not randomaccess).

FILE SYSTEM INTERFACE 653

Implementation note: Implementations that have character files represented as a sequence

of records of bounded size might choose to encode the file position as, for example, record

number*256+characterwithinrecord. This is a valid encoding because it increases mono

tonically as each character is read or written, though not necessarily by 1 at each step. An

integer might then be considered “inappropriate” as a second argument to file-position if,

when decoded into record number and character number, it turned out that the specified record

was too short for the specified character number.

Compatibility note: This corresponds to the function called filepos in MacLisp and Lisp

Machine Lisp.

[Function]file-length file-stream

filestream must be a stream that is open to a file. The length of the file is returned as

a nonnegative integer, or nil if the length cannot be determined. For a binary file,

the length is specifically measured in units of the :element-type specified when the

file was opened (see open).

Compatibility note: This corresponds to the function called lengthf in MacLisp and Lisp

Machine Lisp.

[Function]file-string-length file-stream object

X3J13 voted in June 1989 〈122〉 to add the function file-string-length. The object

must be a string or a character. The function file-string-length returns a non

negative integer that is the difference between what the file-position of the file

stream would be after and before writing the object to the filestream, or nil if this

difference cannot be determined. The value returned may depend on the current state

of the filestream; that is, calling file-string-length on the same arguments twice

may in certain circumstances produce two different integers.

23.4. Loading Files

To load a file is to read through the file, evaluating each form in it. Programs are

typically stored in files containing calls to constructs such as defun, defmacro, and

defvar, which define the functions and variables of the program.

Loading a compiled (“fasload”) file is similar, except that the file does not contain

text but rather predigested expressions created by the compiler that can be loaded

more quickly.

654 COMMON LISP

[Function]load filename &key :verbose :print :if-does-not-exist

This function loads the file named by filename into the Lisp environment. It is

assumed that a text (character file) can be automatically distinguished from an object

(binary) file by some appropriate implementationdependent means, possibly by the

file type. The defaults for filename are taken from the variable *default-pathname-

defaults*. If the filename (after the merging in of the defaults) does not explicitly

specify a type, and both text and object types of the file are available in the file system,

load should try to select the more appropriate file by some implementationdependent

means.

If the first argument is a stream rather than a pathname, then load determines what

kind of stream it is and loads directly from the stream.

The :verbose argument (which defaults to the value of *load-verbose*), if true,

permits load to print a message in the form of a comment (that is, with a leading

semicolon) to *standard-output* indicating what file is being loaded and other useful

information.

The :print argument (default nil), if true, causes the value of each expression
..

loaded to be printed to *standard-output*. If a binary file is being loaded, then what

is printed may not reflect precisely the contents of the source file, but nevertheless

some information will be printed.

X3J13 voted in March 1989 〈26〉 to add the variable *load-print*; its value is used

as the default for the :print argument to load.

The function load rebinds *package* to its current value. If some form in the file

changes the value of *package* during loading, the old value will be restored when

the loading is completed. (This was specified in the first edition under the description

of *package*; for convenience I now mention it here as well.)

X3J13 voted in March 1988 〈132〉 to specify exactly which streams may be used

as pathnames. See section 23.1.6.

X3J13 voted in June 1989 〈137〉 to clarify that supplying a wild pathname as the

filename argument to load has implementationdependent consequences; load might

signal an error, for example, or might load all files that match the pathname.

X3J13 voted in June 1989 〈130〉 to require load to accept logical pathnames (see

section 23.1.5).

If a file is successfully loaded, load always returns a nonnil value. If :if-does-

not-exist is specified and is nil, load just returns nil rather than signaling an error if

the file does not exist.

X3J13 voted in March 1989 〈104〉 to require that load bind *readtable* to its

current value at the time load is called; the dynamic extent of the binding should

encompass all of the fileloading activity. This allows a portable program to include

forms such as

FILE SYSTEM INTERFACE 655

(in-package "FOO")

(eval-when (:execute :load-toplevel :compile-toplevel)

(setq *readtable* foo:my-readtable))

without performing a net global side effect on the loading environment. Such state

ments allow the remainder of such a file to be read either as interpreted code or by

compile-file in a syntax determined by an alternative readtable.

X3J13 voted in June 1989 〈112〉 to require that load bind two new variables *load-

pathname* and *load-truename*; the dynamic extent of the bindings should encompass

all of the fileloading activity.

[Variable]*load-verbose*

This variable provides the default for the :verbose argument to load. Its initial value

is implementationdependent.

[Variable]*load-print*

X3J13 voted in March 1989 〈26〉 to add *load-print*. This variable provides the

default for the :print argument to load. Its initial value is nil.

[Variable]*load-pathname*

X3J13 voted in June 1989 〈112〉 to introduce *load-pathname*; it is initially nil but

load binds it to a pathname that represents the file name given as the first argument

to load merged with the defaults (see merge-pathname).

[Variable]*load-truename*

X3J13 voted in June 1989 〈112〉 to introduce *load-truename*; it is initially nil but

load binds it to the “true name” of the file being loaded. See truename.

X3J13 voted in March 1989 〈110〉 to introduce a facility based on the Object

System whereby a user can specify how compile-file and load must cooperate to

reconstruct compiletime constant objects at load time. The protocol is simply this:

compile-file calls the generic function make-load-form on any object that is referenced

as a constant or as a selfevaluating form, if the object’s metaclass is standard-class,

structure-class, any userdefined metaclass (not a subclass of built-in-class), or any

of a possibly empty implementationdefined list of other metaclasses; compile-file

will call make-load-form only once for any given object (as determined by eq) within

656 COMMON LISP

a single file. The userprogrammability stems from the possibility of userdefined

methods for make-load-form. The helper function make-load-form-saving-slots makes

it easy to write commonly used versions of such methods.

[Generic function]make-load-form object

The argument is an object that is referenced as a constant or as a selfevaluating form

in a file being compiled by compile-file. The objective is to enable load to construct

an equivalent object.

The first value, called the creation form, is a form that, when evaluated at load

time, should return an object that is equivalent to the argument. The exact meaning of

“equivalent” depends on the type of object and is up to the programmer who defines

a method for make-load-form. This allows the user to program the notion of “similar

as a constant” (see section 25.1).

The second value, called the initialization form, is a form that, when evaluated

at load time, should perform further initialization of the object. The value returned

by the initialization form is ignored. If the make-load-form method returns only one

value, the initialization form is nil, which has no effect. If the object used as the

argument to make-load-form appears as a constant in the initialization form, at load

time it will be replaced by the equivalent object constructed by the creation form;

this is how the further initialization gains access to the object.

Two values are returned so that circular structures may be handled. The order

of evaluation rules discussed below for creation and initialization forms eliminates

the possibility of partially initialized objects in the absence of circular structures and

reduces the possibility to a minimum in the presence of circular structures. This

allows nodes in noncircular structures to be built out of fully initialized subparts.

Both the creation form and the initialization form can contain references to objects

of userdefined types (defined precisely below). However, there must not be any

circular dependencies in creation forms. An example of a circular dependency: the

creation form for the object X contains a reference to the object Y, and the creation

form for the object Y contains a reference to the object X. A simpler example: the

creation form for the object X contains a reference to X itself. Initialization forms are

not subject to any restriction against circular dependencies, which is the entire reason

for having initialization forms. See the example of circular data structures below.

The creation form for an object is always evaluated before the initialization form

for that object. When either the creation form or the initialization form refers to other

objects of userdefined types that have not been referenced earlier in the compile-file,

the compiler collects all of the creation and initialization forms. Each initialization

form is evaluated as soon as possible after its creation form, as determined by data

flow. If the initialization form for an object does not refer to any other objects

FILE SYSTEM INTERFACE 657

of userdefined types that have not been referenced earlier in the compile-file, the

initialization form is evaluated immediately after the creation form. If a creation

or initialization form F references other objects of userdefined types that have not

been referenced earlier in the compile-file, the creation forms for those other objects

are evaluated before F and the initialization forms for those other objects are also

evaluated before F whenever they do not depend on the object created or initialized

by F. Where the above rules do not uniquely determine an order of evaluation, it is

unspecified which of the possible orders of evaluation is chosen.

While these creation and initialization forms are being evaluated, the objects are

possibly in an uninitialized state, analogous to the state of an object between the

time it has been created by allocate-instance and it has been processed fully by

initialize-instance. Programmers writing methods for make-load-form must take

care in manipulating objects not to depend on slots that have not yet been initialized.

It is unspecified whether load calls eval on the forms or does some other operation

that has an equivalent effect. For example, the forms might be translated into different

but equivalent forms and then evaluated; they might be compiled and the resulting

functions called by load (after they themselves have been loaded); or they might be

interpreted by a specialpurpose interpreter different from eval. All that is required

is that the effect be equivalent to evaluating the forms.

It is valid for user programs to call make-load-form in circumstances other than

compilation, providing the argument’s metaclass is not built-in-class or a subclass

of built-in-class.

Applying make-load-form to an object whose metaclass is standard-class or

structure-class for which no userdefined method is applicable signals an error. It is

valid to implement this either by defining default methods for the classes standard-

object and structure-object that signal an error or by having no applicable method

for those classes.

See load-time-eval.

In the following example, an equivalent instance of my-class is reconstructed by

using the values of two of its slots. The value of the third slot is derived from those

two values.

(defclass my-class () ((a :initarg :a :reader my-a)

(b :initarg :b :reader my-b)

(c :accessor my-c)))

658 COMMON LISP

(defmethod shared-initialize ((self my-class) slots &rest inits)

(declare (ignore slots inits))

(unless (slot-boundp self ´c)

(setf (my-c self)

(some-computation (my-a self) (my-b self)))))

(defmethod make-load-form ((self my-class))

`(make-instance ´,(class-name (class-of self))

:a ´,(my-a self) :b ´,(my-b self)))

This code will fail if either of the first two slots of some instance of my-class contains

the instance itself. Another way to write the last form in the preceding example is

(defmethod make-load-form ((self my-class))

(make-load-form-saving-slots self ´(a b)))

This has the advantages of conciseness and handling circularities correctly.

In the next example, instances of class my-frob are “interned” in some way. An

equivalent instance is reconstructed by using the value of the name slot as a key for

searching for existing objects. In this case the programmer has chosen to create a

new object if no existing object is found; an alternative possibility would be to signal

an error in that case.

(defclass my-frob ()

((name :initarg :name :reader my-name)))

(defmethod make-load-form ((self my-frob))

`(find-my-frob ´,(my-name self) :if-does-not-exist :create))

In the following example, the data structure to be dumped is circular, because each

node of a tree has a list of its children and each child has a reference back to its parent.

(defclass tree-with-parent () ((parent :accessor tree-parent)

(children :initarg :children)))

(defmethod make-load-form ((x tree-with-parent))

(values

`(make-instance ´,(class-of x)

:children ´,(slot-value x ´children))

`(setf (tree-parent ´,x) ´,(slot-value x ´parent))))

Suppose make-load-form is called on one object in such a structure. The creation form

creates an equivalent object and fills in the children slot, which forces creation of

FILE SYSTEM INTERFACE 659

equivalent objects for all of its children, grandchildren, etc. At this point none of the

parent slots have been filled in. The initialization form fills in the parent slot, which

forces creation of an equivalent object for the parent if it was not already created.

Thus the entire tree is recreated at load time. At compile time, make-load-form is called

once for each object in the tree. All the creation forms are evaluated, in unspecified

order, and then all the initialization forms are evaluated, also in unspecified order.

In this final example, the data structure to be dumped has no special properties

and an equivalent structure can be reconstructed simply by reconstructing the slots’

contents.

(defstruct my-struct a b c)

(defmethod make-load-form ((s my-struct))

(make-load-form-saving-slots s))

This is easy to code using make-load-form-saving-slots.

[Function]make-load-form-saving-slots object &optional slots

This returns two values suitable for return from a make-load-form method. The first

argument is the object. The optional second argument is a list of the names of slots

to preserve; it defaults to all of the local slots.

make-load-form-saving-slots returns forms that construct an equivalent object us

ing make-instance and setf of slot-value for slots with values, or slot-makunbound for

slots without values, or other functions of equivalent effect.

Because make-load-form-saving-slots returns two values, it can deal with circular

structures; it works for any object of metaclass standard-class or structure-class.

Whether the result is useful depends on whether the object’s type and slot contents

fully capture an application’s idea of the object’s state.

23.5. Accessing Directories

The following function is a very simple portable primitive for examining a directory.

Most file systems can support much more powerful directorysearching primitives,

but no two are alike. It is expected that most implementations of Common Lisp will

extend the directory function or provide more powerful primitives.

[Function]directory pathname &key

A list of pathnames is returned, one for each file in the file system that matches the

given pathname. (The pathname argument may be a pathname, a string, or a stream

660 COMMON LISP

associated with a file.) For a file that matches, the truename appears in the result list.

If no file matches the pathname, it is not an error; directory simply returns nil, the

list of no results. Keywords such as :wild and :newest may be used in pathname to

indicate the search space.

X3J13 voted in March 1988 〈132〉 to specify exactly which streams may be used

as pathnames. See section 23.1.6.

X3J13 voted in January 1989 〈15〉 to specify that directory is unaffected by

whether the first argument, if a stream, is open or closed. If the first argument is a

stream, directory behaves as if the function pathname were applied to the stream and

the resulting pathname used instead. However, X3J13 commented that the treatment

of open streams may differ considerably from one implementation to another; for

example, in some operating systems open files are written under a temporary or

invisible name and later renamed when closed. In general, programmers writing

code intended to be portable should be careful when using directory.

X3J13 voted in June 1989 〈130〉 to require directory to accept logical pathnames

(see section 23.1.5). However, the result returned by directory never contains a

logical pathname.

Implementation note: It is anticipated that an implementation may need to provide additional

parameters to control the directory search. Therefore directory is specified to take additional

keyword arguments so that implementations may experiment with extensions, even though no

particular keywords are specified here.

As a simple example of such an extension, for a file system that supports the notion of

crossdirectory file links, a keyword argument :links might, if nonnil, specify that such links

be included in the result list.

24

Errors

Errors may be signaled for a variety of reasons. Many builtin Common Lisp functions

may signal an error when given incorrect arguments. Other functions, described in

this chapter, may be called by user programs for the purpose of signaling an error.

When an error is signaled, it is handled in an implementationdependent way. It

is expected that each implementation of Common Lisp will provide an interactive

debugger that prints the error message along with suitable contextual information

such as which function detected the error. The user may interact with the debugger to

examine or modify the state of the program in various ways, including abandoning the

current computation (“aborting to top level”) and continuing from the error. What

“continuing” means depends on how the error is signaled; the details of this are

specified below for each errorsignaling function.

An implementation may also choose to provide means (such as the errset special
..

form in MacLisp) for a program to trap all errors and prevent the debugger from

stepping in for certain errors.

Rationale: Error handling of adequate flexibility and power for all systems written in Common

Lisp appears to require a complex error classification system. Experience with several error

handling systems in such dialects as MacLisp and Lisp Machine Lisp indicates that further

experimentation is needed in this area; it is too early to define a standard errorhandling

mechanism. Therefore Common Lisp provides standard ways to signal errors, but no standard

ways to handle errors. Of course a complete Lisp system requires errorhandling mechanisms,

but many useful portable programs do not require them. It is expected that a future revision of

Common Lisp will address the problem of portable errorhandling mechanisms.

X3J13 voted in June 1988 〈30〉 to adopt a proposal for a Common Lisp Condition

System. This was the result of the research and experimentation alluded to in the

preceding paragraph. Conditions subsume and generalize the notion of errors. The

condition system also provides means for handling conditions (of which errors are

661

662 COMMON LISP

a special case) and for restarting a computation after a condition has been signaled.

See chapter 29.

Compatibility note: What is here called “continuing,” Lisp Machine Lisp calls “proceeding”

from an error.

In the new terminology introduced in chapter 29, what Lisp Machine Lisp called “pro

ceeding” would be called “restarting,” and “continuing” refers to the particular restart named

continue.

24.1. General ErrorSignaling Functions

The functions in this section provide various mechanisms for signaling warnings,

breaks, continuable errors, and fatal errors.

In each case, the caller specifies an error message (a string) that may be processed

(and perhaps displayed to the user) by the errorhandling mechanism. All messages

are constructed by applying the function format to the quantities nil, formatstring,

and all the args to produce a string.

An error message string should not contain a newline character at either the begin

ning or end, and should not contain any sort of herald indicating that it is an error.

The system will take care of these according to whatever its preferred style may be.

Conventionally, error messages are complete English sentences ending with a

period. Newlines in the middle of long messages are acceptable. There should be

no indentation after a newline in the middle of an error message. The error message

need not mention the name of the function that signals the error; it is assumed that

the debugger will make this information available.

Implementation note: If the debugger in a particular implementation displays error messages

indented from the prevailing left margin (for example, indented by seven spaces because they

are prefixed by the sevencharacter herald “Error: ”), then the debugger should take care of

inserting the appropriate indentation into a multiline error message. Similarly, a debugger

that prefixes error messages with semicolons so that they appear to be comments should take

care of inserting a semicolon at the beginning of each line in a multiline error message.

These rules are suggested because, even within a single implementation, there may be more

than one program that presents error messages to the user, and they may use different styles

of presentation. The caller of error cannot anticipate all such possible styles, and so it is

incumbent upon the presenter of the message to make any necessary adjustments.

Common Lisp does not specify the manner in which error messages and other

messages are displayed. For the purposes of exposition, a fairly simple style of

textual presentation will be used in the examples in this chapter. The character > is

used to represent the command prompt symbol for a debugger.

...

ERRORS 663

[Function]error format-string &rest args

This function signals a fatal error. It is impossible to continue from this kind of error;
...

thus error will never return to its caller.

The debugger printout in the following example is typical of what an imple

mentation might print when error is called. Suppose that the (misspelled) symbol

emergnecy-shutdown has no property named command (all too likely, as it is probably a

typographical error for emergency-shutdown).

(defun command-dispatch (cmd)

(let ((fn (get cmd ´command)))

(if (not (null fn))

(funcall fn))

(error "The command ˜S is unrecognized." cmd))))

(command-dispatch ´emergnecy-shutdown)

Error: The command EMERGNECY-SHUTDOWN is unrecognized.

Error signaled by function COMMAND-DISPATCH.

>

X3J13 voted in June 1988 〈30〉 to adopt a proposal for a Common Lisp Condition

System. This proposal modifies the definition of error to specify its interaction with

the condition system. See section 29.4.1.

Compatibility note: Lisp Machine Lisp calls this function ferror. MacLisp has a function

named error that takes different arguments and can signal either a fatal or a continuable error.

[Function]cerror continue-format-string error-format-string &rest args

cerror is used to signal continuable errors. Like error, it signals an error and enters
..

the debugger. However, cerror allows the program to be continued from the debugger

after resolving the error.

If the program is continued after encountering the error, cerror returns nil. The

code that follows the call to cerror will then be executed. This code should correct

the problem, perhaps by accepting a new value from the user if a variable was invalid.

If the code that corrects the problem interacts with the program’s use and might

possibly be misled, it should make sure the error has really been corrected before

continuing. One way to do this is to put the call to cerror and the correction code in

a loop, checking each time to see if the error has been corrected before terminating

the loop.

...

664 COMMON LISP

The continueformatstring argument, like the errorformatstring argument, is

given as a control string to format along with the args to construct a message string.

The error message string is used in the same way that error uses it. The continue

message string should describe the effect of continuing. The intent is that this message

can be displayed as an aid to the user in deciding whether and how to continue. For

example, it might be used by an interactive debugger as part of the documentation of

its “continue” command.

The content of the continue message should adhere to the rules of style for error

messages. It should not include any statement of how the “continue” command is

given, since this may be different for each debugger. (It is up to the debugger to

supply this information according to its own particular style of presentation and user

interaction.)

X3J13 voted in June 1988 〈30〉 to adopt a proposal for a Common Lisp Condition

System. This proposal modifies the definition of cerror to specify its interaction with

the condition system. See section 29.4.1.

Here is an example where the caller of cerror, if continued, fixes the problem

without any further user interaction:

(let ((nvals (list-length vals)))

(unless (−− nvals 3)

(cond ((< nvals 3)

(cerror "Assume missing values are zero."

"Too few values in ˜S;˜%˜
three are required, ˜
but ˜R ˜:[were˜;was˜] supplied."

nvals (−− nvals 1))

(setq vals (append vals (subseq ´(0 0 0) nvals))))

(t (cerror "Ignore all values after the first three."

"Too many values in ˜S;˜%˜
three are required, ˜
but ˜R were supplied."

nvals)

(setq vals (subseq vals 0 3))))))

If vals were the list (-47), the interaction might look like this:

Error: Too few values in (-47);

three are required, but one was supplied.

Error signaled by function EXAMPLE.

If continued: Assume missing values are zero.

>

ERRORS 665

In this example, a loop is used to ensure that a test is satisfied. (This example could

be written more succinctly using assert or check-type, which indeed supply such

loops.)

(do ()

((known-wordp word) word)

(cerror "You will be prompted for a replacement word."

"˜S is an unknown word (possibly misspelled)."

word)

(format *query-io* "˜&New word: ")

(setq word (read *query-io*)))

In complex cases where the errorformatstring uses some of the args and the

continueformatstring uses others, it may be necessary to use the format directives

˜* and ˜@* to skip over unwanted arguments in one or both of the format control

strings.

Compatibility note: The Lisp Machine Lisp function fsignal is similar to this, but returns

:no-action rather than nil, and fails to distinguish between the error message and the continue

message.

[Function]warn format-string &rest args

warn prints an error message but normally doesn’t go into the debugger. (However,
..

this may be controlled by the variable *break-on-warnings*.)

X3J13 voted in March 1989 〈10〉 to remove *break-on-warnings* from the language.

See *break-on-signals*.

warn returns nil.
..

This function would be just the same as format with the output directed to the stream

in error-output, except that warn may perform various implementationdependent

formatting and other actions. For example, an implementation of warn should take

care of advancing to a fresh line before and after the error message and perhaps

supplying the name of the function that called warn.

Compatibility note: The Lisp Machine Lisp function compiler:warn is an approximate equiv

alent to this.

X3J13 voted in June 1988 〈30〉 to adopt a proposal for a Common Lisp Condition

System. This proposal modifies the definition of warn to specify its interaction with

the condition system. See section 29.4.9.

...

666 COMMON LISP

[Variable]*break-on-warnings*
...

If *break-on-warnings* is not nil, then the function warn behaves like break. It prints

its message and then goes to the debugger or break loop. Continuing causes warn

to return nil. This flag is intended primarily for use when the user is debugging

programs that issue warnings; in “production” use, the value of *break-on-warnings*
should be nil.

X3J13 voted in March 1989 〈10〉 to remove *break-on-warnings* from the language.

See *break-on-signals*.

[Function]break &optional format-string &rest args

break prints the message and goes directly into the debugger, without allowing any
..

possibility of interception by programmed errorhandling facilities. (Right now, there

aren’t any errorhandling facilities defined in Common Lisp, but there might be in

particular implementations, and there will be some defined by Common Lisp in the

future.) When continued, break returns nil. It is permissible to call break with no

arguments; a suitable default message will be provided.

break is presumed to be used as a way of inserting temporary debugging “break

points” in a program, not as a way of signaling errors; it is expected that continuing

from a break will not trigger any unusual recovery action. For this reason, break does

not take the additional format control string argument that cerror takes. This and the

lack of any possibility of interception by programmed error handling are the only

programvisible differences between break and cerror. The interactive debugger may

choose to display them differently; for instance, a cerror message might be prefixed

with the herald “Error: ” and a break message with “Break: ”. This depends on the

userinterface style of the particular implementation. A particular implementation

may choose, according to its own style and needs, when break is called to go into

a debugger different from the one used for handling errors. For example, it might

go into an ordinary readevalprint loop identical to the toplevel one except for the

provision of a “continue” command that causes break to return nil.

Compatibility note: In MacLisp, break is a special form (FEXPR) that takes two optional

arguments. The first is a symbol (it would be a string if MacLisp had strings), which is

not evaluated. The second is evaluated to produce a truth value specifying whether break

should break (true) or return immediately (false). In Common Lisp one makes a call to break

conditional by putting it inside a conditional form such as when or unless.

X3J13 voted in June 1988 〈30〉 to adopt a proposal for a Common Lisp Condition

System. This proposal modifies the definition of break to specify its interaction with

the condition system. See section 29.4.11.

ERRORS 667

24.2. Specialized ErrorSignaling Forms and Macros

These facilities are designed to make it convenient for the user to insert error checks

into code.

[Macro]check-type place typespec [string]

check-type signals an error if the contents of place are not of the desired type. Upon
...

continuing from this error, the user will be asked for a new value; check-type will

store the new value in place and start over, checking the type of the new value and

signaling another error if it is still not of the desired type. Subforms of place may be

evaluated multiple times because of the implicit loop generated. check-type returns

nil.

The place must be a generalized variable reference acceptable to setf. The typespec

must be a type specifier; it is not evaluated. The string should be an English

description of the type, starting with an indefinite article (“a” or “an”); it is evaluated.

If string is not supplied, it is computed automatically from typespec. (The optional

string argument is allowed because some applications of check-type may require a

more specific description of what is wanted than can be generated automatically from

the type specifier.)

The error message will mention place, its contents, and the desired type.

The precise format and content of the error message is implementationdependent.

The example shown below is representative of current practice.

Implementation note: An implementation may choose to generate a somewhat differently

worded error message if it recognizes that place is of a particular form, such as one of the

arguments to the function that called check-type.

X3J13 voted in June 1988 〈30〉 to adopt a proposal for a Common Lisp Condition

System. This proposal modifies the definition of check-type to specify its interaction

with the condition system. See section 29.4.2.

X3J13 voted in March 1988 〈146〉 to clarify order of evaluation (see section 7.2).

Examples:

(setq aardvarks ´(sam harry fred))

(check-type aardvarks (vector integer))

Error: The value of AARDVARKS, (SAM HARRY FRED),

is not a vector of integers.

(setq naards ´foo)

(check-type naards (integer 0 *) "a positive integer")

668 COMMON LISP

Error: The value of NAARDS, FOO, is not a positive integer.

Compatibility note: In Lisp Machine Lisp the equivalent facility is called check-arg-type.

[Macro]assert testform [({place}∗) [string {arg}∗]]

assert signals an error if the value of testform is nil. Continuing from this error will
..

allow the user to alter the values of some variables, and assert will then start over,

evaluating testform again. assert returns nil.

testform is any form. Each place (there may be any number of them, or none) must

be a generalizedvariable reference acceptable to setf. These should be variables on

which testform depends, whose values may sensibly be changed by the user in

attempting to correct the error. Subforms of each place are only evaluated if an

error is signaled, and may be reevaluated if the error is resignaled (after continuing

without actually fixing the problem).

The string is an error message string, and the args are additional arguments; they

are evaluated only if an error is signaled, and reevaluated if the error is signaled

again. The function format is applied in the usual way to string and args to produce

the actual error message. If string is omitted (and therefore also the args), a default

error message is used.

Implementation note: The debugger need not include the testform in the error message, and

the places should not be included in the message, but they should be made available for the

user’s perusal. If the user gives the “continue” command, he should be presented with the

opportunity to alter the values of any or all of the references. The details of this depend on the

implementation’s style of user interface, of course.

X3J13 voted in June 1988 〈30〉 to adopt a proposal for a Common Lisp Condition

System. This proposal modifies the definition of assert to specify its interaction with

the condition system. See section 29.4.2.

X3J13 voted in March 1988 〈146〉 to clarify order of evaluation (see section 7.2).

X3J13 voted in June 1989 〈159〉 to extend the specification of assert to allow a

place whose setf method has more than one store variable (see define-setf-method).

Examples:

(assert (valve-closed-p v1))

(assert (valve-closed-p v1) ()

"Live steam is escaping!")

ERRORS 669

(assert (valve-closed-p v1)

((valve-manual-control v1))

"Live steam is escaping!")

;; Note here that the user is invited to change BASE,

;; but not the bounds MINBASE and MAXBASE.

(assert (<−− minbase base maxbase)

(base)

"Base ˜D is not in the range ˜D, ˜D"

base minbase maxbase)

;; Note here that it is probably not desirable to include the

;; entire contents of the two matrices in the error message.

;; It is reasonable to assume that the debugger will give

;; the user access to the values of the places A and B.

(assert (−− (array-dimension a 1)

(array-dimension b 0))

(a b)

"Cannot multiply a ˜D-by-˜D matrix ˜
and a ˜D-by-˜D matrix."

(array-dimension a 0)

(array-dimension a 1)

(array-dimension b 0)

(array-dimension b 1))

24.3. Special Forms for Exhaustive Case Analysis

The syntax for etypecase and ctypecase is the same as for typecase, except that no

otherwise clause is permitted. Similarly, the syntax for ecase and ccase is the same

as for case except for the otherwise clause.

etypecase and ecase are similar to typecase and case, respectively, but signal a

noncontinuable error rather than returning nil if no clause is selected.

ctypecase and ccase are also similar to typecase and case, but signal a continuable

error if no clause is selected.

[Macro]etypecase keyform {(type { form}∗)}∗

This control construct is similar to typecase, but no explicit otherwise or t clause
..................................

...

670 COMMON LISP

is permitted. If no clause is satisfied, etypecase signals an error with a message

constructed from the clauses. It is not permissible to continue from this error. To

supply an applicationspecific error message, the user should use typecase with an

otherwise clause containing a call to error. The name of this function stands for

“exhaustive type case” or “errorchecking type case.” For example:

(setq x 1/3)

(etypecase x

(integer x)

(symbol (symbol-value x)))

Error: The value of X, 1/3, is neither

an integer nor a symbol.

>

X3J13 voted in June 1988 〈30〉 to adopt a proposal for a Common Lisp Condition

System. This proposal modifies the definition of etypecase to specify its interaction

with the condition system. See section 29.4.3.

[Macro]ctypecase keyplace {(type { form}∗)}∗

This control construct is similar to typecase, but no explicit otherwise or t clause is
...

permitted. The keyplace must be a generalized variable reference acceptable to setf.

If no clause is satisfied, ctypecase signals an error with a message constructed from

the clauses. Continuing from this error causes ctypecase to accept a new value from

the user, store it into keyplace, and start over, making the type tests again. Subforms

of keyplace may be evaluated multiple times. The name of this function stands for

“continuable exhaustive type case.”

X3J13 voted in June 1988 〈30〉 to adopt a proposal for a Common Lisp Condition

System. This proposal modifies the definition of ctypecase to specify its interaction

with the condition system. See section 29.4.3.

X3J13 voted in March 1988 〈146〉 to clarify order of evaluation (see section 7.2).

[Macro]ecase keyform {({({key}∗) | key} { form}∗)}∗

This control construct is similar to case, but no explicit otherwise or t clause is
..

permitted. If no clause is satisfied, ecase signals an error with a message constructed

from the clauses. It is not permissible to continue from this error. To supply an error

message, the user should use case with an otherwise clause containing a call to error.

The name of this function stands for “exhaustive case” or “errorchecking case.” For

example:

...

ERRORS 671

(setq x 1/3)

(ecase x

(alpha (foo))

(omega (bar))

((zeta phi) (baz)))

Error: The value of X, 1/3, is not

ALPHA, OMEGA, ZETA, or PHI.

X3J13 voted in June 1988 〈30〉 to adopt a proposal for a Common Lisp Condition

System. This proposal modifies the definition of ecase to specify its interaction with

the condition system. See section 29.4.3.

[Macro]ccase keyplace {({({key}∗) | key} { form}∗)}∗

This control construct is similar to case, but no explicit otherwise or t clause is
..

permitted. The keyplace must be a generalized variable reference acceptable to setf.

If no clause is satisfied, ccase signals an error with a message constructed from the

clauses. Continuing from this error causes ccase to accept a new value from the

user, store it into keyplace, and start over, making the clause tests again. Subforms

of keyplace may be evaluated multiple times. The name of this function stands for

“continuable exhaustive case.”

X3J13 voted in June 1988 〈30〉 to adopt a proposal for a Common Lisp Condition

System. This proposal modifies the definition of ccase to specify its interaction with

the condition system. See section 29.4.3.

X3J13 voted in March 1988 〈146〉 to clarify order of evaluation (see section 7.2).

Rationale: The special forms etypecase, ctypecase, ecase, and ccase are included in Common

Lisp, even though a user could write them himself using the other standard facilities provided,

because it is likely that many users will want these. Common Lisp therefore provides a standard

consistent set rather than allowing a variety of incompatible dialects to develop.

In addition, experience has shown that some Lisp programmers are too lazy to put an

appropriate otherwise clause into every case statement to check for cases they didn’t anticipate,

even if they would agree that it will probably hurt them later. If an otherwise clause can be

included very easily by adding one character to the name of the construct, it is perhaps more

likely that programmers will take the trouble to do it.

The e versions do nothing more than supply automatically generated otherwise clauses, but

correct implementation of the c versions requires some care. It is therefore especially important

that the c versions be provided by the system so users don’t have to puzzle them out on their

own. Individual implementations may be able to do a better job of supporting these special

forms, using their own idiosyncratic facilities, than can be done using the errorsignaling

facilities defined by Common Lisp.

25

Miscellaneous Features

In this chapter are described various things that don’t seem to fit neatly anywhere else

in this book: the compiler, the documentation function, debugging aids, environment

inquiries (including facilities for calculating and measuring time), and the identity

function.

25.1. The Compiler

The compiler is a program that may make code run faster by translating programs
...

into an implementationdependent form that can be executed more efficiently by the

computer. Most of the time you can write programs without worrying about the

compiler; compiling a file of code should produce an equivalent but more efficient

program. When doing more esoteric things, you may need to think carefully about

what happens at “compile time” and what happens at “load time.” Then the difference

between the syntaxes #--. and #--, becomes important, and the eval-when construct

becomes particularly useful.

X3J13 voted in January 1989 〈162〉 to remove #--, from the language.

Most declarations are not used by the Common Lisp interpreter; they may be used

to give advice to the compiler. The compiler may attempt to check your advice and

warn you if it is inconsistent.

Unlike most other Lisp dialects, Common Lisp recognizes special declarations in

interpreted code as well as compiled code. This potential source of incompatibility

between interpreted and compiled code is thereby eliminated in Common Lisp.

The internal workings of a compiler will of course be highly implementation

dependent. The following functions provide a standard interface to the compiler,

however.

672

...

MISCELLANEOUS FEATURES 673

[Function]compile name &optional definition

If definition is supplied, it should be a lambdaexpression, the interpreted function to
...

be compiled. If it is not supplied, then name should be a symbol with a definition

that is a lambdaexpression; that definition is compiled and the resulting compiled

code is put back into the symbol as its function definition.

X3J13 voted in October 1988 〈18〉 to restate the preceding paragraph more pre

cisely and to extend the capabilities of compile. If the optional definition argument

is supplied, it may be either a lambdaexpression (which is coerced to a function)

or a function to be compiled; if no definition is supplied, the symbol-function of

the symbol is extracted and compiled. It is permissible for the symbol to have a

macro definition rather than a function definition; both macros and functions may be

compiled.

It is an error if the function to be compiled was defined interpretively in a non

null lexical environment. (An implementation is free to extend the behavior of

compile to compile such functions properly, but portable programs may not depend

on this capability.) The consequences of calling compile on a function that is already

compiled are unspecified.

The definition is compiled and a compiledfunction object produced. If name
...

is a nonnil symbol, then the compiledfunction object is installed as the global

function definition of the symbol and the symbol is returned. If name is nil, then the

compiledfunction object itself is returned. For example:

(defun foo ...) ⇒ foo ;A function definition

(compile ´foo) ⇒ foo ;Compile it

;Now foo runs faster (maybe)

(compile nil

´(lambda (a b c) (- (* b b) (* 4 a c))))

⇒ a compiled function of three arguments that computes b2 − 4ac

X3J13 voted in June 1989 〈24〉 to specify that compile returns two additional values

indicating whether the compiler issued any diagnostics (see section 25.1.1).

X3J13 voted in March 1989 〈89〉 to extend compile to accept as a name any

functionname (a symbol or a list whose car is setf—see section 7.1). One may write

(compile ´(setf cadr)) to compile the setf expansion function for cadr.

[Function]compile-file input-pathname &key :output-file
..

The inputpathname must be a valid file specifier, such as a pathname. The defaults

for inputfilename are taken from the variable *default-pathname-defaults*. The file

...

674 COMMON LISP

should be a Lisp source file; its contents are compiled and written as a binary object

file.

X3J13 voted in March 1989 〈26〉 to add two new keyword arguments :verbose

and :print to compile-file by analogy with load. The new function definition is as

follows.

[Function]compile-file input-pathname &key :output-file :verbose :print

The :verbose argument (which defaults to the value of *compile-verbose*), if true,

permits compile-file to print a message in the form of a comment to *standard-output*

indicating what file is being compiled and other useful information.

The :print argument (which defaults to the value of *compile-print*), if true,

causes information about toplevel forms in the file being compiled to be printed to

standard-output. Exactly what is printed is implementationdependent; neverthe

less something will be printed.

X3J13 voted in March 1988 〈132〉 to specify exactly which streams may be used

as pathnames (see section 23.1.6).

X3J13 voted in June 1989 〈137〉 to clarify that supplying a wild pathname as

the inputpathname argument to compile-file has implementationdependent conse

quences; compile-file might signal an error, for example, or might compile all files

that match the wild pathname.

X3J13 voted in June 1989 〈130〉 to require compile-file to accept logical pathnames

(see section 23.1.5).

The :output-file argument may be used to specify an output pathname; it defaults

in a manner appropriate to the implementation’s file system conventions.

X3J13 voted in June 1989 〈24〉 to specify that compile-file returns three values:

the truename of the output file (or nil if the file could not be created) and two values

indicating whether the compiler issued any diagnostics (see section 25.1.1).

X3J13 voted in October 1988 〈21〉 to specify that compile-file, like load, rebinds

package to its current value. If some form in the file changes the value of *package*,

the old value will be restored when compilation is completed.

X3J13 voted in June 1989 〈22〉 to specify restrictions on conforming programs to

ensure consistent handling of symbols and packages.

In order to guarantee that compiled files can be loaded correctly, the user must

ensure that the packages referenced in the file are defined consistently at compile

and load time. Conforming Common Lisp programs must satisfy the following

requirements.

. The value of *package* when a toplevel form in the file is processed by compile-

file must be the same as the value of *package* when the code corresponding to

MISCELLANEOUS FEATURES 675

that toplevel form in the compiled file is executed by the loader. In particular,

any toplevel form in a file that alters the value of *package* must change it to a

package of the same name at both compile and load time; moreover, if the first

nonatomic toplevel form in the file is not a call to in-package, then the value of

package at the time load is called must be a package with the same name as the

package that was the value of *package* at the time compile-file was called.

. For every symbol appearing lexically within a toplevel form that was accessible

in the package that was the value of *package* during processing of that toplevel

form at compile time, but whose home package was another package, at load time

there must be a symbol with the same name that is accessible in both the load

time *package* and in the package with the same name as the compiletime home

package.

. For every symbol in the compiled file that was an external symbol in its home

package at compile time, there must be a symbol with the same name that is an

external symbol in the package with the same name at load time.

If any of these conditions do not hold, the package in which load looks for the affected

symbols is unspecified. Implementations are permitted to signal an error or otherwise

define this behavior.

These requirements are merely an explicit statement of the status quo, namely that

users cannot depend on any particular behavior if the package environment at load

time is inconsistent with what existed at compile time.

X3J13 voted in March 1989 〈104〉 to specify that compile-file must bind

readtable to its current value at the time compile-file is called; the dynamic

extent of the binding should encompass all of the fileloading activity. This allows a

portable program to include forms such as

(in-package "FOO")

(eval-when (:execute :load-toplevel :compile-toplevel)

(setq *readtable* foo:my-readtable))

without performing a net global side effect on the loading environment. Such state

ments allow the remainder of such a file to be read either as interpreted code or by

compile-file in a syntax determined by an alternative readtable.

X3J13 voted in June 1989 〈112〉 to require that compile-file bind two new variables

compile-file-pathname and *compile-file-truename*; the dynamic extent of the

bindings should encompass all of the filecompiling activity.

676 COMMON LISP

[Variable]*compile-verbose*

X3J13 voted in March 1989 〈26〉 to add *compile-verbose*. This variable provides the

default for the :verbose argument to compile-file. Its initial value is implementation

dependent.

A proposal was submitted to X3J13 in October 1989 to rename this *compile-file-

verbose* for consistency.

[Variable]*compile-print*

X3J13 voted in March 1989 〈26〉 to add *compile-print*. This variable provides the

default for the :print argument to compile-file. Its initial value is implementation

dependent.

A proposal was submitted to X3J13 in October 1989 to rename this *compile-file-

print* for consistency.

[Variable]*compile-file-pathname*

X3J13 voted in June 1989 〈112〉 to introduce *compile-file-pathname*; it is initially

nil but compile-file binds it to a pathname that represents the file name given as the

first argument to compile-file merged with the defaults (see merge-pathname).

[Variable]*compile-file-truename*

X3J13 voted in June 1989 〈112〉 to introduce *compile-file-truename*; it is initially

nil but compile-file binds it to the “true name” of the pathname of the file being

compiled. See truename.

[Special form]load-time-value form [readonlyp]

X3J13 voted in March 1989 〈111〉 to add a mechanism for delaying evaluation of a

form until it can be done in the runtime environment.

If a load-time-value expression is seen by compile-file, the compiler performs its

normal semantic processing (such as macro expansion and translation into machine

code) on the form, but arranges for the execution of the form to occur at load time

in a null lexical environment, with the result of this evaluation then being treated as

an immediate quantity (that is, as if originally quoted) at run time. It is guaranteed

that the evaluation of the form will take place only once when the file is loaded, but

the order of evaluation with respect to the execution of toplevel forms in the file is

unspecified.

MISCELLANEOUS FEATURES 677

If a load-time-value expression appears within a function compiled with compile,

the form is evaluated at compile time in a null lexical environment. The result of this

compiletime evaluation is treated as an immediate quantity in the compiled code.

In interpreted code, form is evaluated (by eval) in a null lexical environment

and one value is returned. Implementations that implicitly compile (or partially

compile) expressions passed to eval may evaluate the form only once, at the time

this compilation is performed. This is intentionally similar to the freedom that

implementations are given for the time of expanding macros in interpreted code.

If the same (as determined by eq) list (load-time-value form) is evaluated or

compiled more than once, it is unspecified whether the form is evaluated only once

or is evaluated more than once. This can happen both when an expression being

evaluated or compiled shares substructure and when the same expression is passed

to eval or to compile multiple times. Since a load-time-value expression may be

referenced in more than one place and may be evaluated multiple times by the

interpreter, it is unspecified whether each execution returns a “fresh” object or returns

the same object as some other execution. Users must use caution when destructively

modifying the resulting object.

If two lists (load-time-value form) are equal but not eq, their values always come

from distinct evaluations of form. Coalescing of these forms is not permitted.

The optional readonlyp argument designates whether the result may be consid

ered a readonly constant. If nil (the default), the result must be considered ordinary,

modifiable data. If t, the result is a readonly quantity that may, as appropriate, be

copied into readonly space and may, as appropriate, be shared with other programs.

The readonlyp argument is not evaluated and only the literal symbols t and nil are

permitted.

This new feature addresses the same set of needs as the nowdefunct #--, reader

syntax but in a cleaner and more general manner. Note that #--, syntax was reliably

useful only inside quoted structure (though this was not explicitly mentioned in the

first edition), whereas a load-time-value form must appear outside quoted structure

in a forevaluation position.

See make-load-form.

[Function]disassemble name-or-compiled-function

The argument should be a function object, a lambdaexpression, or a symbol with

a function definition. If the relevant function is not a compiled function, it is first

compiled. In any case, the compiled code is then “reverseassembled” and printed

out in a symbolic format. This is primarily useful for debugging the compiler, but

also often of use to the novice who wishes to understand the workings of compiled

code.

678 COMMON LISP

Implementation note: Implementors are encouraged to make the output readable, preferably

with helpful comments.

X3J13 voted in March 1988 〈65〉 to clarify that when disassemble compiles a

function, it never installs the resulting compiledfunction object in the symbol-function

of a symbol.

X3J13 voted in March 1989 〈89〉 to extend disassemble to accept as a name any

functionname (a symbol or a list whose car is setf—see section 7.1). Thus one

may write (disassemble ´(setf cadr)) to disassemble the setf expansion function

for cadr.

[Function]function-lambda-expression fn

X3J13 voted in January 1989 〈88〉 to add a new function to allow the source code

for a defined function to be recovered. (The committee noted that the first edition

provided no portable way to recover a lambdaexpression once it had been compiled

or evaluated to produce a function.)

This function takes one argument, which must be a function, and returns three

values.

The first value is the defining lambdaexpression for the function, or nil if that

information is not available. The lambdaexpression may have been preprocessed

in some ways but should nevertheless be of a form suitable as an argument to the

function compile or for use in the function special form.

The second value is nil if the function was definitely produced by closing a lambda

expression in the null lexical environment; it is some nonnil value if the function

might have been closed in some nonnull lexical environment.

The third value is the “name” of the function; this is nil if the name is not available

or if the function had no name. The name is intended for debugging purposes only

and may be any Lisp object (not necessarily one that would be valid for use as a name

in a defun or function special form, for example).

Implementation note: An implementation is always free to return the values nil, t, nil from

this function but is encouraged to make more useful information available as appropriate.

For example, it may not be desirable for files of compiled code to retain the source lambda

expressions for use after the file is loaded, but it is probably desirable for functions produced

by “incore” calls to eval, compile, or defun to retain the defining lambdaexpression for

debugging purposes. The function function-lambda-expression makes this information, if

retained, accessible in a standard and portable manner.

MISCELLANEOUS FEATURES 679

[Macro]with-compilation-unit ({optionname optionvalue}∗) { form}∗

X3J13 voted in March 1989 〈183〉 to add with-compilation-unit, which executes the

body forms as an implicit progn. Within the dynamic context of this form, warnings

deferred by the compiler until “the end of compilation” will be deferred until the end

of the outermost call to with-compilation-unit. The results are the same as those of

the last of the forms (or nil if there is no form).

Each optionname is an unevaluated keyword; each optionvalue is evaluated. The

set of keywords permitted may be extended by the implementation, but the only

standard option keyword is :override; the default value for this option is nil. If

with-compilation-unit forms are nested dynamically, only the outermost such call

has any effect unless the :override value of an inner call is true.

The function compile-file should provide the effect of

(with-compilation-unit (:override nil) ...)

around its code.

Any implementationdependent extensions to this behavior may be provided only

as the result of an explicit programmer request by use of an implementationdependent

keyword. It is forbidden for an implementation to attach additional meaning to a

conforming use of this macro.

Note that not all compiler warnings are deferred. In some implementations, it

may be that none are deferred. This macro only creates an interface to the capability

where it exists, it does not require the creation of the capability. An implementation

that does not defer any compiler warnings may correctly implement this macro as an

expansion into a simple progn.

25.1.1. Compiler Diagnostics

X3J13 voted in June 1987 〈27〉 to specify that compile and compile-file may output

warning messages; any such messages should go to the stream that is the value of

error-output.

X3J13 voted in June 1989 〈24〉 to specify the use of conditions to signal various

erroneous situations during compilation. First, note that error and warning conditions

may be signaled either by the compiler itself or by code being processed by the com

piler (for example, arbitrary errors may occur during compiletime macro expansion

or processing of eval-when forms). Considering only those conditions signaled by the

compiler (as opposed to during compilation):

. Conditions of type error may be signaled by the compiler in situations where the

compilation cannot proceed without intervention. Examples of such situations

may include errors when opening a file or syntax errors.

680 COMMON LISP

. Conditions of type warning may be signaled by the compiler in situations where

the standard explicitly states that a warning must, should, or may be signaled.

They may also be signaled when the compiler can determine that a situation

would result at runtime that would have undefined consequences or would cause

an error to be signaled. Examples of such situations may include violations of

type declarations, altering or rebinding a constant defined with defconstant, calls

to builtin Lisp functions with too few or too many arguments or with malformed

keyword argument lists, referring to a variable declared ignore, or unrecognized

declaration specifiers.

. The compiler is permitted to signal diagnostics about matters of programming style

as conditions of type style-warning, a subtype of warning. Although a style-warning

condition may be signaled in these situations, no implementation is required to

do so. However, if an implementation does choose to signal a condition, that

condition will be of type style-warning and will be signaled by a call to the

function warn. Examples of such situations may include redefinition of a function

with an incompatible argument list, calls to functions (other than builtin functions)

with too few or too many arguments or with malformed keyword argument lists,

unreferenced local variables not declared ignore, or standard declaration specifiers

that are ignored by the particular compiler in question.

Both compile and compile-file are permitted (but not required) to establish a

handler for conditions of type error. Such a handler might, for example, issue a

warning and restart compilation from some implementationdependent point in order

to let the compilation proceed without manual intervention.

The functions compile and compile-file each return three values. See the definitions

of these functions for descriptions of the first value. The second value is nil if no

compiler diagnostics were issued, and true otherwise. The third value is nil if no

compiler diagnostics other than style warnings were issued; a nonnil value indicates

that there were “serious” compiler diagnostics issued or that other conditions of type

error or warning (but not style-warning) were signaled during compilation.

25.1.2. Compiled Functions

X3J13 voted in June 1989 〈23〉 to impose certain requirements on the functions

produced by the compilation process.

If a function is of type compiled-function, then all macro calls appearing lexically

within the function have already been expanded and will not be expanded again when

the function is called. The process of compilation effectively turns every macrolet or

symbol-macrolet construct into a progn (or a locally) with all instances of the local

macros in the body fully expanded.

MISCELLANEOUS FEATURES 681

If a function is of type compiled-function, then all load-time-value forms appearing

lexically within the function have already been preevaluated and will not be evaluated

again when the function is called.

Implementations are free to classify every function as a compiled-function provided

that all functions satisfy the preceding requirements. Conversely, it is permissible for

a function that is not a compiled-function to satisfy the preceding requirements.

If one or more functions are defined in a file that is compiled with compile-file and

the compiled file is subsequently loaded by the function load, the resulting loaded

function definitions must be of type compiled-function.

The function compile must produce an object of type compiled-function as the value

that is either returned or stored into the symbol-function of a symbol argument.

Note that none of these restrictions addresses questions of the compilation technol

ogy or target instruction set. For example, a compiled function does not necessarily

consist of native machine instructions. These requirements merely specify the behav

ior of the type system with respect to certain actions taken by compile, compile-file,

and load.

25.1.3. Compilation Environment

X3J13 voted in June 1989 〈19〉 to specify what information must be available at

compile time for correct compilation and what need not be available until run time.

The following information must be present in the compiletime environment for a

program to be compiled correctly. This information need not also be present in the

runtime environment.

. In conforming code, macros referenced in the code being compiled must have been

previously defined in the compiletime environment. The compiler must treat as

a function call any form that is a list whose car is a symbol that does not name a

macro or special form. (This implies that setf methods must also be available at

compile time.)

. In conforming code, proclamations for special variables must be made in the

compiletime environment before any bindings of those variables are processed by

the compiler. The compiler must treat any binding of an undeclared variable as a

lexical binding.

The compiler may incorporate the following kinds of information into the code

it produces, if the information is present in the compiletime environment and is

referenced within the code being compiled; however, the compiler is not required to

do so. When compiletime and runtime definitions differ, it is unspecified which will

prevail within the compiled code (unless some other behavior is explicitly specified

682 COMMON LISP

below). It is also permissible for an implementation to signal an error at run time

on detecting such a discrepancy. In all cases, the absence of the information at

compile time is not an error, but its presence may enable the compiler to generate

more efficient code.

. The compiler may assume that functions that are defined and declared inline in

the compiletime environment will retain the same definitions at run time.

. The compiler may assume that, within a named function, a recursive call to a

function of the same name refers to the same function, unless that function has

been declared notinline. (This permits tailrecursive calls of a function to itself to

be compiled as jumps, for example, thereby turning certain recursive schemas into

efficient loops.)

. In the absence of notinline declarations to the contrary, compile-file may assume

that a call within the file being compiled to a named function that is defined in

that file refers to that function. (This rule permits block compilation of files.) The

behavior of the program is unspecified if functions are redefined individually at

run time.

. The compiler may assume that the signature (or “interface contract”) of all builtin

Common Lisp functions will not change. In addition, the compiler may treat all

builtin Common Lisp functions as if they had been proclaimed inline.

. The compiler may assume that the signature (or “interface contract”) of functions

with ftype information available will not change.

. The compiler may “wire in” (that is, opencode or inline) the values of symbolic

constants that have been defined with defconstant in the compiletime environment.

. The compiler may assume that any type definition made with defstruct or deftype

in the compiletime environment will retain the same definition in the runtime

environment. It may also assume that a class defined by defclass in the compile

time environment will be defined in the runtime environment in such a way as

to have the same superclasses and metaclass. This implies that subtype/supertype

relationships of type specifiers will not change between compile time and run

time. (Note that it is not an error for an unknown type to appear in a declaration at

compile time, although it is reasonable for the compiler to emit a warning in such

a case.)

. The compiler may assume that if type declarations are present in the compiletime

environment, the corresponding variables and functions present in the runtime

MISCELLANEOUS FEATURES 683

environment will actually be of those types. If this assumption is violated, the

runtime behavior of the program is undefined.

The compiler must not make any additional assumptions about consistency between

the compiletime and runtime environments. In particular, the compiler may not

assume that functions that are defined in the compiletime environment will retain

either the same definition or the same signature at run time, except as described

above. Similarly, the compiler may not signal an error if it sees a call to a function

that is not defined at compile time, since that function may be provided at run time.

X3J13 voted in January 1989 〈20〉 to specify the compiletime side effects of

processing various macro forms.

Calls to defining macros such as defmacro or defvar appearing within a file being

processed by compile-file normally have compiletime side effects that affect how

subsequent forms in the same file are compiled. A convenient model for explaining

how these side effects happen is that each defining macro expands into one or more

eval-when forms and that compiletime side effects are caused by calls occurring in

the body of an (eval-when (:compile-toplevel) ...) form.

The affected defining macros and their specific side effects are as follows. In each

case, it is identified what a user must do to ensure that a program is conforming, and

what a compiler must do in order to correctly process a conforming program.

deftype

The user must ensure that the body of a deftype form is evaluable at compile time if

the type is referenced in subsequent type declarations. The compiler must ensure that

a type specifier defined by deftype is recognized in subsequent type declarations. If

the expansion of a type specifier is not defined fully at compile time (perhaps because

it expands into an unknown type specifier or a satisfies of a named function that

isn’t defined in the compiletime environment), an implementation may ignore any

references to this type in declarations and may signal a warning.

defmacro and define-modify-macro

The compiler must store macro definitions at compile time, so that occurrences of

the macro later on in the file can be expanded correctly. The user must ensure that

the body of the macro is evaluable at compile time if it is referenced within the file

being compiled.

defun

No required compiletime side effects are associated with defun forms. In particular,

defun does not make the function definition available at compile time. An imple

mentation may choose to store information about the function for the purposes of

684 COMMON LISP

compiletime error checking (such as checking the number of arguments on calls) or

to permit later inline expansion of the function.

defvar and defparameter

The compiler must recognize that the variables named by these forms have been

proclaimed special. However, it must not evaluate the initialvalue form or set the

variable at compile time.

defconstant

The compiler must recognize that the symbol names a constant. An implementation

may choose to evaluate the valueform at compile time, load time, or both. Therefore

the user must ensure that the valueform is evaluable at compile time (regardless of

whether or not references to the constant appear in the file) and that it always evaluates

to the same value. (There has been considerable variance among implementations on

this point. The effect of this specification is to legitimize all of the implementation

variants by requiring care of the user.)

defsetf and define-setf-method

The compiler must make setf methods available so that they may be used to expand

calls to setf later on in the file. Users must ensure that the body of a call to

define-setf-method or the complex form of defsetf is evaluable at compile time if the

corresponding place is referred to in a subsequent setf in the same file. The compiler

must make these setf methods available to compiletime calls to get-setf-method

when its environment argument is a value received as the &environment parameter of

a macro.

defstruct

The compiler must make the structure type name recognized as a valid type name in

subsequent declarations (as described above for deftype) and make the structure slot

accessors known to setf. In addition, the compiler must save enough information so

that further defstruct definitions can include (with the :include option) a structure

type defined earlier in the file being compiled. The functions that defstruct generates

are not defined in the compiletime environment, although the compiler may save

enough information about the functions to allow inline expansion of subsequent calls

to these functions. The #--S reader syntax may or may not be available for that structure

type at compile time.

define-condition

The rules are essentially the same as those for defstruct. The compiler must make the

MISCELLANEOUS FEATURES 685

condition type recognizable as a valid type name, and it must be possible to reference

the condition type as the parenttype of another condition type in a subsequent

define-condition form in the file being compiled.

defpackage

All of the actions normally performed by the defpackage macro at load time must also

be performed at compile time.

Compiletime side effects may cause information about a definition to be stored in

a different manner from information about definitions processed either interpretively

or by loading a compiled file. In particular, the information stored by a defining macro

at compile time may or may not be available to the interpreter (either during or after

compilation) or during subsequent calls to compile or compile-file. For example, the

following code is not portable because it assumes that the compiler stores the macro

definition of foo where it is available to the interpreter.

(defmacro foo (x) `(car ,x))

(eval-when (:execute :compile-toplevel :load-toplevel)

(print (foo ´(a b c)))) ;Wrong

The goal may be accomplished portably by including the macro definition within the

eval-when form:

(eval-when (eval compile load)

(defmacro foo (x) `(car ,x))

(print (foo ´(a b c)))) ;Right

declaim

X3J13 voted in June 1989 〈144〉 to add a new macro declaim for making proclamations

recognizable at compile time. The declaration specifiers in the declaim form are

effectively proclaimed at compile time so as to affect compilation of subsequent

forms. (Note that compiler processing of a call to proclaim does not have any

compiletime side effects, for proclaim is a function.)

in-package

X3J13 voted in March 1989 〈103〉 to specify that all of the actions normally performed

by the in-package macro at load time must also be performed at compile time.

X3J13 voted in June 1989 〈13〉 to specify the compiletime side effects of process

ing various CLOSrelated macro forms. Toplevel calls to the CLOS defining macros

686 COMMON LISP

have the following compiletime side effects; any other compiletime behavior is

explicitly left unspecified.

defclass

The class name may appear in subsequent type declarations and can be used as

a specializer in subsequent defmethod forms. Thus the compiletime behavior of

defclass is similar to that of deftype or defstruct.

defgeneric

The generic function can be referenced in subsequent defmethod forms, but the com

piler does not arrange for the generic function to be callable at compile time.

defmethod

The compiler does not arrange for the method to be callable at compile time. If

there is a generic function with the same name defined at compile time, compiling a

defmethod form does not add the method to that generic function; the method is added

to the generic function only when the defmethod form is actually executed.

The errorsignaling behavior described in the specification of defmethod in chap

ter 28 (if the function isn’t a generic function or if the lambdalist is not congruent)

occurs only when the defining form is executed, not at compile time.

The forms in eql parameter specializers are evaluated when the defmethod form is

executed. The compiler is permitted to build in knowledge about what the form in an

eql specializer will evaluate to in cases where the ultimate result can be syntactically

inferred without actually evaluating it.

define-method-combination

The method combination can be used in subsequent defgeneric forms.

The body of a define-method-combination form is evaluated no earlier than when

the defining macro is executed and possibly as late as generic function invocation

time. The compiler may attempt to evaluate these forms at compile time but must

not depend on being able to do so.

25.1.4. Similarity of Constants

X3J13 voted in March 1989 〈34〉 to specify what objects can be in compiled constants

and what relationship there must be between a constant passed to the compiler and

the one that is established by compiling it and then loading its file.

The key is a definition of an equivalence relationship called “similarity as con

stants” between Lisp objects. Code passed through the file compiler and then loaded

MISCELLANEOUS FEATURES 687

must behave as though quoted constants in it are similar in this sense to quoted con

stants in the corresponding source code. An object may be used as a quoted constant

processed by compile-file if and only if the compiler can guarantee that the resulting

constant established by loading the compiled file is “similar as a constant” to the

original. Specific requirements are spelled out below.

Some types of objects, such as streams, are not supported in constants processed

by the file compiler. Such objects may not portably appear as constants in code

processed with compile-file. Conforming implementations are required to handle

such objects either by having the compiler or loader reconstruct an equivalent copy of

the object in some implementationspecific manner or by having the compiler signal

an error.

Of the types supported in constants, some are treated as aggregate objects. For

these types, being similar as constants is defined recursively. We say that an object of

such a type has certain “basic attributes”; to be similar as a constant to another object,

the values of the corresponding attributes of the two objects must also be similar as

constants.

A definition of this recursive form has problems with any circular or infinitely

recursive object such as a list that is an element of itself. We use the idea of depth

limited comparison and say that two objects are similar as constants if they are similar

at all finite levels. This idea is implicit in the definitions below, and it applies in all

the places where attributes of two objects are required to be similar as constants. The

question of handling circular constants is the subject of a separate vote by X3J13 (see

below).

The following terms are used throughout this section. The term constant refers to

a quoted or selfevaluating constant, not a named constant defined by defconstant.

The term source code is used to refer to the objects constructed when compile-file

calls read (or the equivalent) and to additional objects constructed by macro expansion

during file compilation. The term compiled code is used to refer to objects constructed

by load.

Two objects are similar as a constant if and only if they are both of one of the

types listed below and satisfy the additional requirements listed for that type.

number

Two numbers are similar as constants if they are of the same type and represent the

same mathematical value.

character

Two characters are similar as constants if they both represent the same character.

(The intent is that this be compatible with how eql is defined on characters.)

688 COMMON LISP

symbol

X3J13 voted in June 1989 〈22〉 to define similarity as a constant for interned symbols.

A symbol S appearing in the source code is similar as a constant to a symbol S′ in the

compiled code if their print names are similar as constants and either of the following

conditions holds:

. S is accessible in *package* at compile time and S′ is accessible in *package* at

load time.

. S′ is accessible in the package that is similar as a constant to the home package of

symbol S.

The “similar as constants” relationship for interned symbols has nothing to do with

readtable or how the function read would parse the characters in the print name of

the symbol.

An uninterned symbol in the source code is similar as a constant to an uninterned

symbol in the compiled code if their print names are similar as constants.

package

A package in the source code is similar as a constant to a package in the compiled code

if their names are similar as constants. Note that the loader finds the corresponding

package object as if by calling find-package with the package name as an argument.

An error is signaled if no package of that name exists at load time.

random-state

We say that two random-state objects are functionally equivalent if applying random

to them repeatedly always produces the same pseudorandom numbers in the same

order.

Two randomstates are similar as constants if and only if copies of them made

via make-random-state are functionally equivalent. (Note that a constant random-state

object cannot be used as the state argument to the function random because random

performs a side effect on that argument.)

cons

Two conses are similar as constants if the values of their respective car and cdr

attributes are similar as constants.

array

Two arrays are similar as constants if the corresponding values of each of the following

attributes are similar as constants: for vectors (onedimensional arrays), the length

and element-type and the result of elt for all valid indices; for all other arrays,

MISCELLANEOUS FEATURES 689

the array-rank, the result of array-dimension for all valid axis numbers, the array-

element-type, and the result of aref for all valid indices. (The point of distinguishing

vectors is to take any fill pointers into account.)

If the array in the source code is a simple-array, then the corresponding array in

the compiled code must also be a simple-array, but if the array in the source code is

displaced, has a fill pointer, or is adjustable, the corresponding array in the compiled

code is permitted to lack any or all of these qualities.

hash-table

Two hash tables are similar as constants if they meet three requirements. First, they

must have the same test (for example, both are eql hash tables or both are equal hash

tables). Second, there must be a unique bijective correspondence between the keys

of the two tables, such that the corresponding keys are similar as constants. Third,

for all keys, the values associated with two corresponding keys must be similar as

constants.

If there is more than one possible onetoone correspondence between the keys of

the two tables, it is unspecified whether the two tables are similar as constants. A

conforming program cannot use such a table as a constant.

pathname

Two pathnames are similar as constants if all corresponding pathname components

are similar as constants.

stream, readtable, and method

Objects of these types are not supported in compiled constants.

function

X3J13 voted in June 1989 〈35〉 to specify that objects of type function are not

supported in compiled constants.

structure and standard-object

X3J13 voted in March 1989 〈110〉 to introduce a facility based on the Common Lisp

Object System whereby a user can specify how compile-file and load must cooperate

to reconstruct compiletime constant objects at load time (see make-load-form).

X3J13 voted in March 1989 〈33〉 to specify the circumstances under which con

stants may be coalesced in compiled code.

Suppose A and B are two objects used as quoted constants in the source code, and

that A′ and B′ are the corresponding objects in the compiled code. If A′ and B′ are

690 COMMON LISP

eql but A and B were not eql, then we say that A and B have been coalesced by the

compiler.

An implementation is permitted to coalesce constants appearing in code to be

compiled if and only if they are similar as constants, except that objects of type

symbol, package, structure, or standard-object obey their own rules and may not be

coalesced by a separate mechanism.

Rationale: Objects of type symbol and package cannot be coalesced because the fact that they

are named, interned objects means they are already as coalesced as it is useful for them to be.

Uninterned symbols could perhaps be coalesced, but that was thought to be more dangerous

than useful. Structures and objects could be coalesced if a “similar as a constant” predicate

were defined for them; it would be a generic function. However, at present there is no such

predicate. Currently make-load-form provides a protocol by which compile-file and load work

together to construct an object in the compiled code that is equivalent to the object in the source

code; a different mechanism would have to be added to permit coalescing.

Note that coalescing is possible only because it is forbidden to destructively modify

constants 〈36〉 (see quote).

X3J13 voted in March 1989 〈32〉 to specify that objects containing circular or

infinitely recursive references may legitimately appear as constants to be compiled.

The compiler is required to preserve eqlness of substructures within a file compiled

by compile-file.

25.2. Documentation
...

A simple facility is provided for attaching strings to symbols for the purpose of

online documentation. Rather than using the property list of the symbol, a separate

function documentation is provided so that implementations can optimize the storage

of documentation strings.

[Function]documentation symbol doc-type

This function returns the documentation string of type doctype for the symbol, or

nil if none exists. Both arguments must be symbols. Some kinds of documentation

are provided automatically by certain Common Lisp constructs if the user writes an

optional documentation string within them:

...

MISCELLANEOUS FEATURES 691

Construct Documentation Type

defvar variable

defparameter variable

defconstant variable

defun function

defmacro function

defstruct structure

deftype type

defsetf setf
..

In addition, names of special forms may also have function documentation. (Macros

and special forms are not really functions, of course, but it is convenient to group

them with functions for documentation purposes.)

setf may be used with documentation to update documentation information.

X3J13 voted in June 1988 〈12〉 to make documentation a CLOS generic function

(see chapter 28).

X3J13 voted in March 1989 〈89〉 to extend documentation to accept any function

name (a symbol or a list whose car is setf—see section 7.1). Thus one may write

(documentation ´(setf cadr) ´function) to determine whether there is any documen

tation for a setf expansion function for cadr.

25.3. Debugging Tools

The utilities described in this section are sufficiently complex and sufficiently de

pendent on the host environment that their complete definition is beyond the scope

of this book. However, they are also sufficiently useful to warrant mention here. It

is expected that every implementation will provide some version of these utilities,

however clever or however simple.

[Macro]trace { functionname}∗
[Macro]untrace { functionname}∗

Invoking trace with one or more functionnames (symbols) causes the functions
...

named to be traced. Henceforth, whenever such a function is invoked, information

about the call, the arguments passed, and the eventually returned values, if any, will

be printed to the stream that is the value of *trace-output*. For example:

(trace fft gcd string-upcase)

692 COMMON LISP

If a function call is opencoded (possibly as a result of an inline declaration), then

such a call may not produce trace output.

Invoking untrace with one or more function names will cause those functions not

to be traced any more.

Tracing an already traced function, or untracing a function not currently being

traced, should produce no harmful effects but may produce a warning message.

Calling trace with no argument forms will return a list of functions currently being

traced.

Calling untrace with no argument forms will cause all currently traced functions

to be no longer traced.

X3J13 voted in March 1989 〈89〉 to extend traceand untrace to accept any function

name (a symbol or a list whose car is setf—see section 7.1). Thus one may write

(trace (setf cadr)) to trace the setf expansion function for cadr.

X3J13 voted in January 1989 〈156〉 to specify that the values returned by trace

and untrace when given argument forms are implementationdependent.

trace and untrace may also accept additional implementationdependent argument

formats. The format of the trace output is implementationdependent.

[Macro]step form

This evaluates form and returns what form returns. However, the user is allowed

to interactively “singlestep” through the evaluation of form, at least through those

evaluation steps that are performed interpretively. The nature of the interaction is

implementationdependent. However, implementations are encouraged to respond to

the typing of the character ? by providing help, including a list of commands.

X3J13 voted in January 1989 〈166〉 to clarify that step evaluates its argument form

in the current lexical environment (not simply a null environment), and that calls to

step may be compiled, in which case an implementation may step through only those

parts of the evaluation that are interpreted. (In other words, the form itself is unlikely

to be stepped, but if executing it happens to invoke interpreted code, then that code

may be stepped.)

[Macro]time form

This evaluates form and returns what form returns. However, as a side effect, various

timing data and other information are printed to the stream that is the value of

trace-output. The nature and format of the printed information is implementation

dependent. However, implementations are encouraged to provide such information

as elapsed real time, machine run time, storage management statistics, and so on.

MISCELLANEOUS FEATURES 693

Compatibility note: This facility is inspired by the Interlisp facility of the same name. Note

that the MacLisp/Lisp Machine Lisp function time does something else entirely, namely return

a quantity indicating relative elapsed real time.

X3J13 voted in January 1989 〈166〉 to clarify that time evaluates its argument form

in the current lexical environment (not simply a null environment), and that calls to

time may be compiled.

[Function]describe object
...

describe prints, to the stream in the variable *standard-output*, information about the

object. Sometimes it will describe something that it finds inside something else; such

recursive descriptions are indented appropriately. For instance, describe of a symbol

will exhibit the symbol’s value, its definition, and each of its properties. describe of

a floatingpoint number will exhibit its internal representation in a way that is useful

for tracking down roundoff errors and the like. The nature and format of the output

is implementationdependent.

describe returns no values (that is, it returns what the expression (values) returns:

zero values).

X3J13 voted in March 1989 〈63〉 to let describe take an optional second argument:

[Function]describe object &optional stream

The output is sent to the specified stream, which defaults to the value of *standard-

output*; the stream may also be nil (meaning *standard-output*) or t (meaning

terminal-io).

The behavior of describe depends on the generic function describe-object (see

below).

X3J13 voted in January 1989 〈62〉 to specify that describe is forbidden to prompt

for or require user input when given exactly one argument; it also voted to permit

implementations to extend describe to accept keyword arguments that may cause it

to prompt for or to require user input.

[Generic function]describe-object object stream

[Primary method]describe-object (object standard-object) stream

X3J13 voted in March 1989 〈63〉 to add the generic function describe-object, which

writes a description of an object to a stream. The function describe-object is called

by the describe function; it should not be called by the user.

694 COMMON LISP

Each implementation must provide a method on the class standard-object and

methods on enough other classes to ensure that there is always an applicable method.

Implementations are free to add methods for other classes. Users can write meth

ods for describe-object for their own classes if they do not wish to inherit an

implementationsupplied method.

The first argument may be any Lisp object. The second argument is a stream; it

cannot be t or nil. The values returned by describe-object are unspecified.

Methods on describe-object may recursively call describe. Indentation, depth

limits, and circularity detection are all taken care of automatically, provided that each

method handles exactly one level of structure and calls describe recursively if there

are more structural levels. If this rule is not obeyed, the results are undefined.

In some implementations the stream argument passed to a describe-object method

is not the original stream but is an intermediate stream that implements parts of

describe. Methods should therefore not depend on the identity of this stream.

Rationale: This proposal was closely modeled on the CLOS description of print-object,

which was well thought out and provides a great deal of functionality and implementation

freedom. Implementation techniques for print-object are applicable to describe-object.

The reason for making the return values for describe-object unspecified is to avoid forcing

users to write (values) explicitly in all their methods; describe should take care of that.

[Function]inspect object

inspect is an interactive version of describe. The nature of the interaction is

implementationdependent, but the purpose of inspect is to make it easy to wan

der through a data structure, examining and modifying parts of it. Implementations

are encouraged to respond to the typing of the character ? by providing help, including

a list of commands.

X3J13 voted in January 1989 〈156〉 to specify that the values returned by inspect

are implementationdependent.

[Function]room &optional x

room prints, to the stream in the variable *standard-output*, information about the

state of internal storage and its management. This might include descriptions of the

amount of memory in use and the degree of memory compaction, possibly broken

down by internal data type if that is appropriate. The nature and format of the printed

information is implementationdependent. The intent is to provide information that

may help a user to tune a program to a particular implementation.

MISCELLANEOUS FEATURES 695

(room nil) prints out a minimal amount of information. (room t) prints out a

maximal amount of information. Simply (room) prints out an intermediate amount of

information that is likely to be useful.

X3J13 voted in January 1989 〈157〉 to specify that the argument x may also be the

keyword :default, which has the same effect as passing no argument at all.

[Function]ed &optional x

If the implementation provides a resident editor, this function should invoke it.

(ed) or (ed nil) simply enters the editor, leaving you in the same state as the last

time you were in the editor.

(ed pathname) edits the contents of the file specified by pathname. The pathname

may be an actual pathname or a string.

X3J13 voted in June 1989 〈130〉 to require ed to accept logical pathnames (see

section 23.1.5).

(ed symbol) tries to let you edit the text for the function named symbol. The means

by which the function text is obtained is implementationdependent; it might involve

searching the file system, or pretty printing resident interpreted code, for example.

X3J13 voted in March 1989 〈89〉 to extend compile to accept as a name any

functionname (a symbol or a list whose car is setf—see section 7.1). Thus one may

write (ed ´(setf cadr)) to edit the setf expansion function for cadr.

[Function]dribble &optional pathname

(dribble pathname) may rebind *standard-input* and *standard-output*, and may

take other appropriate action, so as to send a record of the input/output interaction to

a file named by pathname. The primary purpose of this is to create a readable record

of an interactive session.

(dribble) terminates the recording of input and output and closes the dribble file.

X3J13 voted in June 1989 〈130〉 to require dribble to accept logical pathnames

(see section 23.1.5).

X3J13 voted in March 1988 〈68〉 to clarify that dribble is intended primarily for

interactive debugging and that its effect cannot be relied upon for use in portable

programs.

Different implementations of Common Lisp have used radically different tech

niques for implementing dribble. All are reasonable interpretations of the original

specification, and all behave in approximately the same way if dribble is called only

from the interactive top level. However, they may have quite different behaviors if

dribble is called from within compound forms.

696 COMMON LISP

Consider two models of the operation of dribble. In the “redirecting” model,

a call to dribble with a pathname argument alters certain global variables such as

standard-output, perhaps by constructing a broadcast stream directed to both the

original value of *standard-output* and to the dribble file; other streams may be

affected as well. A call to dribble with no arguments undoes these side effects.

In the “recursive” model, by contrast, a call to dribble with a pathname argument

creates a new interactive command loop and calls it recursively. This new command

loop is just like an ordinary readevalprint loop except that it also echoes the in

teraction to the dribble file. A call to dribble with no arguments does a throw that

exits the recursive command loop and returns to the original caller of dribble with an

argument.

The two models may be distinguished by this test case:

(progn (dribble "basketball")

(print "Larry")

(dribble)

(princ "Bird"))

If this form is input to the Lisp top level, in either model a newline (provided by the

function print) and the words Larry Bird will be printed to the standard output. The

redirecting dribble model will additionally print all but the word Bird to a file named

basketball.

By contrast, the recursive dribble model will enter a recursive command loop

and not print anything until (dribble) is executed from within the new interactive

command loop. At that time the file named basketball will be closed, and then

execution of the progn form will be resumed. A newline and “Larry ” (note the

trailing space) will be printed to the standard output, and then the call (dribble) may

complain that there is no active dribble file. Once this error is resolved, the word

Bird may be printed to the standard output.

Here is a slightly different test case:

(dribble "baby-food")

(progn (print "Mashed banana")

(dribble)

(princ "and cream of rice"))

If this form is input to the Lisp top level, in the redirecting model a newline and the

words Mashed banana and cream of rice will be printed to the standard output and all

but the words and cream of rice will be sent to a file named baby-food.

MISCELLANEOUS FEATURES 697

The recursive model will direct exactly the same output to the file named baby-food

but will never print the words and cream of rice to the standard output because the

call (dribble) does not return normally; it throws.

The redirecting model may be intuitively more appealing to some. The recursive

model, however, may be more robust; it carefully limits the extent of the dribble

operation and disables dribbling if a throw of any kind occurs. The vote by X3J13

was an explicit decision not to decide which model to use. Users are advised to call

dribble only interactively, at top level.

[Function]apropos string &optional package

[Function]apropos-list string &optional package

(apropos string) tries to find all available symbols whose print names contain string

as a substring. (A symbol may be supplied for the string, in which case the print name

of the symbol is used.) Whenever apropos finds a symbol, it prints out the symbol’s

name; in addition, information about the function definition and dynamic value of

the symbol, if any, is printed. If package is specified and not nil, then only symbols

available in that package are examined; otherwise “all” packages are searched, as if

by do-all-symbols. Because a symbol may be available by way of more than one

inheritance path, apropos may print information about the same symbol more than

once. The information is printed to the stream that is the value of *standard-output*.

apropos returns no values (that is, it returns what the expression (values) returns:

zero values).

apropos-list performs the same search that apropos does but prints nothing. It

returns a list of the symbols whose print names contain string as a substring.

25.4. Environment Inquiries

Environment inquiry functions provide information about the environment in which a

Common Lisp program is being executed. They are described here in two categories:

first, those dealing with determination and measurement of time, and second, all the

others, most of which deal with identification of the computer hardware and software.

25.4.1. Time Functions

Time is represented in three different ways in Common Lisp: Decoded Time, Uni

versal Time, and Internal Time. The first two representations are used primarily

to represent calendar time and are precise only to one second. Internal Time is

used primarily to represent measurements of computer time (such as run time) and

698 COMMON LISP

is precise to some implementationdependent fraction of a second, as specified by

internal-time-units-per-second. Decoded Time format is used only for absolute time

indications. Universal Time and Internal Time formats are used for both absolute

and relative times.

Decoded Time format represents calendar time as a number of components:

. Second: an integer between 0 and 59, inclusive.

. Minute: an integer between 0 and 59, inclusive.

. Hour: an integer between 0 and 23, inclusive.

. Date: an integer between 1 and 31, inclusive (the upper limit actually depends on

the month and year, of course).

. Month: an integer between 1 and 12, inclusive; 1 means January, 12 means

December.

. Year: an integer indicating the year A.D. However, if this integer is between 0

and 99, the “obvious” year is used; more precisely, that year is assumed that is

equal to the integer modulo 100 and within fifty years of the current year (inclusive

backwards and exclusive forwards). Thus, in the year 1978, year 28 is 1928 but

year 27 is 2027. (Functions that return time in this format always return a full year

number.)

Compatibility note: This is incompatible with the Lisp Machine Lisp definition in two ways.

First, in Lisp Machine Lisp a year between 0 and 99 always has 1900 added to it. Second,

in Lisp Machine Lisp time functions return the abbreviated year number between 0 and 99

rather than the full year number. The incompatibility is prompted by the imminent arrival of

the twentyfirst century. Note that (mod year 100) always reliably converts a year number to

the abbreviated form, while the inverse conversion can be very difficult.

. Dayofweek: an integer between 0 and 6, inclusive; 0 means Monday, 1 means

Tuesday, and so on; 6 means Sunday.

. Daylightsavingtimep: a flag that, if not nil, indicates that daylight saving time

is in effect.

. Timezone: an integer specified as the number of hours west of GMT (Greenwich

Mean Time). For example, in Massachusetts the time zone is 5, and in California

it is 8. Any adjustment for daylight saving time is separate from this.

X3J13 voted in March 1989 〈178〉 to specify that the time zone part of Decoded

Time need not be an integer, but may be any rational number (either an integer or a

MISCELLANEOUS FEATURES 699

ratio) in the range 24 to 24 (inclusive on both ends) that is an integral multiple of

1/3600.

Rationale: For all possible time designations to be accommodated, it is necessary to allow

the time zone to be nonintegral, for some places in the world have time standards offset from

Greenwich Mean Time by a nonintegral number of hours.

There appears to be no user demand for floatingpoint time zones. Since such zones would

introduce inexact arithmetic, X3J13 did not consider adding them at this time.

This specification does require time zones to be represented as integral multiples of 1 second

(rather than 1 hour). This prevents problems that could otherwise occur in converting Decoded

Time to Universal Time.

Universal Time represents time as a single nonnegative integer. For relative time

purposes, this is a number of seconds. For absolute time, this is the number of seconds

since midnight, January 1, 1900 GMT. Thus the time 1 is 00:00:01 (that is, 12:00:01

A.M.) on January 1, 1900 GMT. Similarly, the time 2398291201 corresponds to time

00:00:01 on January 1, 1976 GMT. Recall that the year 1900 was not a leap year;

for the purposes of Common Lisp, a year is a leap year if and only if its number

is divisible by 4, except that years divisible by 100 are not leap years, except that

years divisible by 400 are leap years. Therefore the year 2000 will be a leap year.

(Note that the “leap seconds” that are sporadically inserted by the world’s official

timekeepers as an additional correction are ignored; Common Lisp assumes that every

day is exactly 86400 seconds long.) Universal Time format is used as a standard time

representation within the ARPANET; see reference [22]. Because the Common Lisp

Universal Time representation uses only nonnegative integers, times before the base

time of midnight, January 1, 1900 GMT cannot be processed by Common Lisp.

Internal Time also represents time as a single integer, but in terms of an

implementationdependent unit. Relative time is measured as a number of these

units. Absolute time is relative to an arbitrary time base, typically the time at which

the system began running.

[Function]get-decoded-time

The current time is returned in Decoded Time format. Nine values are returned:

second, minute, hour, date, month, year, dayofweek, daylightsavingtimep, and

timezone.

Compatibility note: In Lisp Machine Lisp timezone is not currently returned. Consider,

however, the use of Common Lisp in some mobile vehicle. It is entirely plausible that the time

zone might change from time to time.

700 COMMON LISP

[Function]get-universal-time

The current time of day is returned as a single integer in Universal Time format.

[Function]decode-universal-time universal-time &optional time-zone

The time specified by universaltime in Universal Time format is converted to De

coded Time format. Nine values are returned: second, minute, hour, date, month,

year, dayofweek, daylightsavingtimep, and timezone.

Compatibility note: In Lisp Machine Lisp timezone is not currently returned. Consider,

however, the use of Common Lisp in some mobile vehicle. It is entirely plausible that the time

zone might change from time to time.

The timezone argument defaults to the current time zone.

X3J13 voted in January 1989 〈47〉 to specify that decode-universal-time, like

encode-universal-time, ignores daylight saving time information if a timezone is

explicitly specified; in this case the returned daylightsavingtimep value will nec

essarily be nil even if daylight saving time happens to be in effect in that time zone

at the specified time.

[Function]encode-universal-time second minute hour date month year

&optional time-zone

The time specified by the given components of Decoded Time format is encoded into

Universal Time format and returned. If you do not specify timezone, it defaults to

the current time zone adjusted for daylight saving time. If you provide timezone

explicitly, no adjustment for daylight saving time is performed.

[Constant]internal-time-units-per-second

This value is an integer, the implementationdependent number of internal time units

in a second. (The internal time unit must be chosen so that one second is an integral

multiple of it.)

Rationale: The reason for allowing the internal time units to be implementationdependent is

so that get-internal-run-time and get-internal-real-time can execute with minimum overhead.

The idea is that it should be very likely that a fixnum will suffice as the returned value from

these functions. This probability can be tuned to the implementation by trading off the speed

of the machine against the word size. Any particular unit will be inappropriate for some

implementations: a microsecond is too long for a very fast machine, while a much smaller

MISCELLANEOUS FEATURES 701

unit would force many implementations to return bignums for most calls to get-internal-time,

rendering that function less useful for accurate timing measurements.

[Function]get-internal-run-time

The current run time is returned as a single integer in Internal Time format. The

precise meaning of this quantity is implementationdependent; it may measure real

time, run time, CPU cycles, or some other quantity. The intent is that the difference

between the values of two calls to this function be the amount of time between the

two calls during which computational effort was expended on behalf of the executing

program.

[Function]get-internal-real-time

The current time is returned as a single integer in Internal Time format. This time is

relative to an arbitrary time base, but the difference between the values of two calls to

this function will be the amount of elapsed real time between the two calls, measured

in the units defined by internal-time-units-per-second.

[Function]sleep seconds

(sleep n) causes execution to cease and become dormant for approximately n seconds

of real time, whereupon execution is resumed. The argument may be any nonnegative

noncomplex number. sleep returns nil.

25.4.2. Other Environment Inquiries

For any of the following functions, if no appropriate and relevant result can be

produced, nil is returned instead of a string.

Rationale: These inquiry facilities are functions rather than variables against the possibility

that a Common Lisp process might migrate from machine to machine. This need not happen

in a distributed environment; consider, for example, dumping a core image file containing a

compiler and then shipping it to another site.

[Function]lisp-implementation-type

A string is returned that identifies the generic name of the particular Common Lisp

implementation. Examples: "Spice LISP", "Zetalisp".

702 COMMON LISP

[Function]lisp-implementation-version

A string is returned that identifies the version of the particular Common Lisp imple

mentation; this information should be of use to maintainers of the implementation.

Examples: "1192", "53.7 with complex numbers", "1746.9A, NEWIO 53, ETHER 5.3".

[Function]machine-type

A string is returned that identifies the generic name of the computer hardware on which

Common Lisp is running. Examples: "IMLAC", "DEC PDP-10", "DEC VAX-11/780".

[Function]machine-version

A string is returned that identifies the version of the computer hardware on which

Common Lisp is running. Example: "KL10, microcode 9".

[Function]machine-instance

A string is returned that identifies the particular instance of the computer hardware

on which Common Lisp is running; this might be a local nickname, for example, or

a serial number. Examples: "MIT-MC", "CMU GP-VAX".

[Function]software-type

A string is returned that identifies the generic name of any relevant supporting

software. Examples: "Spice", "TOPS-20", "ITS".

[Function]software-version

A string is returned that identifies the version of any relevant supporting software;

this information should be of use to maintainers of the implementation.

[Function]short-site-name

[Function]long-site-name

A string is returned that identifies the physical location of the computer hardware.

Examples of short names: "MIT AI Lab", "CMU-CSD". Examples of long names:

"MIT Artificial Intelligence Laboratory"

"Massachusetts Institute of Technology

Artificial Intelligence Laboratory"

"Carnegie-Mellon University Computer Science Department"

MISCELLANEOUS FEATURES 703

See also user-homedir-pathname.

[Variable]*features*

The value of the variable *features* should be a list of symbols that name “features”

provided by the implementation. Most such names will be implementationspecific;

typically a name for the implementation will be included.

One standard feature name is ieee-floating-point, which should be present if and
...

only if full IEEE proposed floatingpoint arithmetic [23] is supported.

The value of this variable is used by the #--+ and #--- reader syntax.

X3J13 voted in March 1988 〈163〉 to specify that feature names used with #--+

and #--- are read in the keyword package unless an explicit prefix designating some

other package appears. The standard feature name ieee-floating-point is therefore

actually the keyword :ieee-floating-point, though one need not write the colon when

using it with #--+ or #---; thus #--+ieee-floating-point and #--+:ieee-floating-point mean

the same thing.

25.5. Identity Function

This function is occasionally useful as an argument to other functions that require

functions as arguments. (Got that?)

[Function]identity object

The object is returned as the value of identity.

The identity function is the default value for the :key argument to many sequence

functions (see chapter 14).

Table 121 illustrates the behavior in the complex plane of the identity function

regarded as a function of a complex numerical argument.

Many other constructs in Common Lisp have the behavior of identity when given

a single argument. For example, one might well use values in place of identity.

However, writing values of a single argument conventionally indicates that the argu

ment form might deliver multiple values and that the intent is to pass on only the first

of those values.

Compatibility note: In Maclisp, progn was a function of any number of arguments that

returned its last argument, so progn could be used as an identity function. In Common Lisp,

progn is a special form and therefore cannot be used for that purpose.

26

Loop

BY JON L WHITE

preface: X3J13 voted in January 1989 〈115〉 to adopt an extended definition of

the loop macro as a part of the forthcoming draft Common Lisp standard.

This chapter presents the bulk of the Common Lisp Loop Facility proposal, written

by Jon L White. I have edited it only very lightly to conform to the overall style of

this book and have inserted a small number of bracketed remarks, identified by the

initials GLS. (See the Acknowledgments to this second edition for acknowledgments

to others who contributed to the Loop Facility proposal.)

—Guy L. Steele Jr.

26.1. Introduction

A loop is a series of expressions that are executed one or more times, a process known

as iteration. The Loop Facility defines a variety of useful methods, indicated by loop

keywords, to iterate and to accumulate values in a loop.

Loop keywords are not true Common Lisp keywords; they are symbols that are

recognized by the Loop Facility and that provide such capabilities as controlling the

direction of iteration, accumulating values inside the body of a loop, and evaluating

expressions that precede or follow the loop body. If you do not use any loop keywords,

the Loop Facility simply executes the loop body repeatedly.

26.2. How the Loop Facility Works

The driving element of the Loop Facility is the loop macro. When Lisp encounters a

loop macro call form, it invokes the Loop Facility and passes to it the loop clauses as

a list of unevaluated forms, as with any macro. The loop clauses contain Common

Lisp forms and loop keywords. The loop keywords are recognized by their symbol

name, regardless of the packages that contain them. The loop macro translates the

given form into Common Lisp code and returns the expanded form.

704

LOOP 705

The expanded loop form is one or more lambdaexpressions for the local binding

of loop variables and a block and a tagbody that express a looping control structure.

The variables established in the loop construct are bound as if by using let or

lambda. Implementations can interleave the setting of initial values with the bindings.

However, the assignment of the initial values is always calculated in the order specified

by the user. A variable is thus sometimes bound to a harmless value of the correct

data type, and then later in the prologue it is set to the true initial value by using setq.

The expanded form consists of three basic parts in the tagbody:

. The loop prologue contains forms that are executed before iteration begins, such

as initial settings of loop variables and possibly an initial termination test.

. The loop body contains those forms that are executed during iteration, including

applicationspecific calculations, termination tests, and variable stepping. Stepping

is the process of assigning a variable the next item in a series of items.

. The loop epilogue contains forms that are executed after iteration terminates, such

as code to return values from the loop.

Expansion of the loop macro produces an implicit block (named nil). Thus, the

Common Lisp macro return and the special form return-from can be used to return

values from a loop or to exit a loop.

Within the executable parts of loop clauses and around the entire loop form, you

can still bind variables by using the Common Lisp special form let.

26.3. Parsing Loop Clauses

The syntactic parts of a loop construct are called clauses; the scope of each clause is

determined by the toplevel parsing of that clause’s keyword. The following example

shows a loop construct with six clauses:

(loop for i from 1 to (compute-top-value) ;First clause

while (not (unacceptable i)) ;Second clause

collect (square i) ;Third clause

do (format t "Working on ˜D now" i) ;Fourth clause

when (evenp i) ;Fifth clause

do (format t "˜D is a non-odd number" i)

finally (format t "About to exit!")) ;Sixth clause

Each loop keyword introduces either a compound loop clause or a simple loop

clause that can consist of a loop keyword followed by a single Lisp form. The

number of forms in a clause is determined by the loop keyword that begins the clause

706 COMMON LISP

and by the auxiliary keywords in the clause. The keywords do, initially, and finally

are the only loop keywords that can take any number of Lisp forms and group them

as if in a single progn form.

Loop clauses can contain auxiliary keywords, which are sometimes called prepo

sitions. For example, the first clause in the preceding code includes the prepositions

from and to, which mark the value from which stepping begins and the value at which

stepping ends.

26.3.1. Order of Execution

With the exceptions listed below, clauses are executed in the loop body in the order in

which they appear in the source. Execution is repeated until a clause terminates the

loop or until a Common Lisp return, go, or throw form is encountered. The following

actions are exceptions to the linear order of execution:

. All variables are initialized first, regardless of where the establishing clauses appear

in the source. The order of initialization follows the order of these clauses.

. The code for any initially clauses is collected into one progn in the order in which

the clauses appear in the source. The collected code is executed once in the loop

prologue after any implicit variable initializations.

. The code for any finally clauses is collected into one progn in the order in which

the clauses appear in the source. The collected code is executed once in the loop

epilogue before any implicit values from the accumulation clauses are returned.

Explicit returns anywhere in the source, however, will exit the loop without exe

cuting the epilogue code.

. A with clause introduces a variable binding and an optional initial value. The

initial values are calculated in the order in which the with clauses occur.

. Iteration control clauses implicitly perform the following actions:

– initializing variables

– stepping variables, generally between each execution of the loop body

– performing termination tests, generally just before the execution of the loop

body

26.3.2. Kinds of Loop Clauses

Loop clauses fall into one of the following categories:

LOOP 707

. variable initialization and stepping

– The for and as constructs provide iteration control clauses that establish a

variable to be initialized. You can combine for and as clauses with the loop

keyword and to get parallel initialization and stepping.

– The with construct is similar to a single let clause. You can combine with

clauses using and to get parallel initialization.

– The repeat construct causes iteration to terminate after a specified number of

times. It uses an internal variable to keep track of the number of iterations.

You can specify data types for loop variables (see section 26.12.1). It is an error

to bind the same variable twice in any variablebinding clause of a single loop

expression. Such variables include local variables, iteration control variables, and

variables found by destructuring.

. value accumulation

– The collect construct takes one form in its clause and adds the value of that

form to the end of a list of values. By default, the list of values is returned when

the loop finishes.

– The append construct takes one form in its clause and appends the value of that

form to the end of a list of values. By default, the list of values is returned when

the loop finishes.

– The nconc construct is similar to append, but its list values are concatenated as if

by the Common Lisp function nconc. By default, the list of values is returned

when the loop finishes.

– The sum construct takes one form in its clause that must evaluate to a number

and adds that number into a running total. By default, the cumulative sum is

returned when the loop finishes.

– The count construct takes one form in its clause and counts the number of times

that the form evaluates to a nonnil value. By default, the count is returned

when the loop finishes.

– The minimize construct takes one form in its clause and determines the minimum

value obtained by evaluating that form. By default, the minimum value is

returned when the loop finishes.

708 COMMON LISP

– The maximize construct takes one form in its clause and determines the maximum

value obtained by evaluating that form. By default, the maximum value is

returned when the loop finishes.

. termination conditions

– The loop-finish Lisp macro terminates iteration and returns any accumulated

result. If specified, any finally clauses are evaluated.

– The for and as constructs provide a termination test that is determined by the

iteration control clause.

– The repeat construct causes termination after a specified number of iterations.

– The while construct takes one form, a condition, and terminates the iteration if

the condition evaluates to nil. A while clause is equivalent to the expression

(if (not condition) (loop-finish)).

– The until construct is the inverse of while; it terminates the iteration if the

condition evaluates to any nonnil value. An until clause is equivalent to the

expression (if condition (loop-finish)).

– The always construct takes one form and terminates the loop if the form ever

evaluates to nil; in this case, it returns nil. Otherwise, it provides a default

return value of t.

– The never construct takes one form and terminates the loop if the form ever

evaluates to nonnil; in this case, it returns nil. Otherwise, it provides a default

return value of t.

– The thereis construct takes one form and terminates the loop if the form ever

evaluates to nonnil; in this case, it returns that value.

. unconditional execution

– The do construct simply evaluates all forms in its clause.

– The return construct takes one form and returns its value. It is equivalent to the

clause do (return value).

. conditional execution

– The if construct takes one form as a predicate and a clause that is executed when

the predicate is true. The clause can be a value accumulation, unconditional,

or another conditional clause; it can also be any combination of such clauses

connected by the loop keyword and.

LOOP 709

– The when construct is a synonym for if.

– The unless construct is similar to when except that it complements the predicate;

it executes the following clause if the predicate is false.

– The else construct provides an optional component of if, when, and unless

clauses that is executed when the predicate is false. The component is one of

the clauses described under if.

– The end construct provides an optional component to mark the end of a condi

tional clause.

. miscellaneous operations

– The named construct assigns a name to a loop construct.

– The initially construct causes its forms to be evaluated in the loop prologue,

which precedes all loop code except for initial settings specified by the constructs

with, for, or as.

– The finally construct causes its forms to be evaluated in the loop epilogue after

normal iteration terminates. An unconditional clause can also follow the loop

keyword finally.

26.3.3. Loop Syntax

The following syntax description provides an overview of the syntax for loop

clauses. Detailed syntax descriptions of individual clauses appear in sections 26.6

through 26.12. A loop consists of the following types of clauses:

initialfinal ::= initially | finally

variables ::= with | initialfinal | foras | repeat

main ::= unconditional | accumulation | conditional | termination | initialfinal

loop ::= (loop [named name] {variables}∗ {main}∗)

Note that a loop must have at least one clause;however, for backward compatibility,

the following format is also supported:

(loop {tag | expr}∗)

where expr is any Common Lisp expression that can be evaluated, and tag is any

symbol not identifiable as a loop keyword. Such a format is roughly equivalent to

the following one:

710 COMMON LISP

(loop do {tag | expr}∗)

A loop prologue consists of any automatic variable initializations prescribed by

the variable clauses, along with any initially clauses in the order they appear in the

source.

A loop epilogue consists of finally clauses, if any, along with any implicit return

value from an accumulation clause or an endtest clause.

26.4. User Extensibility

There is currently no specified portable method for users to add extensions to the

Loop Facility. The names defloop and define-loop-method have been suggested as

candidates for such a method.

26.5. Loop Constructs

The remaining sections of this chapter describe the constructs that the Loop Facility

provides. The descriptions are organized according to the functionality of the con

structs. Each section begins with a general discussion of a particular operation; it

then presents the constructs that perform the operation.

. Section 26.6, “Iteration Control,” describes iteration control clauses that allow

directed loop iteration.

. Section 26.7, “EndTest Control,” describes clauses that stop iteration by providing

a conditional expression that can be tested after each execution of the loop body.

. Section 26.8, “Value Accumulation,” describes constructs that accumulate values

during iteration and return them from a loop. This section also discusses ways in

which accumulation clauses can be combined within the Loop Facility.

. Section 26.9, “Variable Initializations,” describes the with construct, which pro

vides local variables for use within the loop body, and other constructs that provide

local variables.

. Section 26.10, “Conditional Execution,” describes how to execute loop clauses

conditionally.

. Section 26.11, “Unconditional Execution,” describes the do and return constructs.

It also describes constructs that are used in the loop prologue and loop epilogue.

. Section 26.12, “Miscellaneous Features,” discusses loop data types and destruc

turing. It also presents constructs for naming a loop and for specifying initial and

final actions.

LOOP 711

26.6. Iteration Control

Iteration control clauses allow you to direct loop iteration. The loop keywords as,

for, and repeat designate iteration control clauses.

Iteration control clauses differ with respect to the specification of termination

conditions and the initialization and stepping of loop variables. Iteration clauses by

themselves do not cause the Loop Facility to return values, but they can be used in

conjunction with valueaccumulation clauses to return values (see section 26.8).

All variables are initialized in the loop prologue. The scope of the variable binding

is lexical unless it is proclaimed special; thus, the variable can be accessed only by

expressions that lie textually within the loop. Stepping assignments are made in the

loop body before any other expressions are evaluated in the body.

The variable argument in iteration control clauses can be a destructuring list. A

destructuring list is a tree whose nonnull atoms are symbols that can be assigned a

value (see section 26.12.2).

The iteration control clauses for, as, and repeat must precede any other loop

clauses except initially, with, and named, since they establish variable bindings.

When iteration control clauses are used in a loop, termination tests in the loop body

are evaluated before any other loop body code is executed.

If you use multiple iteration clauses to control iteration, variable initialization and

stepping occur sequentially by default. You can use the and construct to connect two

or more iteration clauses when sequential binding and stepping are not necessary.

The iteration behavior of clauses joined by and is analogous to the behavior of the

Common Lisp macro do relative to do*.

[X3J13 voted in March 1989 〈114〉 to correct a minor inconsistency in the original

syntactic specification for loop. Only for and as clauses (not repeat clauses) may be

joined by the and construct. The precise syntax is as follows.

foras ::= {for | as} forassubclause {and forassubclause}∗
forassubclause ::= forasarithmetic | forasinlist

| forasonlist | forasequalsthen

| forasacross | forashash | foraspackage

forasarithmetic ::= var [typespec] [{from | downfrom | upfrom} expr1]

[{to | downto | upto | below | above} expr2]

[by expr3]

forasinlist ::= var [typespec] in expr1 [by stepfun]

forasonlist ::= var [typespec] on expr1 [by stepfun]

forasequalsthen ::= var [typespec] −− expr1 [then stepfun]

forasacross ::= var [typespec] across vector

712 COMMON LISP

forashash ::= var [typespec] being {each | the}
{hash-key | hash-keys | hash-value | hash-values}
{in | of} hashtable

[using ({hash-value | hash-key} othervar)]

foraspackage ::= var [typespec] being {each | the}
foraspackagekeyword

{in | of} package

foraspackagekeyword ::= symbol | present-symbol | external-symbol
| symbols | present-symbols | external-symbols

This correction made for and as clauses syntactically similar to with clauses. I have

changed all examples in this chapter to reflect the corrected syntax.—GLS]

In the following example, the variable x is stepped before y is stepped; thus, the

value of y reflects the updated value of x:

(loop for x from 1 to 9

for y −− nil then x

collect (list x y))

⇒ ((1 NIL) (2 2) (3 3) (4 4) (5 5) (6 6) (7 7) (8 8) (9 9))

In the following example, x and y are stepped in parallel:

(loop for x from 1 to 9

and y −− nil then x

collect (list x y))

⇒ ((1 NIL) (2 1) (3 2) (4 3) (5 4) (6 5) (7 6) (8 7) (9 8))

The for and as clauses iterate by using one or more local loop variables that are

initialized to some value and that can be modified or stepped after each iteration. For

these clauses, iteration terminates when a local variable reaches some specified value

or when some other loop clause terminates iteration. At each iteration, variables can

be stepped by an increment or a decrement or can be assigned a new value by the

evaluation of an expression. Destructuring can be used to assign initial values to

variables during iteration.

The for and as keywords are synonyms and may be used interchangeably. There

are seven syntactic representations for these constructs. In each syntactic descrip

tion, the data type of var can be specified by the optional typespec argument. If

var is a destructuring list, the data type specified by the typespec argument must

appropriately match the elements of the list (see sections 26.12.1 and 26.12.2).

LOOP 713

[Loop clause]for var [typespec] [{from | downfrom | upfrom} expr1]

[{to | downto | upto | below | above} expr2]

[by expr3]

[Loop clause]as var [typespec] [{from | downfrom | upfrom} expr1]

[{to | downto | upto | below | above} expr2]

[by expr3]

[This is the first of seven for/as syntaxes.—GLS]

The for or as construct iterates from the value specified by expr1 to the value

specified by expr2 in increments or decrements denoted by expr3. Each expression

is evaluated only once and must evaluate to a number.

The variable var is bound to the value of expr1 in the first iteration and is stepped

by the value of expr3 in each succeeding iteration, or by 1 if expr3 is not provided.

The following loop keywords serve as valid prepositions within this syntax.

from

The loop keyword from marks the value from which stepping begins, as specified by

expr1. Stepping is incremental by default. For decremental stepping, use above or

downto with expr2. For incremental stepping, the default from value is 0.

downfrom, upfrom

The loop keyword downfrom indicates that the variable var is decreased in decre

ments specified by expr3; the loop keyword upfrom indicates that var is increased in

increments specified by expr3.

to

The loop keyword to marks the end value for stepping specified in expr2. Stepping

is incremental by default. For decremental stepping, use downto, downfrom, or above

with expr2.

downto, upto

The loop keyword downto allows iteration to proceed from a larger number to a smaller

number by the decrement expr3. The loop keyword upto allows iteration to proceed

from a smaller number to a larger number by the increment expr3. Since there is no

default for expr1 in decremental stepping, you must supply a value with downto.

below, above

The loop keywords below and above are analogous to upto and downto, respectively.

These keywords stop iteration just before the value of the variable var reaches the

714 COMMON LISP

value specified by expr2; the end value of expr2 is not included. Since there is no

default for expr1 in decremental stepping, you must supply a value with above.

by

The loop keyword by marks the increment or decrement specified by expr3. The

value of expr3 can be any positive number. The default value is 1.

At least one of these prepositions must be used with this syntax.

In an iteration control clause, the for or as construct causes termination when the

specified limit is reached. That is, iteration continues until the value var is stepped

to the exclusive or inclusive limit specified by expr2. The range is exclusive if expr3

increases or decreases var to the value of expr2 without reaching that value; the loop

keywords below and above provide exclusive limits. An inclusive limit allows var to

attain the value of expr2; to, downto, and upto provide inclusive limits.

A common convention is to use for to introduce new iterations and as to introduce

iterations that depend on a previous iteration specification. [However, loop does not

enforce this convention, and some of the examples below violate it. De gustibus non

disputandum est.—GLS]

Examples:

;;; Print some numbers.

(loop as i from 1 to 5

do (print i)) ;Prints 5 lines

1

2

3

4

5

⇒ NIL

;;; Print every third number.

(loop for i from 10 downto 1 by 3

do (print i)) ;Prints 4 lines

10

7

4

1

⇒ NIL

;;; Step incrementally from the default starting value.

LOOP 715

(loop as i below 5

do (print i)) ;Prints 5 lines

0

1

2

3

4

⇒ NIL

[Loop clause]for var [typespec] in expr1 [by stepfun]

[Loop clause]as var [typespec] in expr1 [by stepfun]

[This is the second of seven for/as syntaxes.—GLS]

This construct iterates over the contents of a list. It checks for the end of the list as

if using the Common Lisp function endp. The variable var is bound to the successive

elements of the list expr1 before each iteration. At the end of each iteration, the

function stepfun is called on the list and is expected to produce a successor list; the

default value for stepfun is the cdr function.

The for or as construct causes termination when the end of the list is reached. The

loop keywords in and by serve as valid prepositions in this syntax.

Examples:

;;; Print every item in a list.

(loop for item in ´(1 2 3 4 5) do (print item)) ;Prints 5 lines

1

2

3

4

5

⇒ NIL

;;; Print every other item in a list.

(loop for item in ´(1 2 3 4 5) by #--´cddr

do (print item)) ;Prints 3 lines

1

3

5

⇒ NIL

716 COMMON LISP

;;; Destructure items of a list, and sum the x values

;;; using fixnum arithmetic.

(loop for (item . x) (t . fixnum)

in ´((A . 1) (B . 2) (C . 3))

unless (eq item ´B) sum x)

⇒ 4

[Loop clause]for var [typespec] on expr1 [by stepfun]

[Loop clause]as var [typespec] on expr1 [by stepfun]

[This is the third of seven for/as syntaxes.—GLS]

This construct iterates over the contents of a list. It checks for the end of the list as

if using the Common Lisp function endp. The variable var is bound to the successive

tails of the list expr1. At the end of each iteration, the function stepfun is called on

the list and is expected to produce a successor list; the default value for stepfun is

the cdr function.

The loop keywords on and by serve as valid prepositions in this syntax. The for or

as construct causes termination when the end of the list is reached.

Examples:

;;; Collect successive tails of a list.

(loop for sublist on ´(a b c d)

collect sublist)

⇒ ((A B C D) (B C D) (C D) (D))

;;; Print a list by using destructuring with the loop keyword ON.

(loop for (item) on ´(1 2 3)

do (print item)) ;Prints 3 lines

1

2

3

⇒ NIL

;;; Print items in a list without using destructuring.

(loop for item in ´(1 2 3)

do (print item)) ;Prints 3 lines

1

2

3

⇒ NIL

LOOP 717

[Loop clause]for var [typespec] −− expr1 [then expr2]

[Loop clause]as var [typespec] −− expr1 [then expr2]

[This is the fourth of seven for/as syntaxes.—GLS]

This construct initializes the variable var by setting it to the result of evaluating

expr1 on the first iteration, then setting it to the result of evaluating expr2 on the

second and subsequent iterations. If expr2 is omitted, the construct uses expr1 on the

second and subsequent iterations. When expr2 is omitted, the expanded code shows

the following optimization:

;;; Sample original code:

(loop for x −− expr1 then expr2 do (print x))

;;; The usual expansion:

(tagbody

(setq x expr1)

tag (print x)

(setq x expr2)

(go tag))

;;; The optimized expansion:

(tagbody

tag (setq x expr1)

(print x)

(go tag))

The loop keywords −− and then serve as valid prepositions in this syntax. This

construct does not provide any termination conditions.

Example:

;;; Collect some numbers.

(loop for item −− 1 then (+ item 10)

repeat 5

collect item)

⇒ (1 11 21 31 41)

[Loop clause]for var [typespec] across vector

[Loop clause]as var [typespec] across vector

[This is the fifth of seven for/as syntaxes.—GLS]

This construct binds the variable var to the value of each element in the array

vector.

718 COMMON LISP

The loop keyword across marks the array vector; across is used as a preposition

in this syntax. Iteration stops when there are no more elements in the specified array

that can be referenced.

Some implementations might use a [usersupplied—GLS] the special form in the

vector form to produce more efficient code.

Example:

(loop for char across (the simple-string (find-message port))

do (write-char char stream))

[Loop clause]for var [typespec] being {each | the}
{hash-key | hash-keys | hash-value | hash-values}
{in | of} hashtable [using ({hash-value | hash-key} othervar)]

[Loop clause]as var [typespec] being {each | the}
{hash-key | hash-keys | hash-value | hash-values}
{in | of} hashtable [using ({hash-value | hash-key} othervar)]

[This is the sixth of seven for/as syntaxes.—GLS]

This construct iterates over the elements, keys, and values of a hash table. The

variable var takes on the value of each hash key or hash value in the specified hash

table.

The following loop keywords serve as valid prepositions within this syntax.

being

The keyword being marks the loop method to be used, either hash-key or hash-value.

each, the

For purposes of readability, the loop keyword each should follow the loop keyword

being when hash-key or hash-value is used. The loop keyword the is used with

hash-keys and hash-values.

hash-key, hash-keys

These loop keywords access each key entry of the hash table. If the name hash-

value is specified in a using construct with one of these loop methods, the iteration

can optionally access the keyed value. The order in which the keys are accessed is

undefined; empty slots in the hash table are ignored.

hash-value, hash-values

These loop keywords access each value entry of a hash table. If the name hash-key

is specified in a using construct with one of these loop methods, the iteration can

LOOP 719

optionally access the key that corresponds to the value. The order in which the keys

are accessed is undefined; empty slots in the hash table are ignored.

using

The loop keyword using marks the optional key or the keyed value to be accessed. It

allows you to access the hash key if iterating over the hash values, and the hash value

if iterating over the hash keys.

in, of

These loop prepositions mark the hash table hashtable.

Iteration stops when there are no more hash keys or hash values to be referenced

in the specified hash table.

[Loop clause]for var [typespec] being {each | the}
{symbol | present-symbol | external-symbol |
symbols | present-symbols | external-symbols}
{in | of} package

[Loop clause]as var [typespec] being {each | the}
{symbol | present-symbol | external-symbol |
symbols | present-symbols | external-symbols}
{in | of} package

[This is the last of seven for/as syntaxes.—GLS]

This construct iterates over the symbols in a package. The variable var takes on

the value of each symbol in the specified package.

The following loop keywords serve as valid prepositions within this syntax.

being

The keyword being marks the loop method to be used: symbol, present-symbol, or

external-symbol.

each, the

For purposes of readability, the loop keyword each should follow the loop keyword

being when symbol, present-symbol, or external-symbol is used. The loop keyword

the is used with symbols, present-symbols, and external-symbols.

present-symbol, present-symbols

These loop methods iterate over the symbols that are present but not external in a

720 COMMON LISP

package. The package to be iterated over is specified in the same way that package

arguments to the Common Lisp function find-package are specified. If you do not

specify the package for the iteration, the current package is used. If you specify a

package that does not exist, an error is signaled.

symbol, symbols

These loop methods iterate over symbols that are accessible from a given package.

The package to be iterated over is specified in the same way that package arguments

to the Common Lisp function find-package are specified. If you do not specify the

package for the iteration, the current package is used. If you specify a package that

does not exist, an error is signaled.

external-symbol, external-symbols

These loop methods iterate over the external symbols of a package. The package to

be iterated over is specified in the same way that package arguments to the Common

Lisp function find-package are specified. If you do not specify the package for the

iteration, the current package is used. If you specify a package that does not exist, an

error is signaled.

in, of

These loop prepositions mark the package package.

Iteration stops when there are no more symbols to be referenced in the specified

package.

Example:

(loop for x being each present-symbol of "COMMON-LISP-USER"

do (print x)) ;Prints 7 lines in this example

COMMON-LISP-USER::IN

COMMON-LISP-USER::X

COMMON-LISP-USER::ALWAYS

COMMON-LISP-USER::FOO

COMMON-LISP-USER::Y

COMMON-LISP-USER::FOR

COMMON-LISP-USER::LUCID

⇒ NIL

[Loop clause]repeat expr

The repeat construct causes iteration to terminate after a specified number of times.

The loop body is executed n times, where n is the value of the expression expr. The

LOOP 721

expr argument is evaluated one time in the loop prologue. If the expression evaluates

to zero or to a negative number, the loop body is not evaluated.

The clause repeat n is roughly equivalent to a clause such as

for internalvariable downfrom (- n 1) to 0

but, in some implementations, the repeat construct might be more efficient.

Examples:

(loop repeat 3 ;Prints 3 lines

do (format t "What I say three times is true˜%"))

What I say three times is true

What I say three times is true

What I say three times is true

⇒ NIL

(loop repeat -15 ;Prints nothing

do (format t "What you see is what you expect˜%"))

⇒ NIL

26.7. EndTest Control

The loop keywords always, never, thereis, until, and while designate constructs that

use a single test condition to determine when loop iteration should terminate.

The constructs always, never, and thereis provide specific values to be returned

when a loop terminates. Using always, never, or thereis with valuereturning ac

cumulation clauses can produce unpredictable results. In all other respects these

constructs behave like the while and until constructs.

The macro loop-finish can be used at any time to cause normal termination.

In normal termination, finally clauses are executed and default return values are

returned.

Endtest control constructs can be used anywhere within the loop body. The

termination conditions are tested in the order in which they appear.

[Loop clause]while expr

[Loop clause]until expr

The while construct allows iteration to continue until the specified expression expr

evaluates to nil. The expression is reevaluated at the location of the while clause.

The until construct is equivalent to while (not expr). If the value of the specified

expression is nonnil, iteration terminates.

722 COMMON LISP

You can use while and until at any point in a loop. If a while or until clause causes

termination, any clauses that precede it in the source are still evaluated.

Examples:

;;; A classic "while-loop".

(loop while (hungry-p) do (eat))

;;; UNTIL NOT is equivalent to WHILE.

(loop until (not (hungry-p)) do (eat))

;;; Collect the length and the items of STACK.

(let ((stack ´(a b c d e f)))

(loop while stack

for item −− (length stack) then (pop stack)

collect item))

⇒ (6 A B C D E F)

;;; Use WHILE to terminate a loop that otherwise wouldn´t

;;; terminate. Note that WHILE occurs after the WHEN.

(loop for i fixnum from 3

when (oddp i) collect i

while (< i 5))

⇒ (3 5)

[Loop clause]always expr

[Loop clause]never expr

[Loop clause]thereis expr

The always construct takes one form and terminates the loop if the form ever evaluates

to nil; in this case, it returns nil. Otherwise, it provides a default return value of t.

The never construct takes one form and terminates the loop if the form ever

evaluates to nonnil; in this case, it returns nil. Otherwise, it provides a default

return value of t.

The thereis construct takes one form and terminates the loop if the form ever

evaluates to nonnil; in this case, it returns that value.

If the while or until construct causes termination, control is passed to the loop

epilogue, where any finally clauses will be executed. Since always, never, and

thereis use the Common Lisp macro return to terminate iteration, any finally clause

that is specified is not evaluated.

Examples:

LOOP 723

;;; Make sure I is always less than 11 (two ways).

;;; The FOR construct terminates these loops.

(loop for i from 0 to 10

always (< i 11))

⇒ T

(loop for i from 0 to 10

never (> i 11))

⇒ T

;;; If I exceeds 10, return I; otherwise, return NIL.

;;; The THEREIS construct terminates this loop.

(loop for i from 0

thereis (when (> i 10) i))

⇒ 11

;;; The FINALLY clause is not evaluated in these examples.

(loop for i from 0 to 10

always (< i 9)

finally (print "you won´t see this"))

⇒ NIL

(loop never t

finally (print "you won´t see this"))

⇒ NIL

(loop thereis "Here is my value"

finally (print "you won´t see this"))

⇒ "Here is my value"

;;; The FOR construct terminates this loop,

;;; so the FINALLY clause is evaluated.

(loop for i from 1 to 10

thereis (> i 11)

finally (print i)) ;Prints 1 line

11

⇒ NIL

724 COMMON LISP

(defstruct mountain height difficulty (why "because it is there"))

(setq everest (make-mountain :height ´(2.86e-13 parsecs)))

(setq chocorua (make-mountain :height ´(1059180001 microns)))

(defstruct desert area (humidity 0))

(setq sahara (make-desert :area ´(212480000 square furlongs)))

;First there is a mountain, then there is no mountain, then there is . . .

(loop for x in (list everest sahara chocorua) ; —GLS

thereis (and (mountain-p x) (mountain-height x)))

⇒ (2.86E-13 PARSECS)

;;; If you could use this code to find a counterexample to

;;; Fermat´s last theorem, it would still not return the value

;;; of the counterexample because all of the THEREIS clauses

;;; in this example return only T. Of course, this code has

;;; never been observed to terminate.

(loop for z upfrom 2

thereis

(loop for n upfrom 3 below (log z 2)

thereis

(loop for x below z

thereis

(loop for y below z

thereis (−− (+ (expt x n)

(expt y n))

(expt z n))))))

[Macro]loop-finish

The macro loop-finish terminates iteration normally and returns any accumulated

result. If specified, a finally clause is evaluated.

In most cases it is not necessary to use loop-finish because other loop control

clauses terminate the loop. Use loop-finish to provide a normal exit from a nested

condition inside a loop.

You can use loop-finish inside nested Lisp code to provide a normal exit from

a loop. Since loop-finish transfers control to the loop epilogue, using loop-finish

within a finally expression can cause infinite looping.

Implementations are allowed to provide this construct as a local macro by using

macrolet.

Examples:

LOOP 725

;;; Print a date in February, but exclude leap day.

;;; LOOP-FINISH exits from the nested condition.

(loop for date in date-list

do (case date

(29 (when (eq month ´february)

(loop-finish))

(format t "˜:@(˜A˜) ˜A" month date))))

;;; Terminate the loop, but return the accumulated count.

(loop for i in ´(1 2 3 stop-here 4 5 6)

when (symbolp i) do (loop-finish)

count i)

⇒ 3

;;; This loop works just as well as the previous example.

(loop for i in ´(1 2 3 stop-here 4 5 6)

until (symbolp i)

count i)

⇒ 3

26.8. Value Accumulation

Accumulating values during iteration and returning them from a loop is often useful.

Some of these accumulations occur so frequently that special loop clauses have been

developed to handle them.

The loop keywords append, appending, collect, collecting, nconc, and nconcing

designate clauses that accumulate values in lists and return them.

The loop keywords count, counting, maximize, maximizing, minimize, minimizing, sum,

and summing designate clauses that accumulate and return numerical values. [There is

no semantic difference between the “ing” keywords and their non“ing” counterparts.

They are provided purely for the sake of stylistic diversity among users. I happen to

prefer the non“ing” forms—when I use loop at all.—GLS]

The loop preposition into can be used to name the variable used to hold partial ac

cumulations. The variable is bound as if by the loop construct with (see section 26.9).

If into is used, the construct does not provide a default return value; however, the

variable is available for use in any finally clause.

You can combine valuereturning accumulation clauses in a loop if all the clauses

accumulate the same type of data object. By default, the Loop Facility returns only

one value; thus, the data objects collected by multiple accumulation clauses as return

values must have compatible types. For example, since both the collect and append

726 COMMON LISP

constructs accumulate objects into a list that is returned from a loop, you can combine

them safely.

;;; Collect every name and the kids in one list by using

;;; COLLECT and APPEND.

(loop for name in ´(fred sue alice joe june)

for kids in ´((bob ken) () () (kris sunshine) ())

collect name

append kids)

⇒ (FRED BOB KEN SUE ALICE JOE KRIS SUNSHINE JUNE)

[In the preceding example, note that the items accumulated by the collect and append

clauses are interleaved in the result list, according to the order in which the clauses

were executed.—GLS]

Multiple clauses that do not accumulate the same type of data object can coexist

in a loop only if each clause accumulates its values into a different userspecified

variable. Any number of values can be returned from a loop if you use the Common

Lisp function values, as the next example shows:

;;; Count and collect names and ages.

(loop for name in ´(fred sue alice joe june)

as age in ´(22 26 19 20 10)

append (list name age) into name-and-age-list

count name into name-count

sum age into total-age

finally

(return (values (round total-age name-count)

name-and-age-list)))

⇒ 19 and (FRED 22 SUE 26 ALICE 19 JOE 20 JUNE 10)

[Loop clause]collect expr [into var]

[Loop clause]collecting expr [into var]

During each iteration, these constructs collect the value of the specified expression

into a list. When iteration terminates, the list is returned.

The argument var is set to the list of collected values; if var is specified, the loop

does not return the final list automatically. If var is not specified, it is equivalent to

specifying an internal name for var and returning its value in a finally clause. The

var argument is bound as if by the construct with. You cannot specify a data type for

var; it must be of type list.

Examples:

LOOP 727

;;; Collect all the symbols in a list.

(loop for i in ´(bird 3 4 turtle (1 . 4) horse cat)

when (symbolp i) collect i)

⇒ (BIRD TURTLE HORSE CAT)

;;; Collect and return odd numbers.

(loop for i from 1 to 10

if (oddp i) collect i)

⇒ (1 3 5 7 9)

;;; Collect items into local variable, but don´t return them.

(loop for i in ´(a b c d) by #--´cddr

collect i into my-list

finally (print my-list)) ;Prints 1 line

(A C)

⇒ NIL

[Loop clause]append expr [into var]

[Loop clause]appending expr [into var]

[Loop clause]nconc expr [into var]

[Loop clause]nconcing expr [into var]

These constructs are similar to collect except that the values of the specified expres

sion must be lists.

The append keyword causes its list values to be concatenated into a single list, as if

they were arguments to the Common Lisp function append.

The nconc keyword causes its list values to be concatenated into a single list, as

if they were arguments to the Common Lisp function nconc. Note that the nconc

keyword destructively modifies its argument lists.

The argument var is set to the list of concatenated values; if you specify var, the

loop does not return the final list automatically. The var argument is bound as if by

the construct with. You cannot specify a data type for var; it must be of type list.

Examples:

;;; Use APPEND to concatenate some sublists.

(loop for x in ´((a) (b) ((c)))

append x)

⇒ (A B (C))

728 COMMON LISP

;;; NCONC some sublists together. Note that only lists

;;; made by the call to LIST are modified.

(loop for i upfrom 0

as x in ´(a b (c))

nconc (if (evenp i) (list x) ´()))

⇒ (A (C))

[Loop clause]count expr [into var] [typespec]

[Loop clause]counting expr [into var] [typespec]

The count construct counts the number of times that the specified expression has a

nonnil value.

The argument var accumulates the number of occurrences; if var is specified, the

loop does not return the final count automatically. The var argument is bound as if

by the construct with.

If into var is used, the optional typespec argument specifies a data type for var.

If there is no into variable, the optional typespec argument applies to the internal

variable that is keeping the count. In either case it is an error to specify a nonnumeric

data type. The default type is implementationdependent, but it must be a subtype of

(or integer float).

Example:

(loop for i in ´(a b nil c nil d e)

count i)

⇒ 5

[Loop clause]sum expr [into var] [typespec]

[Loop clause]summing expr [into var] [typespec]

The sum construct forms a cumulative sum of the values of the specified expression

at each iteration.

The argument var is used to accumulate the sum; if var is specified, the loop

does not return the final sum automatically. The var argument is bound as if by the

construct with.

If into var is used, the optional typespec argument specifies a data type for var.

If there is no into variable, the optional typespec argument applies to the internal

variable that is keeping the sum. In either case it is an error to specify a nonnumeric

data type. The default type is implementationdependent, but it must be a subtype of

number.

Examples:

LOOP 729

;;; Sum the elements of a list.

(loop for i fixnum in ´(1 2 3 4 5)

sum i)

⇒ 15

;;; Sum a function of elements of a list.

(setq series

´(1.2 4.3 5.7))

⇒ (1.2 4.3 5.7)

(loop for v in series

sum (* 2.0 v))

⇒ 22.4

[Loop clause]maximize expr [into var] [typespec]

[Loop clause]maximizing expr [into var] [typespec]

[Loop clause]minimize expr [into var] [typespec]

[Loop clause]minimizing expr [into var] [typespec]

The maximize construct compares the value of the specified expression obtained during

the first iteration with values obtained in successive iterations. The maximum value

encountered is determined and returned. If the loop never executes the body, the

returned value is not meaningful.

The minimize construct is similar to maximize; it determines and returns the minimum

value.

The argument var accumulates the maximum or minimum value; if var is specified,

the loop does not return the maximum or minimum automatically. The var argument

is bound as if by the construct with.

If into var is used, the optional typespec argument specifies a data type for var.

If there is no into variable, the optional typespec argument applies to the internal

variable that is keeping the intermediate result. In either case it is an error to specify

a nonnumeric data type. The default type is implementationdependent, but it must

be a subtype of (or integer float).

Examples:

(loop for i in ´(2 1 5 3 4)

maximize i)

⇒ 5

730 COMMON LISP

(loop for i in ´(2 1 5 3 4)

minimize i)

⇒ 1

;;; In this example, FIXNUM applies to the internal

;;; variable that holds the maximum value.

(setq series ´(1.2 4.3 5.7))

⇒ (1.2 4.3 5.7)

(loop for v in series

maximize (round v) fixnum)

⇒ 6

;;; In this example, FIXNUM applies to the variable RESULT.

(loop for v float in series

minimize (round v) into result fixnum

finally (return result))

⇒ 1

26.9. Variable Initializations

A local loop variable is one that exists only when the Loop Facility is invoked. At

that time, the variables are declared and are initialized to some value. These local

variables exist until loop iteration terminates, at which point they cease to exist.

Implicitly variables are also established by iteration control clauses and the into

preposition of accumulation clauses.

The loop keyword with designates a loop clause that allows you to declare and

initialize variables that are local to a loop. The variables are initialized one time only;

they can be initialized sequentially or in parallel.

By default, the with construct initializes variables sequentially; that is, one variable

is assigned a value before the next expression is evaluated. However, by using the

loop keyword and to join several with clauses, you can force initializations to occur

in parallel; that is, all of the specified expressions are evaluated, and the results are

bound to the respective variables simultaneously.

Use sequential binding for making the initialization of some variables depend on

the values of previously bound variables. For example, suppose you want to bind the

variables a, b, and c in sequence:

LOOP 731

(loop with a −− 1

with b −− (+ a 2)

with c −− (+ b 3)

with d −− (+ c 4)

return (list a b c d))

⇒ (1 3 6 10)

The execution of the preceding loop is equivalent to the execution of the following

code:

(let* ((a 1)

(b (+ a 2))

(c (+ b 3))

(d (+ c 4)))

(block nil

(tagbody

next-loop (return (list a b c d))

(go next-loop)

end-loop)))

If you are not depending on the value of previously bound variables for the initial

ization of other local variables, you can use parallel bindings as follows:

(loop with a −− 1

and b −− 2

and c −− 3

and d −− 4

return (list a b c d))

⇒ (1 2 3 4)

The execution of the preceding loop is equivalent to the execution of the following

code:

(let ((a 1)

(b 2)

(c 3)

(d 4))

(block nil

(tagbody

next-loop (return (list a b c))

(go next-loop)

end-loop)))

732 COMMON LISP

[Loop clause]with var [typespec] [−− expr] {and var [typespec] [−− expr] }∗

The with construct initializes variables that are local to a loop. The variables are

initialized one time only.

If the optional typespec argument is specified for any variable var, but there is

no related expression expr to be evaluated, var is initialized to an appropriate default

value for its data type. For example, for the data types t, number, and float, the default

values are nil, 0, and 0.0, respectively. It is an error to specify a typespec argument

for var if the related expression returns a value that is not of the specified type. The

optional and clause forces parallel rather than sequential initializations.

Examples:

;;; These bindings occur in sequence.

(loop with a −− 1

with b −− (+ a 2)

with c −− (+ b 3)

with d −− (+ c 4)

return (list a b c d))

⇒ (1 3 6 10)

;;; These bindings occur in parallel.

(setq a 5 b 10 c 1729)

(loop with a −− 1

and b −− (+ a 2)

and c −− (+ b 3)

and d −− (+ c 4)

return (list a b c d))

⇒ (1 7 13 1733)

;;; This example shows a shorthand way to declare

;;; local variables that are of different types.

(loop with (a b c) (float integer float)

return (format nil "˜A ˜A ˜A" a b c))

⇒ "0.0 0 0.0"

;;; This example shows a shorthand way to declare

;;; local variables that are of the same type.

(loop with (a b c) float

return (format nil "˜A ˜A ˜A" a b c))

⇒ "0.0 0.0 0.0"

LOOP 733

26.10. Conditional Execution

The loop keywords if, when, and unless designate constructs that are useful when you

want some loop clauses to operate under a specified condition.

If the specified condition is true, the succeeding loop clause is executed. If the

specified condition is not true, the succeeding clause is skipped, and program control

moves to the clause that follows the loop keyword else. If the specified condition is

not true and no else clause is specified, the entire conditional construct is skipped.

Several clauses can be connected into one compound clause with the loop keyword

and. The end of the conditional clause can be marked with the keyword end.

[Loop clause]if expr clause {and clause}∗
[else clause {and clause}∗] [end]

[Loop clause]when expr clause {and clause}∗
[else clause {and clause}∗] [end]

[Loop clause]unless expr clause {and clause}∗
[else clause {and clause}∗] [end]

The constructs when and if allow conditional execution of loop clauses. These

constructs are synonyms and can be used interchangeably. [Compare this to the

macro when, which does not allow an “else” part.—GLS]

If the value of the test expression expr is nonnil, the expression clause1 is

evaluated. If the test expression evaluates to nil and an else construct is specified,

the statements that follow the else are evaluated; otherwise, control passes to the next

clause.

The unless construct is equivalent to when (not expr) and if (not expr). If the value

of the test expression expr is nil, the expression clause1 is evaluated. If the test

expression evaluates to nonnil and an else construct is specified, the statements that

follow the else are evaluated; otherwise, control passes to the next clause. [Compare

this to the macro unless, which does not allow an “else” part—or do I mean a “then”

part?! Ugh. To prevent confusion, I strongly recommend as a matter of style that

else not be used with unless loop clauses.—GLS]

The clause arguments must be either accumulation, unconditional, or conditional

clauses (see section 26.3.2). Clauses that follow the test expression can be grouped

by using the loop keyword and to produce a compound clause.

The loop keyword it can be used to refer to the result of the test expression in a

clause. If multiple clauses are connected with and, the it construct must be used in

the first clause in the block. Since it is a loop keyword, it may not be used as a local

variable within a loop.

If when or if clauses are nested, each else is paired with the closest preceding when

or if construct that has no associated else.

734 COMMON LISP

The optional loop keyword end marks the end of the clause. If this keyword is not

specified, the next loop keyword marks the end. You can use end to distinguish the

scoping of compound clauses.

;;; Group conditional clauses into a block.

(loop for i in numbers-list

when (oddp i)

do (print i)

and collect i into odd-numbers

and do (terpri)

else ;I is even

collect i into even-numbers

finally

(return (values odd-numbers even-numbers)))

;;; Collect numbers larger than 3.

(loop for i in ´(1 2 3 4 5 6)

when (and (> i 3) i)

collect it) ;it refers to (and (> i 3) i)

⇒ (4 5 6)

;;; Find a number in a list.

(loop for i in ´(1 2 3 4 5 6)

when (and (> i 3) i)

return it)

⇒ 4

;;; The preceding example is similar to the following one.

(loop for i in ´(1 2 3 4 5 6)

thereis (and (> i 3) i))

⇒ 4

;;; An example of using UNLESS with ELSE (yuk). —GLS

(loop for turtle in teenage-mutant-ninja-turtles do

(loop for x in ´(joker brainiac shredder krazy-kat)

unless (evil x)

do (eat (make-pizza :anchovies t))

else unless (and (eq x ´shredder) (attacking-p x))

do (cut turtle slack);When the evil Shredder attacks,

else (fight turtle x)));those turtle boys don’t cut no slack

LOOP 735

;;; Nest conditional clauses.

(loop for i in list

when (numberp i)

when (bignump i)

collect i into big-numbers

else ;Not (bignump i)

collect i into other-numbers

else ;Not (numberp i)

when (symbolp i)

collect i into symbol-list

else ;Not (symbolp i)

(error "found a funny value in list ˜S, value ˜S˜%"

"list i))

;;; Without the END marker, the last AND would apply to the

;;; inner IF rather than the outer one.

(loop for x from 0 to 3

do (print x)

if (zerop (mod x 2))

do (princ " a")

and if (zerop (floor x 2))

do (princ " b")

end

and do (princ " c"))

26.11. Unconditional Execution

The loop construct do (or doing) takes one or more expressions and simply evaluates

them in order.

The loop construct return takes one expression and returns its value. It is equivalent

to the clause do (return value).

[Loop clause]do {expr}∗
[Loop clause]doing {expr}∗

The do construct simply evaluates the specified expressions wherever they occur in

the expanded form of loop.

The expr argument can be any nonatomic Common Lisp form. Each expr is

evaluated in every iteration.

736 COMMON LISP

The constructs do, initially, and finally are the only loop keywords that take an

arbitrary number of forms and group them as if using an implicit progn. Because

every loop clause must begin with a loop keyword, you would use the keyword do

when no control action other than execution is required.

Examples:

;;; Print some numbers.

(loop for i from 1 to 5

do (print i)) ;Prints 5 lines

1

2

3

4

5

⇒ NIL

;;; Print numbers and their squares.

;;; The DO construct applies to multiple forms.

(loop for i from 1 to 4

do (print i)

(print (* i i))) ;Prints 8 lines

1

1

2

4

3

9

4

16

⇒ NIL

[Loop clause]return expr

The return construct terminates a loop and returns the value of the specified expression

as the value of the loop. This construct is similar to the Common Lisp special form

return-from and the Common Lisp macro return.

The Loop Facility supports the return construct for backward compatibility with

older loop implementations. The return construct returns immediately and does not

execute any finally clause that is given.

Examples:

LOOP 737

;;; Signal an exceptional condition.

(loop for item in ´(1 2 3 a 4 5)

when (not (numberp item))

return (cerror "enter new value"

"non-numeric value: ˜s"

item)) ;Signals an error

>>Error: non-numeric value: A

;;; The previous example is equivalent to the following one.

(loop for item in ´(1 2 3 a 4 5)

when (not (numberp item))

do (return

(cerror "enter new value"

"non-numeric value: ˜s"

item))) ;Signals an error

>>Error: non-numeric value: A

26.12. Miscellaneous Features

The Loop Facility provides the named construct to name a loop so that the Common

Lisp special form return-from can be used.

The loop keywords initially and finally designate loop constructs that cause

expressions to be evaluated before and after the loop body, respectively.

The code for any initially clauses is collected into one progn in the order in which

the clauses appeared in the loop. The collected code is executed once in the loop

prologue after any implicit variable initializations.

The code for any finally clauses is collected into one progn in the order in which

the clauses appeared in the loop. The collected code is executed once in the loop

epilogue before any implicit values are returned from the accumulation clauses.

Explicit returns in the loop body, however, will exit the loop without executing the

epilogue code.

26.12.1. Data Types

Many loop constructs take a typespec argument that allows you to specify certain

data types for loop variables. While it is not necessary to specify a data type for

any variable, by doing so you ensure that the variable has a correctly typed initial

value. The type declaration is made available to the compiler for more efficient loop

738 COMMON LISP

expansion. In some implementations, fixnum and float declarations are especially

useful; the compiler notices them and emits more efficient code.

The typespec argument has the following syntax:

typespec ::= of-type dtypespec

dtypespec ::= typespecifier | (d-type-spec . d-type-spec)

A typespecifier in this syntax can be any Common Lisp type specifier. The d

typespec argument is used for destructuring, as described in section 26.12.2. If the

dtypespec argument consists solely of the types fixnum, float, t, or nil, the of-type

keyword is optional. The of-type construct is optional in these cases to provide

backward compatibility; thus the following two expressions are the same:

;;; This expression uses the old syntax for type specifiers.

(loop for i fixnum upfrom 3 ...)

;;; This expression uses the new syntax for type specifiers.

(loop for i of-type fixnum upfrom 3 ...)

26.12.2. Destructuring

Destructuring allows you to bind a set of variables to a corresponding set of values

anywhere that you can normally bind a value to a single variable. During loop

expansion, each variable in the variable list is matched with the values in the values

list. If there are more variables in the variable list than there are values in the values

list, the remaining variables are given a value of nil. If there are more values than

variables listed, the extra values are discarded.

Suppose you want to assign values from a list to the variables a, b, and c. You could

use one for clause to bind the variable numlist to the car of the specified expression,

and then you could use another for clause to bind the variables a, b, and c sequentially.

;;; Collect values by using FOR constructs.

(loop for numlist in ´((1 2 4.0) (5 6 8.3) (8 9 10.4))

for a integer −− (first numlist)

and for b integer −− (second numlist)

and for c float −− (third numlist)

collect (list c b a))

⇒ ((4.0 2 1) (8.3 6 5) (10.4 9 8))

Destructuring makes this process easier by allowing the variables to be bound in

parallel in each loop iteration. You can declare data types by using a list of typespec

LOOP 739

arguments. If all the types are the same, you can use a shorthand destructuring syntax,

as the second example following illustrates.

;;; Destructuring simplifies the process.

(loop for (a b c) (integer integer float) in

´((1 2 4.0) (5 6 8.3) (8 9 10.4))

collect (list c b a)))

⇒ ((4.0 2 1) (8.3 6 5) (10.4 9 8))

;;; If all the types are the same, this way is even simpler.

(loop for (a b c) float in

´((1.0 2.0 4.0) (5.0 6.0 8.3) (8.0 9.0 10.4))

collect (list c b a))

⇒ ((4.0 2.0 1.0) (8.3 6.0 5.0) (10.4 9.0 8.0))

If you use destructuring to declare or initialize a number of groups of variables

into types, you can use the loop keyword and to simplify the process further.

;;; Initialize and declare variables in parallel

;;; by using the AND construct.

(loop with (a b) float −− ´(1.0 2.0)

and (c d) integer −− ´(3 4)

and (e f)

return (list a b c d e f))

⇒ (1.0 2.0 3 4 NIL NIL)

A data type specifier for a destructuring pattern is a tree of type specifiers with the

same shape as the tree of variables, with the following exceptions:

. When aligning the trees, an atom in the type specifier tree that matches a cons in

the variable tree declares the same type for each variable.

. A cons in the type specifier tree that matches an atom in the variable tree is a

nonatomic type specifer.

;;; Declare X and Y to be of type VECTOR and FIXNUM, respectively.

(loop for (x y) of-type (vector fixnum) in my-list do ...)

If nil is used in a destructuring list, no variable is provided for its place.

(loop for (a nil b) −− ´(1 2 3)

do (return (list a b)))

⇒ (1 3)

740 COMMON LISP

Note that nonstandard lists can specify destructuring.

(loop for (x . y) −− ´(1 . 2)

do (return y))

⇒ 2

(loop for ((a . b) (c . d))

of-type ((float . float) (integer . integer))

in ´(((1.2 . 2.4) (3 . 4)) ((3.4 . 4.6) (5 . 6)))

collect (list a b c d))

⇒ ((1.2 2.4 3 4) (3.4 4.6 5 6))

[It is worth noting that the destructuring facility of loop predates, and differs in

some details from, that of destructuring-bind, an extension that has been provided

by many implementors of Common Lisp.—GLS]

[Loop clause]initially {expr}∗
[Loop clause]finally [do | doing] {expr}∗
[Loop clause]finally return expr

The initially construct causes the specified expression to be evaluated in the loop

prologue, which precedes all loop code except for initial settings specified by con

structs with, for, or as. The finally construct causes the specified expression to be

evaluated in the loop epilogue after normal iteration terminates.

The expr argument can be any nonatomic Common Lisp form.

Clauses such as return, always, never, and thereis can bypass the finally clause.

The Common Lisp macro return (or the return loop construct) can be used after

finally to return values from a loop. The evaluation of the return form inside

the finally clause takes precedence over returning the accumulation from clauses

specified by such keywords as collect, nconc, append, sum, count, maximize, and

minimize; the accumulation values for these preempted clauses are not returned by

the loop if return is used.

The constructs do, initially, and finally are the only loop keywords that take an

arbitrary number of (nonatomic) forms and group them as if by using an implicit

progn.

Examples:

LOOP 741

;;; This example parses a simple printed string representation

;;; from BUFFER (which is itself a string) and returns the

;;; index of the closing double-quote character.

(loop initially (unless (char−− (char buffer 0) #--\")

(loop-finish))

for i fixnum from 1 below (string-length buffer)

when (char−− (char buffer i) #--\")

return i)

;;; The FINALLY clause prints the last value of I.

;;; The collected value is returned.

(loop for i from 1 to 10

when (> i 5)

collect i

finally (print i)) ;Prints 1 line

11

⇒ (6 7 8 9 10)

;;; Return both the count of collected numbers

;;; as well as the numbers themselves.

(loop for i from 1 to 10

when (> i 5)

collect i into number-list

and count i into number-count

finally (return (values number-count number-list)))

⇒ 5 and (6 7 8 9 10)

[Loop clause]named name

The named construct allows you to assign a name to a loop construct so that you can

use the Common Lisp special form return-from to exit the named loop.

Only one name may be assigned per loop; the specified name becomes the name

of the implicit block for the loop.

If used, the named construct must be the first clause in the loop expression, coming

right after the word loop.

Example:

742 COMMON LISP

;;; Just name and return.

(loop named max

for i from 1 to 10

do (print i)

do (return-from max ´done)) ;Prints 1 line

1

⇒ DONE

27

Pretty Printing

BY RICHARD C. WATERS

preface: X3J13 voted in January 1989 〈139〉 to adopt a facility for usercontrolled

pretty printing as a part of the forthcoming draft Common Lisp standard. This

facility is the culmination of thirteen years of design, testing, revision, and use of this

approach.

This chapter presents the bulk of the Common Lisp pretty printing specification,

written by Richard C. Waters. I have edited it only very lightly to conform to the

overall style of this book.

—Guy L. Steele Jr.

27.1. Introduction

Pretty printing has traditionally been a black box process, displaying program code

using a set of fixed layout rules. Its utility can be greatly enhanced by opening it up

to user control. The facilities described in this chapter provide general and powerful

means for specifying prettyprinting behavior.

By providing direct access to the mechanisms within the pretty printer that make

dynamic decisions about layout, the macros and functions pprint-logical-block,

pprint-newline, and pprint-indent make it possible to specify pretty printing layout

rules as a part of any function that produces output. They also make it very easy for

the function to support detection of circularity and sharing and abbreviation based on

length and nesting depth. Using the function set-pprint-dispatch, one can associate

a userdefined pretty printing function with any type of object. A small set of

new format directives allows concise implementation of userdefined prettyprinting

functions. Together, these facilities enable users to redefine the way code is displayed

and allow the full power of pretty printing to be applied to complex combinations of

data structures.

743

744 COMMON LISP

Implementation note: This chapter describes the interface of the XP pretty printer. XP is

described fully in [54], which also explains how to obtain a portable implementation. XP uses

a highly efficient lineartime algorithm. When properly integrated into a Common Lisp, this

algorithm supports pretty printing that is only fractionally slower than ordinary printing.

27.2. Pretty Printing Control Variables

The function write accepts keyword arguments named :pprint-dispatch, :miser-

width, :right-margin, and :lines, corresponding to these variables.

[Variable]*print-pprint-dispatch*

When *print-pretty* is not nil, printing is controlled by the ‘pprint dispatch table’

stored in the variable *print-pprint-dispatch*. The initial value of *print-pprint-

dispatch* is implementationdependent and causes traditional pretty printing of Lisp

code. The last section of this chapter explains how the contents of this table can be

changed.

[Variable]*print-right-margin*

A primary goal of pretty printing is to keep the output between a pair of margins. The

left margin is set at the column where the output begins. If this cannot be determined,

the left margin is set to zero.

When *print-right-margin* is not nil, it specifies the right margin to use when

making layout decisions. When *print-right-margin* is nil (the initial value), the

right margin is set at the maximum line length that can be displayed by the output

stream without wraparound or truncation. If this cannot be determined, the right

margin is set to an implementationdependent value.

To allow for the possibility of variablewidth fonts, *print-right-margin* is in

units of ems—the width of an “m” in the font being used to display characters on the

relevant output stream at the moment when the variables are consulted.

[Variable]*print-miser-width*

If *print-miser-width* is not nil, the pretty printer switches to a compact style of

output (called miser style) whenever the width available for printing a substructure

is less than or equal to *print-miser-width* ems. The initial value of *print-miser-

width* is implementationdependent.

PRETTY PRINTING 745

[Variable]*print-lines*

When given a value other than its initial value of nil, *print-lines* limits the number

of output lines produced when something is pretty printed. If an attempt is made to

go beyond *print-lines* lines, “ ..” (a space and two periods) is printed at the end

of the last line followed by all of the suffixes (closing delimiters) that are pending to

be printed.

(let ((*print-right-margin* 25) (*print-lines* 3))

(pprint ´(progn (setq a 1 b 2 c 3 d 4))))

(PROGN (SETQ A 1

B 2

C 3 ..))

(The symbol “..” is printed out to ensure that a reader error will occur if the output

is later read. A symbol different from “...” is used to indicate that a different kind

of abbreviation has occurred.)

27.3. Dynamic Control of the Arrangement of Output

The following functions and macros support precise control of what should be done

when a piece of output is too large to fit in the space available. Three concepts

underlie the way these operations work: logical blocks, conditional newlines, and

sections. Before proceeding further, it is important to define these terms.

The first line of figure 271 shows a schematic piece of output. The characters

in the output are represented by hyphens. The positions of conditional newlines are

indicated by digits. The beginnings and ends of logical blocks are indicated in the

figure by “<” and “>” respectively.

The output as a whole is a logical block and the outermost section. This section is

indicated by the 0’s on the second line of figure 271. Logical blocks nested within

the output are specified by the macro pprint-logical-block. Conditional newline

positions are specified by calls on pprint-newline. Each conditional newline defines

two sections (one before it and one after it) and is associated with a third (the section

immediately containing it).

The section after a conditional newline consists of all the output up to, but not

including, (a) the next conditional newline immediately contained in the same logical

block; or if (a) is not applicable, (b) the next newline that is at a lesser level of nesting

in logical blocks; or if (b) is not applicable, (c) the end of the output.

The section before a conditional newline consists of all the output back to, but not

including, (a) the previous conditional newline that is immediately contained in the

746 COMMON LISP

Figure 271: Example of Logical Blocks, Conditional Newlines, and Sections

<-1---<--<--2---3->--4-->->

000000000000000000000000000

11 111111111111111111111111

22 222

333 3333

44444444444444 44444

same logical block; or if (a) is not applicable, (b) the beginning of the immediately

containing logical block. The last four lines in figure 271 indicate the sections before

and after the four conditional newlines.

The section immediately containing a conditional newline is the shortest section

that contains the conditional newline in question. In figure 271, the first conditional

newline is immediately contained in the section marked with 0’s, the second and

third conditional newlines are immediately contained in the section before the fourth

conditional newline, and the fourth conditional newline is immediately contained in

the section after the first conditional newline.

Whenever possible, the pretty printer displays the entire contents of a section on a

single line. However, if the section is too long to fit in the space available, line breaks

are inserted at conditional newline positions within the section.

[Function]pprint-newline kind &optional stream

The stream (which defaults to *standard-output*) follows the standard conventions

for stream arguments to printing functions (that is, nil stands for *standard-output*

and t stands for *terminal-io*). The kind argument specifies the style of conditional

newline. It must be one of :linear, :fill, :miser, or :mandatory. An error is signaled

if any other value is supplied. If stream is a pretty printing stream created by pprint-

logical-block, a line break is inserted in the output when the appropriate condition

below is satisfied. Otherwise, pprint-newline has no effect. The value nil is always

returned.

If kind is :linear, it specifies a ‘linearstyle’ conditional newline. A line break

is inserted if and only if the immediately containing section cannot be printed on

one line. The effect of this is that line breaks are either inserted at every linearstyle

conditional newline in a logical block or at none of them.

If kind is :miser, it specifies a ‘miserstyle’ conditional newline. A line break is

inserted if and only if the immediately containing section cannot be printed on one

PRETTY PRINTING 747

line and miser style is in effect in the immediately containing logical block. The

effect of this is that miserstyle conditional newlines act like linearstyle conditional

newlines, but only when miser style is in effect. Miser style is in effect for a logical

block if and only if the starting position of the logical block is less than or equal to

print-miser-width from the right margin.

If kind is :fill, it specifies a ‘fillstyle’ conditional newline. A line break is

inserted if and only if either (a) the following section cannot be printed on the end

of the current line, (b) the preceding section was not printed on a single line, or (c)

the immediately containing section cannot be printed on one line and miser style is

in effect in the immediately containing logical block. If a logical block is broken

up into a number of subsections by fillstyle conditional newlines, the basic effect is

that the logical block is printed with as many subsections as possible on each line.

However, if miser style is in effect, fillstyle conditional newlines act like linearstyle

conditional newlines.

If kind is :mandatory, it specifies a ‘mandatorystyle’ conditional newline. A line

break is always inserted. This implies that none of the containing sections can be

printed on a single line and will therefore trigger the insertion of line breaks at

linearstyle conditional newlines in these sections.

When a line break is inserted by any type of conditional newline, any blanks

that immediately precede the conditional newline are omitted from the output and

indentation is introduced at the beginning of the next line. By default, the indentation

causes the following line to begin in the same horizontal position as the first character

in the immediately containing logical block. (The indentation can be changed via

pprint-indent.)

There are a variety of ways unconditional newlines can be introduced into the output

(for example, via terpri or by printing a string containing a newline character). As

with mandatory conditional newlines, this prevents any of the containing sections

from being printed on one line. In general, when an unconditional newline is

encountered, it is printed out without suppression of the preceding blanks and without

any indentation following it. However, if a perline prefix has been specified (see

pprint-logical-block), that prefix will always be printed no matter how a newline

originates.

[Macro]pprint-logical-block (streamsymbol list

[[{:prefix | :per-line-prefix} p | :suffix s]])

{ form}∗

This macro causes printing to be grouped into a logical block. It returns nil.

The streamsymbol must be a symbol. If it is nil, it is treated the same as if it were

standard-output. If it is t, it is treated the same as if it were *terminal-io*. The run

748 COMMON LISP

time value of streamsymbol must be a stream (or nil standing for *standard-output*
or t standing for *terminal-io*). The logical block is printed into this destination

stream.

The body (which consists of the forms) can contain any arbitrary Lisp forms.

Within the body, streamsymbol (or *standard-output* if streamsymbol is nil, or

terminal-io if streamsymbol is t) is bound to a “pretty printing” stream that

supports decisions about the arrangement of output and then forwards the output

to the destination stream. All the standard printing functions (for example, write,

princ, terpri) can be used to send output to the pretty printing stream created by

pprint-logical-block. All and only the output sent to this pretty printing stream is

treated as being in the logical block.

pprint-logical-block and the pretty printing stream it creates have dynamic extent.

It is undefined what happens if output is attempted outside of this extent to the pretty

printing stream created. It is unspecified what happens if, within this extent, any

output is sent directly to the underlying destination stream (by calling write-char, for

example).

The :suffix, :prefix, and :per-line-prefix arguments must all be expressions

that (at run time) evaluate to strings. The :suffix argument s (which defaults to

the null string) specifies a suffix that is printed just after the logical block. The

:prefix and :per-line-prefix arguments are mutually exclusive. If neither :prefix

nor :per-line-prefix is specified, a :prefix of the null string is assumed. The :prefix

argument specifies a prefix p that is printed before the beginning of the logical block.

The :per-line-prefix specifies a prefix p that is printed before the block and at the

beginning of each subsequent line in the block. An error is signaled if :prefix and

:per-line-prefix are both used or if a :suffix, :prefix, or :pre-line-prefix argument

does not evaluate to a string.

The list is interpreted as being a list that the body is responsible for printing. (See

pprint-exit-if-list-exhausted and pprint-pop.) If list does not (at run time) evaluate

to a list, it is printed using write. (This makes it easier to write printing functions that

are robust in the face of malformed arguments.) If *print-circle* (and possibly also

print-shared) is not nil and list is a circular (or shared) reference to a cons, then an

appropriate “#--n#--” marker is printed. (This makes it easy to write printing functions

that provide full support for circularity and sharing abbreviation.) If *print-level*

is not nil and the logical block is at a dynamic nesting depth of greater than *print-

level* in logical blocks, “#--” is printed. (This makes it easy to write printing functions

that provide full support for depth abbreviation.)

If any of the three preceding conditions occurs, the indicated output is printed on

streamsymbol and the body is skipped along with the printing of the prefix and suffix.

(If the body is not responsible for printing a list, then the first two tests above can be

turned off by supplying nil for the list argument.)

PRETTY PRINTING 749

In addition to the list argument of pprint-logical-block, the arguments of the

standard printing functions such as write, print, pprint, print1, and pprint, as well as

the arguments of the standard format directives such as ˜A, ˜S, (and ˜W) are all checked

(when necessary) for circularity and sharing. However, such checking is not applied

to the arguments of the functions write-line, write-string, and write-char or to the

literal text output by format. A consequence of this is that you must use one of the

latter functions if you want to print some literal text in the output that is not supposed

to be checked for circularity or sharing. (See the examples below.)

Implementation note: Detection of circularity and sharing is supported by the pretty printer

by in essence performing the requested output twice. On the first pass, circularities and sharing

are detected and the actual outputting of characters is suppressed. On the second pass, the

appropriate “#--n−−” and “#--n#--” markers are inserted and characters are output.

A consequence of this twopass approach to the detection of circularity and sharing is

that the body of a pprint-logical-block must not perform any sideeffects on the surrounding

environment. This includes not modifying any variables that are bound outside of its scope.

Obeying this restriction is facilitated by using pprint-pop, instead of an ordinary pop when

traversing a list being printed by the body of a pprint-logical-block.)

[Macro]pprint-exit-if-list-exhausted

pprint-exit-if-list-exhausted tests whether or not the list argument of pprint-

logical-block has been exhausted (see pprint-pop). If this list has been reduced

to nil, pprint-exit-if-list-exhausted terminates the execution of the immediately

containing pprint-logical-block except for the printing of the suffix. Otherwise

pprint-exit-if-list-exhausted returns nil. An error message is issued if pprint-

exit-if-list-exhausted is used anywhere other than syntactically nested within a

call on pprint-logical-block. It is undefined what happens if pprint-pop is executed

outside of the dynamic extent of this pprint-logical-block.

[Macro]pprint-pop

pprint-pop pops elements one at a time off the list argument of pprint-logical-block,

taking care to obey *print-length*, *print-circle*, and *print-shared*. An error

message is issued if it is used anywhere other than syntactically nested within a

call on pprint-logical-block. It is undefined what happens if pprint-pop is executed

outside of the dynamic extent of this call on pprint-logical-block.

Each time pprint-pop is called, it pops the next value off the list argument of

pprint-logical-block and returns it. However, before doing this, it performs three

tests. If the remaining list is not a list (neither a cons nor nil), “. ” is printed followed

750 COMMON LISP

by the remaining list. (This makes it easier to write printing functions that are robust

in the face of malformed arguments.) If *print-length* is nil and pprint-pop has

already been called *print-length* times within the immediately containing logical

block, “...” is printed. (This makes it easy to write printing functions that properly

handle *print-length*.) If *print-circle* (and possibly also *print-shared*) is not

nil, and the remaining list is a circular (or shared) reference, then “. ” is printed

followed by an appropriate “#--n#--” marker. (This catches instances of cdr circularity

and sharing in lists.)

If any of the three preceding conditions occurs, the indicated output is printed on the

pretty printing stream created by the immediately containing pprint-logical-block

and the execution of the immediately containing pprint-logical-block is terminated

except for the printing of the suffix.

If pprint-logical-block is given a list argument of nil—because it is not processing

a list—pprint-pop can still be used to obtain support for *print-length* (see the

example function pprint-vector below). In this situation, the first and third tests

above are disabled and pprint-pop always returns nil.

[Function]pprint-indent relative-to n &optional stream

pprint-indent specifies the indentation to use in a logical block. Stream (which

defaults to *standard-output*) follows the standard conventions for stream arguments

to printing functions. The argument n specifies the indentation in ems. If relativeto

is :block, the indentation is set to the horizontal position of the first character in the

block plus n ems. If relativeto is :current, the indentation is set to the current output

position plus n ems.

The argument n can be negative; however, the total indentation cannot be moved

left of the beginning of the line or left of the end of the rightmost perline prefix.

Changes in indentation caused by pprint-indent do not take effect until after the next

line break. In addition, in miser mode all calls on pprint-indent are ignored, forcing

the lines corresponding to the logical block to line up under the first character in the

block.

An error is signaled if a value other than :block or :current is supplied for relative

to. If stream is a pretty printing stream created by pprint-logical-block, pprint-

indent sets the indentation in the innermost dynamically enclosing logical block.

Otherwise, pprint-indent has no effect. The value nil is always returned.

[Function]pprint-tab kind colnum colinc &optional stream

pprint-tab specifies tabbing as performed by the standard format directive ˜T. Stream

(which defaults to *standard-output*) follows the standard conventions for stream

PRETTY PRINTING 751

arguments to printing functions. The arguments colnum and colinc correspond to

the two parameters to ˜T and are in terms of ems. The kind argument specifies

the style of tabbing. It must be one of :line (tab as by ˜T) :section (tab as by ˜T,

but measuring horizontal positions relative to the start of the dynamically enclosing

section), :line-relative (tab as by ˜@T), or :section-relative (tab as by ˜@T, but

measuring horizontal positions relative to the start of the dynamically enclosing

section). An error is signaled if any other value is supplied for kind. If stream

is a pretty printing stream created by pprint-logical-block, tabbing is performed.

Otherwise, pprint-tab has no effect. The value nil is always returned.

[Function]pprint-fill stream list &optional colon? atsign?

[Function]pprint-linear stream list &optional colon? atsign?

[Function]pprint-tabular stream list &optional colon? atsign? tabsize

These three functions specify particular ways of pretty printing lists. Stream follows

the standard conventions for stream arguments to printing functions. Each function

prints parentheses around the output if and only if colon? (default t) is not nil. Each

function ignores its atsign? argument and returns nil. (These two arguments are

included in this way so that these functions can be used via ˜/.../ and as set-pprint-

dispatch functions as well as directly.) Each function handles abbreviation and the

detection of circularity and sharing correctly and uses write to print list when given

a nonlist argument.

The function pprint-linear prints a list either all on one line or with each element

on a separate line. The function pprint-fill prints a list with as many elements as

possible on each line. The function pprint-tabular is the same as pprint-fill except

that it prints the elements so that they line up in columns. This function takes an

additional argument tabsize (default 16) that specifies the column spacing in ems.

As an example of the interaction of logical blocks, conditional newlines, and

indentation, consider the function pprint-defun below. This function pretty prints

a list whose car is defun in the standard way assuming that the length of the list is

exactly 4.

752 COMMON LISP

;;; Pretty printer function for DEFUN forms.

(defun pprint-defun (list)

(pprint-logical-block (nil list :prefix "(" :suffix ")")

(write (first list))

(write-char #--\space)

(pprint-newline :miser)

(pprint-indent :current 0)

(write (second list))

(write-char #--\space)

(pprint-newline :fill)

(write (third list))

(pprint-indent :block 1)

(write-char #--\space)

(pprint-newline :linear)

(write (fourth list))))

Suppose that one evaluates the following:

(pprint-defun ´(defun prod (x y) (* x y)))

If the line width available is greater than or equal to 26, all of the output appears

on one line. If the width is reduced to 25, a line break is inserted at the linearstyle

conditional newline before (* X Y), producing the output shown below. The (pprint-

indent :block 1) causes (* X Y) to be printed at a relative indentation of 1 in the

logical block.

(DEFUN PROD (X Y)

(* X Y))

If the width is 15, a line break is also inserted at the fillstyle conditional newline

before the argument list. The argument list lines up under the function name because

of the call on (pprint-indent :current 0) before the printing of the function name.

(DEFUN PROD

(X Y)

(* X Y))

If *print-miser-width* were greater than or equal to 14, the output would have

been entirely in miser mode. All indentation changes are ignored in miser mode and

line breaks are inserted at miserstyle conditional newlines. The result would have

been as follows:

PRETTY PRINTING 753

(DEFUN

PROD

(X Y)

(* X Y))

As an example of the use of a perline prefix,consider that evaluating the expression

(pprint-logical-block (nil nil :per-line-prefix ";;; ")

(pprint-defun ´(defun prod (x y) (* x y))))

produces the output

;;; (DEFUN PROD

;;; (X Y)

;;; (* X Y))

with a line width of 20 and nil as the value of the printer control variable *print-

miser-width*.

(If *print-miser-width* were not nil the output

;;; (DEFUN

;;; PROD

;;; (X Y)

;;; (* X Y))

might appear instead.)

As a more complex (and realistic) example, consider the function pprint-let below.

This specifies how to pretty print a let in the standard style. It is more complex than

pprint-defun because it has to deal with nested structure. Also, unlike pprint-defun, it

contains complete code to print readably any possible list that begins with the symbol

let. The outermost pprint-logical-block handles the printing of the input list as a

whole and specifies that parentheses should be printed in the output. The second

pprint-logical-block handles the list of binding pairs. Each pair in the list is itself

printed by the innermost pprint-logical-block. (A loop is used instead of merely

decomposing the pair into two elements so that readable output will be produced no

matter whether the list corresponding to the pair has one element, two elements, or

(being malformed) has more than two elements.) A space and a fillstyle conditional

newline are placed after each pair except the last. The loop at the end of the topmost

pprint-logical-block prints out the forms in the body of the let separated by spaces

and linearstyle conditional newlines.

754 COMMON LISP

;;; Pretty printer function for LET forms,

;;; carefully coded to handle malformed binding pairs.

(defun pprint-let (list)

(pprint-logical-block (nil list :prefix "(" :suffix ")")

(write (pprint-pop))

(pprint-exit-if-list-exhausted)

(write-char #--\space)

(pprint-logical-block

(nil (pprint-pop) :prefix "(" :suffix ")")

(pprint-exit-if-list-exhausted)

(loop (pprint-logical-block

(nil (pprint-pop) :prefix "(" :suffix ")")

(pprint-exit-if-list-exhausted)

(loop (write (pprint-pop))

(pprint-exit-if-list-exhausted)

(write-char #--\space)

(pprint-newline :linear)))

(pprint-exit-if-list-exhausted)

(write-char #--\space)

(pprint-newline :fill)))

(pprint-indent :block 1)

(loop (pprint-exit-if-list-exhausted)

(write-char #--\space)

(pprint-newline :linear)

(write (pprint-pop)))))

Suppose that the following is evaluated with *print-level* having the value 4 and

print-circle having the value t.

(pprint-let ´#--1−−(let (x (*print-length* (f (g 3)))

(z . 2) (k (car y)))

(setq x (sqrt z)) #--1#--))

If the line length is greater than or equal to 77, the output produced appears on

one line. However, if the line length is 76, line breaks are inserted at the linear

style conditional newlines separating the forms in the body and the output below is

produced. Note that the degenerate binding pair X is printed readably even though it

fails to be a list; a depth abbreviation marker is printed in place of (G 3); the binding

pair (Z . 2) is printed readably even though it is not a proper list; and appropriate

circularity markers are printed.

PRETTY PRINTING 755

#--1−−(LET (X (*PRINT-LENGTH* (F #--)) (Z . 2) (K (CAR Y)))

(SETQ X (SQRT Z))

#--1#--)

If the line length is reduced to 35, a line break is inserted at one of the fillstyle

conditional newlines separating the binding pairs.

#--1−−(LET (X (*PRINT-PRETTY* (F #--))

(Z . 2) (K (CAR Y)))

(SETQ X (SQRT Z))

#--1#--)

Suppose that the line length is further reduced to 22 and *print-length* is set to 3.

In this situation, line breaks are inserted after both the first and second binding pairs.

In addition, the second binding pair is itself broken across two lines. Clause (b) of the

description of fillstyle conditional newlines prevents the binding pair (Z . 2) from

being printed at the end of the third line. Note that the length abbreviation hides the

circularity from view and therefore the printing of circularity markers disappears.

(LET (X

(*PRINT-LENGTH*

(F #--))

(Z . 2) ...)

(SETQ X (SQRT Z))

...)

The function pprint-tabular could be defined as follows:

(defun pprint-tabular (s list &optional (c? t) a? (size 16))

(declare (ignore a?))

(pprint-logical-block

(s list :prefix (if c? "(" "") :suffix (if c? ")" ""))

(pprint-exit-if-list-exhausted)

(loop (write (pprint-pop) :stream s)

(pprint-exit-if-list-exhausted)

(write-char #--\space s)

(pprint-tab :section-relative 0 size s)

(pprint-newline :fill s))))

Evaluating the following with a line length of 25 produces the output shown.

756 COMMON LISP

(princ "Roads ")

(pprint-tabular nil ´(elm main maple center) nil nil 8)

Roads ELM MAIN

MAPLE CENTER

The function below prints a vector using #--(...) notation.

(defun pprint-vector (v)

(pprint-logical-block (nil nil :prefix "#--(" :suffix ")")

(let ((end (length v)) (i 0))

(when (plusp end)

(loop (pprint-pop)

(write (aref v i))

(if (−− (incf i) end) (return nil))

(write-char #--\space)

(pprint-newline :fill))))))

Evaluating the following with a line length of 15 produces the output shown.

(pprint-vector ´#--(12 34 567 8 9012 34 567 89 0 1 23))

#--(12 34 567 8

9012 34 567

89 0 1 23)

27.4. Format Directive Interface

The primary interface to operations for dynamically determining the arrangement of

output is provided through the functions above. However, an additional interface is

provided via a set of format directives because, as shown by the examples in this

section and the next, format strings are typically a much more compact way to specify

pretty printing. In addition, without such an interface, one would have to abandon

the use of format when interacting with the pretty printer.

˜W

Write. An arg, any Lisp object, is printed obeying every printer control variable (as

by write). In addition, ˜W interacts correctly with depth abbreviation by not resetting

the depth counter to zero. ˜W does not accept parameters. If given the colon modifier,

˜W binds *print-pretty* to t. If given the atsign modifier, ˜W binds *print-level* and

print-length to nil.

PRETTY PRINTING 757

˜W provides automatic support for circularity detection. If *print-circle* (and

possibly also *print-shared*) is not nil and ˜W is applied to an argument that is a

circular (or shared) reference, an appropriate “#--n#--” marker is inserted in the output

instead of printing the argument.

˜_

Conditional newline. Without any modifiers, ˜_ is equivalent to (pprint-newline

:linear). The directive ˜@_ is equivalent to (pprint-newline :miser). The directive

˜:_ is equivalent to (pprint-newline :fill). The directive ˜:@_ is equivalent to

(pprint-newline :mandatory).

˜<str˜:>

Logical block. If ˜:> is used to terminate a <̃... directive, the directive is equivalent to

a call on pprint-logical-block. The format argument corresponding to the ˜<...˜:>

directive is treated in the same way as the list argument to pprint-logical-block,

thereby providing automatic support for nonlist arguments and the detection of

circularity, sharing, and depth abbreviation. The portion of the format control string

nested within the ˜<...˜:> specifies the :prefix (or :per-line-prefix), :suffix, and

body of the pprint-logical-block.

The format string portion enclosed by ˜<...˜:> can be divided into segments

˜<prefix˜;body˜;suffix˜:> by ˜; directives. If the first section is terminated by ˜@;, it

specifies a perline prefix rather than a simple prefix. The prefix and suffix cannot

contain format directives. An error is signaled if either the prefix or suffix fails to be

a constant string or if the enclosed portion is divided into more than three segments.

If the enclosed portion is divided into only two segments, the suffix defaults to

the null string. If the enclosed portion consists of only a single segment, both the

prefix and the suffix default to the null string. If the colon modifier is used (that is,

˜:<...˜:>), the prefix and suffix default to "(" and ")", respectively, instead of the

null string.

The body segment can be any arbitrary format control string. This format control

string is applied to the elements of the list corresponding to the ˜<...˜:> directive as

a whole. Elements are extracted from this list using pprint-pop, thereby providing

automatic support for malformed lists and the detection of circularity, sharing, and

length abbreviation. Within the body segment, ˜ˆ acts like pprint-exit-if-list-

exhausted.

˜<...˜:> supports a feature not supported by pprint-logical-block. If ˜:@> is used

to terminate the directive (that is, ˜<...˜:@>), then a fillstyle conditional newline is

automatically inserted after each group of blanks immediately contained in the body

(except for blanks after a ˜<newline> directive). This makes it easy to achieve the

equivalent of paragraph filling.

758 COMMON LISP

If the atsign modifier is used with ˜<...˜:>, the entire remaining argument list is

passed to the directive as its argument. All of the remaining arguments are always

consumed by ˜@<...˜:>, even if they are not all used by the format string nested in the

directive. Other than the difference in its argument, ˜@<...˜:> is exactly the same as

˜<...˜:>, except that circularity (and sharing) detection is not applied if the ˜@<...˜:>

is at top level in a format string. This ensures that circularity detection is applied only

to data lists and not to format argument lists.

To a considerable extent, the basic form of the directive ˜<...˜> is incompatible

with the dynamic control of the arrangement of output by ˜W, ˜_, ˜<...˜:>, ˜I, and

˜:T. As a result, an error is signaled if any of these directives is nested within ˜<...˜>.

Beyond this, an error is also signaled if the ˜<...˜:;...˜> form of ˜<...˜> is used in

the same format string with ˜W, ˜_, ˜<...˜:>, ˜I, or ˜:T.

˜I

Indent. ˜nI is equivalent to (pprint-indent :block n). ˜:nI is equivalent to (pprint-

indent :current n). In both cases, n defaults to zero if it is omitted.

˜:T

Tabulate. If the colon modifier is used with the ˜T directive, the tabbing computation

is done relative to the column where the section immediately containing the directive

begins, rather than with respect to column zero. ˜n,m:T is equivalent to (pprint-

tab :section n m). ˜n,m:@T is equivalent to (pprint-tab :section-relative n m).

The numerical parameters are both interpreted as being in units of ems and both

default to 1.

˜/name/

Call function. Userdefined functions can be called from within a format string by

using the directive ˜/name/. The colon modifier, the atsign modifier, and arbitrarily

many parameters can be specified with the ˜/name/ directive. The name can be

any string that does not contain “/”. All of the characters in name are treated as if

they were upper case. If name contains a “:” or “::”, then everything up to but not

including the first “:” or “::” is taken to be a string that names a package. Everything

after the first “:” or “::” (if any) is taken to be a string that names a symbol. The

function corresponding to a ˜/name/ directive is obtained by looking up the symbol

that has the indicated name in the indicated package. If name does not contain a “:”

or “::”, then the whole name string is looked up in the user package.

When a ˜/name/ directive is encountered, the indicated function is called with

four or more arguments. The first four arguments are the output stream, the format

argument corresponding to the directive, the value t if the colon modifier was used

(nil otherwise), and the value t if the atsign modifier was used (nil otherwise).

PRETTY PRINTING 759

The remaining arguments consist of any parameters specified with the directive. The

function should print the argument appropriately. Any values returned by the function

are ignored.

The three functions pprint-linear, pprint-fill, and pprint-tabular are designed

so that they can be called by ˜/.../ (that is, ˜/pprint-linear/, ˜/pprint-fill/, and

˜/pprint-tabular/. In particular they take colon and atsign arguments.

As examples of the convenience of specifying pretty printing with format strings,

consider the functions pprint-defun and pprint-let used as examples in the last

section. They can be more compactly defined as follows. The function pprint-vector

cannot be defined using format, because the data structure it traverses is not a list.

The function pprint-tabular is inconvenient to define using format, because of the

need to pass its tabsize argument through to a ˜:T directive nested within an iteration

over a list.

(defun pprint-defun (list)

(format t "˜:<˜W ˜@_˜:I˜W ˜:_˜W˜1I ˜_˜W˜:>" list))

(defun pprint-let (list)

(format t "˜:<˜W˜ˆ ˜:<˜@{˜:<˜@{˜W˜ˆ ˜_˜}˜:>˜ˆ ˜:_˜}˜:>˜1I˜
˜@{˜ˆ ˜_˜W˜}˜:>"

list))

27.5. Compiling Format Control Strings

The control strings used by format are essentially programs that perform printing.

The macro formatter provides the efficiency of using a compiled function for printing

without losing the visual compactness of format strings.

[Macro]formatter controlstring

The controlstring must be a literal string. An error is signaled if controlstring is not

a valid format control string. The macro formatter expands into an expression of the

form (function (lambda (stream &rest args) ...)) that does the printing specified

by controlstring. The lambda created accepts an output stream as its first argument

and zero or more data values as its remaining arguments. The value returned by the

lambda is the tail (if any) of the data values that are not printed out by controlstring.

(For example, if the controlstring is "˜A˜A", the cddr (if any) of the data values is

returned.) The form (formatter "˜%˜2@{˜S, ˜}") is equivalent to the following:

760 COMMON LISP

#--´(lambda (stream &rest args)

(terpri stream)

(dotimes (n 2)

(if (null args) (return nil))

(prin1 (pop args) stream)

(write-string ", " stream))

args)

In support of the above mechanism, format is extended so that it accepts functions

as its second argument as well as strings. When a function is provided, it must be a

function of the form created by formatter. The function is called with the appropriate

output stream as its first argument and the data arguments to format as its remaining

arguments. The function should perform whatever output is necessary and return the

unused tail of the arguments (if any). The directives ˜? and ˜{˜} with no body are

also extended so that they accept functions as well as control strings. Every other

standard function that takes a format string as an argument (for example, error and

warn) is also extended so that it can accept functions of the form above instead.

27.6. Pretty Printing Dispatch Tables

When *print-pretty* is not nil, the pprint dispatch table in the variable *print-

pprint-dispatch* controls how objects are printed. The information in this table

takes precedence over all other mechanisms for specifying how to print objects. In

particular, it overrides userdefined print-object methods and print functions for

structures. However, if there is no specification for how to pretty print a particular

kind of object, it is then printed using the standard mechanisms as if *print-pretty*

were nil.

A pprint dispatch table is a mapping from keys to pairs of values. The keys are

type specifiers. The values are functions and numerical priorities. Basic insertion

and retrieval is done based on the keys with the equality of keys being tested by equal.

The function to use when pretty printing an object is chosen by finding the highest

priority function in *print-pprint-dispatch* that is associated with a type specifier

that matches the object.

[Function]copy-pprint-dispatch &optional table

A copy is made of table, which defaults to the current pprint dispatch table. If table

is nil, a copy is returned of the initial value of *print-pprint-dispatch*.

PRETTY PRINTING 761

[Function]pprint-dispatch object &optional table

This retrieves the highest priority function from a pprint table that is associated with

a type specifier in the table that matches object. The function is chosen by finding

all the type specifiers in table that match the object and selecting the highest priority

function associated with any of these type specifiers. If there is more than one highest

priority function, an arbitrary choice is made. If no type specifiers match the object,

a function is returned that prints object with *print-pretty* bound to nil.

As a second return value, pprint-dispatch returns a flag that is t if a matching type

specifier was found in table and nil if not.

Table (which defaults to *print-pprint-dispatch*) must be a pprint dispatch table.

Table can be nil, in which case retrieval is done in the initial value of *print-pprint-

dispatch*.

When *print-pretty* is t, (write object :stream s) is equivalent to

(funcall (pprint-dispatch object) s object).

[Function]set-pprint-dispatch type function &optional priority table

This puts an entry into a pprint dispatch table and returns nil. The type must be a

valid type specifier and is the key of the entry. The first action of set-pprint-dispatch

is to remove any preexisting entry associated with type. This guarantees that there

will never be two entries associated with the same type specifier in a given pprint

dispatch table. Equality of type specifiers is tested by equal.

Two values are associated with each type specifier in a pprint dispatch table: a

function and a priority. The function must accept two arguments: the stream to send

output to and the object to be printed. The function should pretty print the object on

the stream. The function can assume that object satisfies type. The function should

obey *print-readably*. Any values returned by the function are ignored.

The priority (which defaults to 0) must be a noncomplex number. This number is

used as a priority to resolve conflicts when an object matches more than one entry.

An error is signaled if priority fails to be a noncomplex number.

The table (which defaults to the value of *print-pprint-dispatch*) must be a pprint

dispatch table. The specified entry is placed in this table.

It is permissible for function to be nil. In this situation, there will be no type entry

in table after set-pprint-dispatch is evaluated.

To facilitate the use of pprint dispatch tables for controlling the pretty printing

of Lisp code, the typespecifier argument of the function set-pprint-dispatch is

allowed to contain the form (cons cartype cdrtype). This form indicates that the

corresponding object must be a cons whose car satisfies the type specifier cartype

and whose cdr satisfies the type specifier cdrtype. The cdrtype can be omitted, in

which case it defaults to t.

762 COMMON LISP

The initial value of *print-pprint-dispatch* is implementationdependent. How

ever, the initial entries all use a special class of priorities that are less than every

priority that can be specified using set-pprint-dispatch. This guarantees that pretty

printing functions specified by users will override everything in the initial value of

print-pprint-dispatch.

Consider the following examples. The first form restores *print-pprint-dispatch*

to its initial value. The next two forms then specify a special way of pretty printing

ratios. Note that the more specific type specifier has to be associated with a higher

priority.

(setq *print-pprint-dispatch*

(copy-pprint-dispatch nil))

(defun div-print (s r colon? atsign?)

(declare (ignore colon? atsign?))

(format s "(/ ˜D ˜D)" (numerator (abs r)) (denominator r)))

(set-pprint-dispatch ´ratio (formatter "#--.˜/div-print/"))

(set-pprint-dispatch ´(and ratio (satisfies minusp))

(formatter "#--.(- ˜/div-print/)")

5)

(pprint ´(1/3 -2/3)) prints: (#--.(/ 1 3) #--.(- (/ 2 3)))

The following two forms illustrate the specification of pretty printing functions for

particular types of Lisp code. The first form illustrates how to specify the traditional

method for printing quoted objects using “´” syntax. Note the care taken to ensure

that data lists that happen to begin with quote will be printed readably. The second

form specifies that lists beginning with the symbol my-let should print the same way

that lists beginning with let print when the initial pprint dispatch table is in effect.

(set-pprint-dispatch ´(cons (member quote))

#--´(lambda (s list)

(if (and (consp (cdr list)) (null (cddr list)))

(funcall (formatter "´˜W") s (cadr list))

(pprint-fill s list)))))

(set-pprint-dispatch ´(cons (member my-let))

(pprint-dispatch ´(let) nil))

PRETTY PRINTING 763

The next example specifies a default method for printing lists that do not correspond

to function calls. Note that, as shown in the definition of pprint-tabular above,

pprint-linear, pprint-fill, and pprint-tabular are defined with optional colon and

atsign arguments so that they can be used as pprint dispatch functions as well as

˜/.../ functions.

(set-pprint-dispatch

´(cons (not (and symbol (satisfies fboundp))))

#--´pprint-fill

-5)

With a line length of 9, (pprint ´(0 b c d e f g h i j k)) prints:

(0 b c d

e f g h

i j k)

This final example shows how to define a pretty printing function for a user defined

data structure.

(defstruct family mom kids)

(set-pprint-dispatch ´family

#--´(lambda (s f)

(format s "˜@<#--<˜;˜W and ˜2I˜_˜/pprint-fill/˜;>˜:>"

(family-mom f) (family-kids f))))

The pretty printing function for the structure family specifies how to adjust the

layout of the output so that it can fit aesthetically into a variety of line widths. In

addition, it obeys the printer control variables *print-level*, *print-length*, *print-

lines*, *print-circle*, *print-shared*, and *print-escape*, and can tolerate several

different kinds of malformity in the data structure. The output below shows what

is printed out with a right margin of 25, *print-pretty* t, *print-escape* nil, and a

malformed kids list.

(write (list ´principal-family

(make-family :mom "Lucy"

:kids ´("Mark" "Bob" . "Dan")))

:right-margin 25 :pretty T :escape nil :miser-width nil)

(PRINCIPAL-FAMILY

#--<Lucy and

Mark Bob . Dan>)

764 COMMON LISP

Note that a pretty printing function for a structure is different from the structure’s

print function. While print functions are permanently associated with a structure,

pretty printing functions are stored in pprint dispatch tables and can be rapidly

changed to reflect different printing needs. If there is no pretty printing function for a

structure in the current print dispatch table, the print function (if any) is used instead.

28

Common Lisp Object System

BY DANIEL G. BOBROW, LINDA G. DEMICHIEL, RICHARD P. GABRIEL,

SONYA E. KEENE, GREGOR KICZALES, AND DAVID A. MOON

preface: X3J13 voted in June 1988 〈12〉 to adopt the first two chapters (of three)

of the Common Lisp Object System specification as a part of the forthcoming draft

Common Lisp standard.

This chapter presents the bulk of the first two chapters of the Common Lisp Object

System specification; it is substantially identical to these two specification chapters

as previously published elsewhere [5, 6, 7]. I have edited the material only very

lightly to conform to the overall style of this book and to save a substantial number

of pages by using a typographically condensed presentation. I have inserted a small

number of bracketed remarks, identified by the initials GLS. The chapter divisions

of the original specification have become section divisions in this chapter; references

to the three chapters of the original specification now refer to the three “parts” of the

specification. (See the Acknowledgments to this second edition for acknowledgments

to others who contributed to the Common Lisp Object System specification.) This is

not the last word on CLOS; X3J13 may well refine this material further. Keene has

written a good tutorial introduction to CLOS [26].

—Guy L. Steele Jr.

28.1. Programmer Interface Concepts

The Common Lisp Object System (CLOS) is an objectoriented extension to Common

Lisp. It is based on generic functions, multiple inheritance, declarative method

combination, and a metaobject protocol.

The first two parts of this specification describe the standard Programmer Interface

for the Common Lisp Object System. The first part, Programmer Interface Concepts,

contains a description of the concepts of the Common Lisp Object System, and the

second part, Functions in the Programmer Interface, contains a description of the

functions and macros in the Common Lisp Object System Programmer Interface.

The third part, The Common Lisp Object System MetaObject Protocol, explains

765

766 COMMON LISP

how the Common Lisp Object System can be customized. [The third part has not

yet been approved by X3J13 for inclusion in the forthcoming Common Lisp standard

and is not included in this book.—GLS]

The fundamental objects of the Common Lisp Object System are classes, instances,

generic functions, and methods.

A class object determines the structure and behavior of a set of other objects,

which are called its instances. Every Common Lisp object is an instance of a class.

The class of an object determines the set of operations that can be performed on the

object.

A generic function is a function whose behavior depends on the classes or identities

of the arguments supplied to it. A generic function object contains a set of methods, a

lambdalist, a method combination type, and other information. The methods define

the classspecific behavior and operations of the generic function; a method is said

to specialize a generic function. When invoked, a generic function executes a subset

of its methods based on the classes of its arguments.

A generic function can be used in the same ways as an ordinary function in

Common Lisp; in particular, a generic function can be used as an argument to funcall

and apply and can be given a global or a local name.

A method is an object that contains a method function, a sequence of parame

ter specializers that specify when the given method is applicable, and a sequence

of qualifiers that is used by the method combination facility to distinguish among

methods. Each required formal parameter of each method has an associated param

eter specializer, and the method will be invoked only on arguments that satisfy its

parameter specializers.

The method combination facility controls the selection of methods, the order in

which they are run, and the values that are returned by the generic function. The

Common Lisp Object System offers a default method combination type and provides

a facility for declaring new types of method combination.

28.1.1. Error Terminology

The terminology used in this chapter to describe erroneous situations differs from

the terminology used in the first edition. The new terminology involves situations; a

situation is the evaluation of an expression in some specific context. For example, a

situation might be the invocation of a function on arguments that fail to satisfy some

specified constraints.

In the specification of the Common Lisp Object System, the behavior of programs

in all situations is described, and the options available to the implementor are defined.

No implementation is allowed to extend the syntax or semantics of the Object System

except as explicitly defined in the Object System specification. In particular, no

COMMON LISP OBJECT SYSTEM 767

implementation is allowed to extend the syntax of the Object System in such a

way that ambiguity between the specified syntax of the Object System and those

extensions is possible.

“When situation S occurs, an error is signaled.”

This terminology has the following meaning:

. If this situation occurs, an error will be signaled in the interpreter and in code

compiled under all compiler safety optimization levels.

. Valid programs may rely on the fact that an error will be signaled in the interpreter

and in code compiled under all compiler safety optimization levels.

. Every implementation is required to detect such an error in the interpreter and in

code compiled under all compiler safety optimization levels.

“When situation S occurs, an error should be signaled.”

This terminology has the following meaning:

. If this situation occurs, an error will be signaled at least in the interpreter and in

code compiled under the safest compiler safety optimization level.

. Valid programs may not rely on the fact that an error will be signaled.

. Every implementation is required to detect such an error at least in the interpreter

and in code compiled under the safest compiler safety optimization level.

. When an error is not signaled, the results are undefined (see below).

“When situation S occurs, the results are undefined.”

This terminology has the following meaning:

. If this situation occurs, the results are unpredictable. The results may range from

harmless to fatal.

. Implementations are allowed to detect this situation and signal an error, but no

implementation is required to detect the situation.

. No valid program may depend on the effects of this situation, and all valid programs

are required to treat the effects of this situation as unpredictable.

“When situation S occurs, the results are unspecified.”

This terminology has the following meaning:

768 COMMON LISP

. The effects of this situation are not specified in the Object System, but the effects

are harmless.

. Implementations are allowed to specify the effects of this situation.

. No portable program can depend on the effects of this situation, and all portable

programs are required to treat the situation as unpredictable but harmless.

“The Common Lisp Object System may be extended to cover situation S.”

The meaning of this terminology is that an implementation is free to treat situation S

in one of three ways:

. When situation S occurs, an error is signaled at least in the interpreter and in code

compiled under the safest compiler safety optimization level.

. When situation S occurs, the results are undefined.

. When situation S occurs, the results are defined and specified.

In addition, this terminology has the following meaning:

. No portable program can depend on the effects of this situation, and all portable

programs are required to treat the situation as undefined.

“Implementations are free to extend the syntax S.”

This terminology has the following meaning:

. Implementations are allowed to define unambiguous extensions to syntax S.

. No portable program can depend on this extension, and all portable programs are

required to treat the syntax as meaningless.

The Common Lisp Object System specification may disallow certain extensions

while allowing others.

28.1.2. Classes

A class is an object that determines the structure and behavior of a set of other objects,

which are called its instances.

A class can inherit structure and behavior from other classes. A class whose

definition refers to other classes for the purpose of inheriting from them is said to be

a subclass of each of those classes. The classes that are designated for purposes of

inheritance are said to be superclasses of the inheriting class.

COMMON LISP OBJECT SYSTEM 769

A class can have a name. The function class-name takes a class object and returns

its name. The name of an anonymous class is nil. A symbol can name a class. The

function find-class takes a symbol and returns the class that the symbol names. A

class has a proper name if the name is a symbol and if the name of the class names

that class. That is, a class C has the proper name S if S = (class-name C) and C =

(find-class S). Notice that it is possible for (find-class S1) = (find-class S2) and

S1 6= S2. If C = (find-class S), we say that C is the class named S.

A class C1 is a direct superclass of a class C2 if C2 explicitly designates C1 as a

superclass in its definition. In this case, C2 is a direct subclass of C1. A class Cn is

a superclass of a class C1 if there exists a series of classes C2, . . . , Cn−1 such that

Ci+1 is a direct superclass of Ci for 1 ≤ i < n. In this case, C1 is a subclass of Cn.

A class is considered neither a superclass nor a subclass of itself. That is, if C1 is a

superclass of C2, then C1 6= C2. The set of classes consisting of some given class C

along with all of its superclasses is called “C and its superclasses.”

Each class has a class precedence list, which is a total ordering on the set of the

given class and its superclasses. The total ordering is expressed as a list ordered from

most specific to least specific. The class precedence list is used in several ways. In

general, more specific classes can shadow, or override, features that would otherwise

be inherited from less specific classes. The method selection and combination process

uses the class precedence list to order methods from most specific to least specific.

When a class is defined, the order in which its direct superclasses are mentioned in

the defining form is important. Each class has a local precedence order, which is a

list consisting of the class followed by its direct superclasses in the order mentioned

in the defining form.

A class precedence list is always consistent with the local precedence order of each

class in the list. The classes in each local precedence order appear within the class

precedence list in the same order. If the local precedence orders are inconsistent with

each other, no class precedence list can be constructed, and an error is signaled. The

class precedence list and its computation is discussed in section 28.1.5.

Classes are organized into a directed acyclic graph. There are two distinguished

classes, named t and standard-object. The class named t has no superclasses. It is a

superclass of every class except itself. The class named standard-object is an instance

of the class standard-class and is a superclass of every class that is an instance of

standard-class except itself.

There is a mapping from the Common Lisp Object System class space into the

Common Lisp type space. Many of the standard Common Lisp types have a corre

sponding class that has the same name as the type. Some Common Lisp types do not

have a corresponding class. The integration of the type and class systems is discussed

in section 28.1.4.

Classes are represented by objects that are themselves instances of classes. The

770 COMMON LISP

class of the class of an object is termed the metaclass of that object. When no

misinterpretation is possible, the term metaclass will be used to refer to a class that

has instances that are themselves classes. The metaclass determines the form of

inheritance used by the classes that are its instances and the representation of the

instances of those classes. The Common Lisp Object System provides a default

metaclass, standard-class, that is appropriate for most programs. The metaobject

protocol provides mechanisms for defining and using new metaclasses.

Except where otherwise specified, all classes mentioned in this chapter are in

stances of the class standard-class, all generic functions are instances of the class

standard-generic-function, and all methods are instances of the class standard-method.

28.1.2.1. Defining Classes

The macro defclass is used to define a new named class. The definition of a class

includes the following:

. The name of the new class. For newly defined classes this is a proper name.

. The list of the direct superclasses of the new class.

. A set of slot specifiers. Each slot specifier includes the name of the slot and zero or

more slot options. A slot option pertains only to a single slot. If a class definition

contains two slot specifiers with the same name, an error is signaled.

. A set of class options. Each class option pertains to the class as a whole.

The slot options and class options of the defclass form provide mechanisms for the

following:

. Supplying a default initial value form for a given slot.

. Requesting that methods for generic functions be automatically generated for

reading or writing slots.

. Controlling whether a given slot is shared by instances of the class or whether each

instance of the class has its own slot.

. Supplying a set of initialization arguments and initialization argument defaults to

be used in instance creation.

. Indicating that the metaclass is to be other than the default.

. Indicating the expected type for the value stored in the slot.

. Indicating the documentation string for the slot.

COMMON LISP OBJECT SYSTEM 771

28.1.2.2. Creating Instances of Classes

The generic function make-instance creates and returns a new instance of a class. The

Object System provides several mechanisms for specifying how a new instance is

to be initialized. For example, it is possible to specify the initial values for slots in

newly created instances either by giving arguments to make-instance or by providing

default initial values.

Further initialization activities can be performed by methods written for generic

functions that are part of the initialization protocol. The complete initialization

protocol is described in section 28.1.9.

28.1.2.3. Slots

An object that has standard-class as its metaclass has zero or more named slots. The

slots of an object are determined by the class of the object. Each slot can hold one

value. The name of a slot is a symbol that is syntactically valid for use as a variable

name.

When a slot does not have a value, the slot is said to be unbound. When an

unbound slot is read, the generic function slot-unbound is invoked. The system

supplied primary method for slot-unbound signals an error.

The default initial value form for a slot is defined by the :initform slot option.

When the :initform form is used to supply a value, it is evaluated in the lexical

environment in which the defclass form was evaluated. The :initform along with the

lexical environment in which the defclass form was evaluated is called a captured

:initform. See section 28.1.9.

A local slot is defined to be a slot that is visible to exactly one instance, namely the

one in which the slot is allocated. A shared slot is defined to be a slot that is visible

to more than one instance of a given class and its subclasses.

A class is said to define a slot with a given name when the defclass form for

that class contains a slot specifier with that name. Defining a local slot does not

immediately create a slot; it causes a slot to be created each time an instance of the

class is created. Defining a shared slot immediately creates a slot.

The :allocation slot option to defclass controls the kind of slot that is defined. If

the value of the :allocation slot option is :instance, a local slot is created. If the

value of :allocation is :class, a shared slot is created.

A slot is said to be accessible in an instance of a class if the slot is defined by the

class of the instance or is inherited from a superclass of that class. At most one slot

772 COMMON LISP

of a given name can be accessible in an instance. A shared slot defined by a class is

accessible in all instances of that class. A detailed explanation of the inheritance of

slots is given in section 28.1.3.2.

28.1.2.4. Accessing Slots

Slots can be accessed in two ways: by use of the primitive function slot-value and

by use of generic functions generated by the defclass form.

The function slot-value can be used with any slot name specified in the defclass

form to access a specific slot accessible in an instance of the given class.

The macro defclass provides syntax for generating methods to read and write slots.

If a reader is requested, a method is automatically generated for reading the value of

the slot, but no method for storing a value into it is generated. If a writer is requested,

a method is automatically generated for storing a value into the slot, but no method

for reading its value is generated. If an accessor is requested, a method for reading

the value of the slot and a method for storing a value into the slot are automatically

generated. Reader and writer methods are implemented using slot-value.

When a reader or writer is specified for a slot, the name of the generic function to

which the generated method belongs is directly specified. If the name specified for

the writer option is the symbol name, the name of the generic function for writing

the slot is the symbol name, and the generic function takes two arguments: the new

value and the instance, in that order. If the name specified for the accessor option is

the symbol name, the name of the generic function for reading the slot is the symbol

name, and the name of the generic function for writing the slot is the list (setf name).

A generic function created or modified by supplying reader, writer, or accessor

slot options can be treated exactly as an ordinary generic function.

Note that slot-value can be used to read or write the value of a slot whether or not

reader or writer methods exist for that slot. When slot-value is used, no reader or

writer methods are invoked.

The macro with-slots can be used to establish a lexical environment in which

specified slots are lexically available as if they were variables. The macro with-slots

invokes the function slot-value to access the specified slots.

The macro with-accessors can be used to establish a lexical environment in which

specified slots are lexically available through their accessors as if they were variables.

The macro with-accessors invokes the appropriate accessors to access the specified

slots. Any accessors specified by with-accessors must already have been defined

before they are used.

COMMON LISP OBJECT SYSTEM 773

28.1.3. Inheritance

A class can inherit methods, slots, and some defclass options from its superclasses.

The following sections describe the inheritance of methods, the inheritance of slots

and slot options, and the inheritance of class options.

28.1.3.1. Inheritance of Methods

A subclass inherits methods in the sense that any method applicable to all instances

of a class is also applicable to all instances of any subclass of that class.

The inheritance of methods acts the same way regardless of whether the method

was created by using one of the methoddefining forms or by using one of the defclass

options that causes methods to be generated automatically.

The inheritance of methods is described in detail in section 28.1.7.

28.1.3.2. Inheritance of Slots and Slot Options

The set of names of all slots accessible in an instance of a class C is the union of the

sets of names of slots defined by C and its superclasses. The structure of an instance

is the set of names of local slots in that instance.

In the simplest case, only one class among C and its superclasses defines a slot

with a given slot name. If a slot is defined by a superclass of C, the slot is said to be

inherited. The characteristics of the slot are determined by the slot specifier of the

defining class. Consider the defining class for a slot S. If the value of the :allocation

slot option is :instance, then S is a local slot and each instance of C has its own slot

named S that stores its own value. If the value of the :allocation slot option is :class,

then S is a shared slot, the class that defined S stores the value, and all instances of

C can access that single slot. If the :allocation slot option is omitted, :instance is

used.

In general, more than one class among C and its superclasses can define a slot with

a given name. In such cases, only one slot with the given name is accessible in an

instance of C, and the characteristics of that slot are a combination of the several slot

specifiers, computed as follows:

. All the slot specifiers for a given slot name are ordered from most specific to

least specific, according to the order in C’s class precedence list of the classes

that define them. All references to the specificity of slot specifiers immediately

following refer to this ordering.

774 COMMON LISP

. The allocation of a slot is controlled by the most specific slot specifier. If the

most specific slot specifier does not contain an :allocation slot option, :instance

is used. Less specific slot specifiers do not affect the allocation.

. The default initial value form for a slot is the value of the :initform slot option in

the most specific slot specifier that contains one. If no slot specifier contains an

:initform slot option, the slot has no default initial value form.

. The contents of a slot will always be of type (and T1 . . . Tn) where T1, . . . , Tn
are the values of the :type slot options contained in all of the slot specifiers. If no

slot specifier contains the :type slot option, the contents of the slot will always be

of type t. The result of attempting to store in a slot a value that does not satisfy

the type of the slot is undefined.

. The set of initialization arguments that initialize a given slot is the union of

the initialization arguments declared in the :initarg slot options in all the slot

specifiers.

. The documentation string for a slot is the value of the :documentation slot option

in the most specific slot specifier that contains one. If no slot specifier contains a

:documentation slot option, the slot has no documentation string.

A consequence of the allocation rule is that a shared slot can be shadowed. For

example, if a class C1 defines a slot named S whose value for the :allocation slot

option is :class, that slot is accessible in instances of C1 and all of its subclasses.

However, if C2 is a subclass of C1 and also defines a slot named S, C1’s slot is not

shared by instances of C2 and its subclasses. When a class C1 defines a shared slot,

any subclass C2 of C1 will share this single slot unless the defclass form for C2
specifies a slot of the same name or there is a superclass of C2 that precedes C1 in

the class precedence list of C2 that defines a slot of the same name.

A consequence of the type rule is that the value of a slot satisfies the type constraint

of each slot specifier that contributes to that slot. Because the result of attempting to

store in a slot a value that does not satisfy the type constraint for the slot is undefined,

the value in a slot might fail to satisfy its type constraint.

The :reader, :writer, and :accessor slot options create methods rather than define

the characteristics of a slot. Reader and writer methods are inherited in the sense

described in section 28.1.3.1.

Methods that access slots use only the name of the slot and the type of the slot’s

value. Suppose a superclass provides a method that expects to access a shared slot of

a given name, and a subclass defines a local slot with the same name. If the method

provided by the superclass is used on an instance of the subclass, the method accesses

the local slot.

COMMON LISP OBJECT SYSTEM 775

28.1.3.3. Inheritance of Class Options

The :default-initargs class option is inherited. The set of defaulted initialization

arguments for a class is the union of the sets of initialization arguments specified

in the :default-initargs class options of the class and its superclasses. When more

than one default initial value form is supplied for a given initialization argument, the

default initial value form that is used is the one supplied by the class that is most

specific according to the class precedence list.

If a given :default-initargs class option specifies an initialization argument of the

same name more than once, an error is signaled.

28.1.3.4. Examples

(defclass C1 ()

((S1 :initform 5.4 :type number)

(S2 :allocation :class)))

(defclass C2 (C1)

((S1 :initform 5 :type integer)

(S2 :allocation :instance)

(S3 :accessor C2-S3)))

Instances of the class C1 have a local slot named S1, whose default initial value is

5.4 and whose value should always be a number. The class C1 also has a shared slot

named S2.

There is a local slot named S1 in instances of C2. The default initial value of S1 is

5. The value of S1 will be of type (and integer number). There are also local slots

named S2 and S3 in instances of C2. The class C2 has a method for C2-S3 for reading

the value of slot S3; there is also a method for (setf C2-S3) that writes the value of

S3.

28.1.4. Integrating Types and Classes

The Common Lisp Object System maps the space of classes into the Common Lisp

type space. Every class that has a proper name has a corresponding type with the

same name.

The proper name of every class is a valid type specifier. In addition, every class

object is a valid type specifier. Thus the expression (typep object class) evaluates to

true if the class of object is class itself or a subclass of class. The evaluation of the

expression (subtypep class1 class2) returns the values t and t if class1 is a subclass

776 COMMON LISP

of class2 or if they are the same class; otherwise it returns the values nil and t. If I

is an instance of some class C named S and C is an instance of standard-class, the

evaluation of the expression (type-of I) will return S if S is the proper name of C; if

S is not the proper name of C, the expression (type-of I) will return C.

Because the names of classes and class objects are type specifiers, they may be

used in the special form the and in type declarations.

Many but not all of the predefined Common Lisp type specifiers have a correspond

ing class with the same proper name as the type. These type specifiers are listed in

table 281. For example, the type array has a corresponding class named array. No

type specifier that is a list, such as (vector double-float 100), has a corresponding

class. The form deftype does not create any classes.

Each class that corresponds to a predefined Common Lisp type specifier can be

implemented in one of three ways, at the discretion of each implementation. It can

be a standard class (of the kind defined by defclass), a structure class (defined by

defstruct), or a builtin class (implemented in a special, nonextensible way).

A builtin class is one whose instances have restricted capabilities or special

representations. Attempting to use defclass to define subclasses of a builtin class

signals an error. Calling make-instance to create an instance of a builtin class signals

an error. Calling slot-value on an instance of a builtin class signals an error.

Redefining a builtin class or using change-class to change the class of an instance

to or from a builtin class signals an error. However, builtin classes can be used as

parameter specializers in methods.

It is possible to determine whether a class is a builtin class by checking the

metaclass. A standard class is an instance of standard-class, a builtin class is an

instance of built-in-class, and a structure class is an instance of structure-class.

Each structure type created by defstruct without using the :type option has a

corresponding class. This class is an instance of structure-class. The :include

option of defstruct creates a direct subclass of the class that corresponds to the

included structure.

The purpose of specifying that many of the standard Common Lisp type specifiers

have a corresponding class is to enable users to write methods that discriminate on

these types. Method selection requires that a class precedence list can be determined

for each class.

The hierarchical relationships among the Common Lisp type specifiers are mir

rored by relationships among the classes corresponding to those types. The existing

type hierarchy is used for determining the class precedence list for each class that

corresponds to a predefined Common Lisp type. In some cases, the first edition did

not specify a local precedence order for two supertypes of a given type specifier. For

example, null is a subtype of both symbol and list, but the first edition did not specify

whether symbol is more specific or less specific than list. The CLOS specification

COMMON LISP OBJECT SYSTEM 777

defines those relationships for all such classes.

Table 281 lists the set of classes required by the Object System that correspond

to predefined Common Lisp type specifiers. The superclasses of each such class

are presented in order from most specific to most general, thereby defining the

class precedence list for the class. The local precedence order for each class that

corresponds to a Common Lisp type specifier can be derived from this table.

Individual implementations may be extended to define other type specifiers to

have a corresponding class. Individual implementations can be extended to add other

subclass relationships and to add other elements to the class precedence lists in the

above table as long as they do not violate the type relationships and disjointness

requirements specified in section 2.15. A standard class defined with no direct

superclasses is guaranteed to be disjoint from all of the classes in the table, except

for the class named t.

[At this point the original CLOS report specified that certain Common Lisp types

were to appear in table 281 if and only if X3J13 voted to make them disjoint from

cons, symbol, array, number, and character. X3J13 voted to do so in June 1988 〈41〉.
I have added these types and their class precedence lists to the table; the new types

are indicated by asterisks.—GLS]

28.1.5. Determining the Class Precedence List

The defclass form for a class provides a total ordering on that class and its direct

superclasses. This ordering is called the local precedence order. It is an ordered list

of the class and its direct superclasses. The class precedence list for a class C is a

total ordering on C and its superclasses that is consistent with the local precedence

orders for C and its superclasses.

A class precedes its direct superclasses, and a direct superclass precedes all other

direct superclasses specified to its right in the superclasses list of the defclass form.

For every class C, define

RC = {(C,C1), (C1,C2), . . . , (Cn−1,Cn)}

where C1, . . . ,Cn are the direct superclasses of C in the order in which they are

mentioned in the defclass form. These ordered pairs generate the total ordering on

the class C and its direct superclasses.

Let SC be the set of C and its superclasses. Let R be

R =
⋃

c ∈ SC

Rc

778 COMMON LISP

Table 281: Class Precedence Lists for Predefined Types

Predefined Common Lisp Type Class Precedence List for Corresponding Class

array (array t)

bit-vector (bit-vector vector array sequence t)

character (character t)

complex (complex number t)

cons (cons list sequence t)

float (float number t)

function * (function t)

hash-table * (hash-table t)

integer (integer rational number t)

list (list sequence t)

null (null symbol list sequence t)

number (number t)

package * (package t)

pathname * (pathname t)

random-state * (random-state t)

ratio (ratio rational number t)

rational (rational number t)

readtable * (readtable t)

sequence (sequence t)

stream * (stream t)

string (string vector array sequence t)

symbol (symbol t)

t (t)

vector (vector array sequence t)

[An asterisk indicates a type added to this table as a consequence of a portion of the CLOS

specification that was conditional on X3J13 voting to make that type disjoint from certain other

builtin types 〈41〉.—GLS]

The set R may or may not generate a partial ordering, depending on whether the

Rc, c ∈ SC, are consistent; it is assumed that they are consistent and that R generates

a partial ordering. When the Rc are not consistent, it is said that R is inconsistent.

To compute the class precedence list for C, topologically sort the elements of SC
with respect to the partial ordering generated by R. When the topological sort must

select a class from a set of two or more classes, none of which are preceded by other

classes with respect to R, the class selected is chosen deterministically, as described

below. If R is inconsistent, an error is signaled.

COMMON LISP OBJECT SYSTEM 779

28.1.5.1. Topological Sorting

Topological sorting proceeds by finding a class C in SC such that no other class

precedes that element according to the elements in R. The class C is placed first in the

result. Remove C from SC, and remove all pairs of the form (C,D), D ∈ SC, from

R. Repeat the process, adding classes with no predecessors to the end of the result.

Stop when no element can be found that has no predecessor.

If SC is not empty and the process has stopped, the set R is inconsistent. If every

class in the finite set of classes is preceded by another, then R contains a loop. That

is, there is a chain of classes C1, . . . , Cn such that Ci precedes Ci+1, 1 ≤ i < n, and

Cn precedes C1.

Sometimes there are several classes from SC with no predecessors. In this case

select the one that has a direct subclass rightmost in the class precedence list computed

so far. If there is no such candidate class, R does not generate a partial ordering—the

Rc, c ∈ SC, are inconsistent.

In more precise terms, let {N1, . . . ,Nm}, m ≥ 2, be the classes from SC with no

predecessors. Let (C1 . . .Cn), n ≥ 1, be the class precedence list constructed so far.

C1 is the most specific class, and Cn is the least specific. Let 1 ≤ j ≤ n be the largest

number such that there exists an i where 1 ≤ i ≤ m and Ni is a direct superclass of

Cj; Ni is placed next.

The effect of this rule for selecting from a set of classes with no predecessors is

that classes in a simple superclass chain are adjacent in the class precedence list and

that classes in each relatively separated subgraph are adjacent in the class precedence

list. For example, let T1 and T2 be subgraphs whose only element in common is the

class J. Suppose that no superclass of J appears in either T1 or T2. Let C1 be the

bottom of T1; and let C2 be the bottom of T2. Suppose C is a class whose direct

superclasses are C1 and C2 in that order; then the class precedence list for C will

start with C and will be followed by all classes in T1 except J. All the classes of T2
will be next. The class J and its superclasses will appear last.

28.1.5.2. Examples

This example determines a class precedence list for the class pie. The following

classes are defined:

(defclass pie (apple cinnamon) ())

(defclass apple (fruit) ())

(defclass cinnamon (spice) ())

(defclass fruit (food) ())

(defclass spice (food) ())

(defclass food () ())

780 COMMON LISP

The set S = {pie, apple, cinnamon, fruit, spice, food, standard-object, t}. The set

R = {(pie, apple), (apple, cinnamon), (cinnamon, standard-object), (apple, fruit),

(fruit, standard-object), (cinnamon, spice), (spice, standard-object), (fruit, food),

(food, standard-object), (spice, food), (standard-object, t)}.

[The original CLOS specification [5, 6] contained a minor error in this example:

the pairs (cinnamon, standard-object), (fruit, standard-object), and

(spice, standard-object) were inadvertently omitted from R in the preceding

paragraph. It is important to understand that defclass implicitly appends the class

standard-object to the list of superclasses when the metaclass is standard-class (the

normal situation), in order to insure that standard-object will be a superclass of

every instance of standard-class except standard-object itself (see section 28.1.2).

Rc is then generated from this augmented list of superclasses; this is where the extra

pairs come from. I have corrected the example by adding these pairs as appropriate

throughout the example. The final result, the class precedence list for pie, is

unchanged.—GLS]

The class pie is not preceded by anything, so it comes first; the result so far is

(pie). Remove pie from S and pairs mentioning pie from R to get

S = {apple, cinnamon, fruit, spice, food, standard-object, t} and

R = {(apple, cinnamon), (cinnamon, standard-object), (apple, fruit), (fruit, standard-

object), (cinnamon, spice), (spice, standard-object), (fruit, food), (food, standard-
object), (spice, food), (standard-object, t)}.

The class apple is not preceded by anything, so it is next; the result is (pie apple).

Removing apple and the relevant pairs results in

S = {cinnamon, fruit, spice, food, standard-object, t} and R = {(cinnamon, standard-

object), (fruit, standard-object), (cinnamon, spice), (spice, standard-object), (fruit,
food), (food, standard-object), (spice, food), (standard-object, t)}.

The classes cinnamon and fruit are not preceded by anything, so the one with a

direct subclass rightmost in the class precedence list computed so far goes next. The

class apple is a direct subclass of fruit, and the class pie is a direct subclass of

cinnamon. Because apple appears to the right of pie in the precedence list, fruit goes

next, and the result so far is (pie apple fruit).

S = {cinnamon, spice, food, standard-object, t};

R = {(cinnamon, standard-object), (cinnamon, spice), (spice, standard-object), (food,

standard-object), (spice, food), (standard-object, t)}.

The class cinnamon is next, giving the result so far as (pie apple fruit cinnamon).

At this point S = {spice, food, standard-object, t}; R = {(spice, standard-object),

(food, standard-object), (spice, food), (standard-object, t)}.

The classes spice, food, standard-object, and t are then added in that order, and

the final class precedence list for pie is

COMMON LISP OBJECT SYSTEM 781

(pie apple fruit cinnamon spice food standard-object t)

It is possible to write a set of class definitions that cannot be ordered. For example:

(defclass new-class (fruit apple) ())

(defclass apple (fruit) ())

The class fruit must precede apple because the local ordering of superclasses must

be preserved. The class apple must precede fruit because a class always precedes its

own superclasses. When this situation occurs, an error is signaled when the system

tries to compute the class precedence list.

The following might appear to be a conflicting set of definitions:

(defclass pie (apple cinnamon) ())

(defclass pastry (cinnamon apple) ())

(defclass apple () ())

(defclass cinnamon () ())

The class precedence list for pie is

(pie apple cinnamon standard-object t)

The class precedence list for pastry is

(pastry cinnamon apple standard-object t)

It is not a problem for apple to precede cinnamon in the ordering of the superclasses

of pie but not in the ordering for pastry. However, it is not possible to build a new

class that has both pie and pastry as superclasses.

28.1.6. Generic Functions and Methods

A generic function is a function whose behavior depends on the classes or identities

of the arguments supplied to it. The methods define the classspecific behavior and

operations of the generic function. The following sections describe generic functions

and methods.

28.1.6.1. Introduction to Generic Functions

A generic function object contains a set of methods, a lambdalist, a method combi

nation type, and other information.

Like an ordinary Lisp function, a generic function takes arguments, performs a

series of operations, and perhaps returns useful values. An ordinary function has a

782 COMMON LISP

single body of code that is always executed when the function is called. A generic

function has a set of bodies of code of which a subset is selected for execution. The

selected bodies of code and the manner of their combination are determined by the

classes or identities of one or more of the arguments to the generic function and by

its method combination type.

Ordinary functions and generic functions are called with identical functioncall

syntax.

Generic functions are true functions that can be passed as arguments, returned as

values, used as the first argument to funcall and apply, and otherwise used in all the

ways an ordinary function may be used.

A name can be given to an ordinary function in one of two ways: a global name

can be given to a function using the defun construct; a local name can be given using

the flet or labels special forms. A generic function can be given a global name

using the defmethod or defgeneric construct. A generic function can be given a local

name using the generic-flet, generic-labels, or with-added-methods special forms.

The name of a generic function, like the name of an ordinary function, can be either

a symbol or a twoelement list whose first element is setf and whose second element

is a symbol. This is true for both local and global names.

The generic-flet special form creates new local generic functions using the set of

methods specified by the method definitions in the generic-flet form. The scoping

of generic function names within a generic-flet form is the same as for flet.

The generic-labels special form creates a set of new mutually recursive local

generic functions using the set of methods specified by the method definitions in the

generic-labels form. The scoping of generic function names within a generic-labels

form is the same as for labels.

The with-added-methods special form creates new local generic functions by adding

the set of methods specified by the method definitions with a given name in the with-

added-methods form to copies of the methods of the lexically visible generic function

of the same name. If there is a lexically visible ordinary function of the same name

as one of the specified generic functions, that function becomes the method function

of the default method for the new generic function of that name.

The generic-function macro creates an anonymous generic function with the set

of methods specified by the method definitions that appear in the generic-function

form.

When a defgeneric form is evaluated, one of three actions is taken:

. If a generic function of the given name already exists, the existing generic function

object is modified. Methods specified by the current defgeneric form are added,

and any methods in the existing generic function that were defined by a previous

defgeneric form are removed. Methods added by the current defgeneric form

COMMON LISP OBJECT SYSTEM 783

might replace methods defined by defmethod or defclass. No other methods in the

generic function are affected or replaced.

. If the given name names a nongeneric function, a macro, or a special form, an

error is signaled.

. Otherwise a generic function is created with the methods specified by the method

definitions in the defgeneric form.

Some forms specify the options of a generic function, such as the type of method

combination it uses or its argument precedence order. They will be referred to as

“forms that specify generic function options.” These forms are defgeneric, generic-

function, generic-flet, generic-labels, and with-added-methods.

Some forms define methods for a generic function. They will be referred to as

“methoddefining forms.” These forms are defgeneric, defmethod, generic-function,

generic-flet, generic-labels, with-added-methods, and defclass. Note that all the

methoddefining forms except defclass and defmethod are also forms that specify

generic function options.

28.1.6.2. Introduction to Methods

A method object contains a method function, a sequence of parameter specializers

that specify when the given method is applicable, a lambdalist, and a sequence of

qualifiers that are used by the method combination facility to distinguish among

methods.

A method object is not a function and cannot be invoked as a function. Various

mechanisms in the Object System take a method object and invoke its method func

tion, as is the case when a generic function is invoked. When this occurs it is said

that the method is invoked or called.

A methoddefining form contains the code that is to be run when the arguments

to the generic function cause the method that it defines to be invoked. When a

methoddefining form is evaluated, a method object is created and one of four actions

is taken:

. If a generic function of the given name already exists and if a method object already

exists that agrees with the new one on parameter specializers and qualifiers, the

new method object replaces the old one. For a definition of one method agreeing

with another on parameter specializers and qualifiers, see section 28.1.6.3.

. If a generic function of the given name already exists and if there is no method

object that agrees with the new one on parameter specializers and qualifiers, the

existing generic function object is modified to contain the new method object.

784 COMMON LISP

. If the given name names a nongeneric function, a macro, or a special form, an

error is signaled.

. Otherwise a generic function is created with the methods specified by the method

defining form.

If the lambdalist of a new method is not congruent with the lambdalist of the

generic function, an error is signaled. If a methoddefining form that cannot specify

generic function options creates a new generic function, a lambdalist for that generic

function is derived from the lambdalists of the methods in the methoddefining form

in such a way as to be congruent with them. For a discussion of congruence, see

section 28.1.6.4.

Each method has a specialized lambdalist, which determines when that method

can be applied. A specialized lambdalist is like an ordinary lambdalist except that

a specialized parameter may occur instead of the name of a required parameter. A

specialized parameter is a list (variable-name parameter-specializer-name), where

parameterspecializername is either a name that names a class or a list (eql form).

A parameter specializer name denotes a parameter specializer as follows:

. A name that names a class denotes that class.

. The list (eql form) denotes the type specifier (eql object), where object is the

result of evaluating form. The form form is evaluated in the lexical environment

in which the methoddefining form is evaluated. Note that form is evaluated only

once, at the time the method is defined, not each time the generic function is called.

Parameter specializer names are used in macros intended as the userlevel interface

(defmethod), while parameter specializers are used in the functional interface.

[It is very important to understand clearly the distinction made in the preceding

paragraph. A parameter specializer name has the form of a type specifier but is

semantically quite different from a type specifier: a parameter specializer name of

the form (eql form) is not a type specifier, for it contains a form to be evaluated.

Type specifiers never contain forms to be evaluated. All parameter specializers

(as opposed to parameter specializer names) are valid type specifiers, but not all

type specifiers are valid parameter specializers. Macros such as defmethod take

parameter specializer names and treat them as specifications for constructing certain

type specifiers (parameter specializers) that may then be used with such functions as

find-method.—GLS]

Only required parameters may be specialized, and there must be a parameter

specializer for each required parameter. For notational simplicity, if some required

parameter in a specialized lambdalist in a methoddefining form is simply a variable

name, its parameter specializer defaults to the class named t.

COMMON LISP OBJECT SYSTEM 785

Given a generic function and a set of arguments, an applicable method is a method

for that generic function whose parameter specializers are satisfied by their corre

sponding arguments. The following definition specifies what it means for a method

to be applicable and for an argument to satisfy a parameter specializer.

Let 〈A1, . . . ,An〉 be the required arguments to a generic function in order. Let

〈P1, . . . ,Pn〉 be the parameter specializers corresponding to the required parameters

of the method M in order. The method M is applicable when each Ai satisfies Pi. If

Pi is a class, and if Ai is an instance of a class C, then it is said that Ai satisfies Pi
when C = Pi or when C is a subclass of Pi. If Pi is of the form (eql object), then it

is said that Ai satisfies Pi when the function eql applied to Ai and object is true.

Because a parameter specializer is a type specifier, the function typep can be used

during method selection to determine whether an argument satisfies a parameter

specializer. In general a parameter specializer cannot be a type specifier list, such

as (vector single-float). The only parameter specializer that can be a list is (eql

object). This requires that Common Lisp define the type specifier eql as if the

following were evaluated:

(deftype eql (object) `(member ,object))

[See section 4.3.—GLS]

A method all of whose parameter specializers are the class named t is called a

default method; it is always applicable but may be shadowed by a more specific

method.

Methods can have qualifiers, which give the method combination procedure a way

to distinguish among methods. A method that has one or more qualifiers is called

a qualified method. A method with no qualifiers is called an unqualified method.

A qualifier is any object other than a list, that is, any nonnil atom. The qualifiers

defined by standard method combination and by the builtin method combination

types are symbols.

In this specification, the terms primary method and auxiliary method are used

to partition methods within a method combination type according to their intended

use. In standard method combination, primary methods are unqualified methods,

and auxiliary methods are methods with a single qualifier that is one of :around,

:before, or :after. When a method combination type is defined using the short form

of define-method-combination, primary methods are methods qualified with the name

of the type of method combination, and auxiliary methods have the qualifier :around.

Thus the terms primary method and auxiliary method have only a relative definition

within a given method combination type.

786 COMMON LISP

28.1.6.3. Agreement on Parameter Specializers and Qualifiers

Two methods are said to agree with each other on parameter specializers and qualifiers

if the following conditions hold:

. Both methods have the same number of required parameters. Suppose the param

eter specializers of the two methods are P1,1 . . . P1,n and P2,1 . . . P2,n.

. For each 1 ≤ i ≤ n, P1,i agrees with P2,i. The parameter specializer P1,i
agrees with P2,i if P1,i and P2,i are the same class or if P1,i = (eql object1),

P2,i = (eql object2), and (eql object1 object2). Otherwise P1,i and P2,i do not

agree.

. The lists of qualifiers of both methods contain the same nonnil atoms in the same

order. That is, the lists are equal.

28.1.6.4. Congruent LambdaLists for All Methods of a

Generic Function

These rules define the congruence of a set of lambdalists, including the lambdalist

of each method for a given generic function and the lambdalist specified for the

generic function itself, if given.

. Each lambdalist must have the same number of required parameters.

. Each lambdalist must have the same number of optional parameters. Each method

can supply its own default for an optional parameter.

. If any lambdalist mentions &rest or &key, each lambdalist must mention one or

both of them.

. If the generic function lambdalist mentions &key, each method must accept all of

the keyword names mentioned after &key, either by accepting them explicitly, by

specifying &allow-other-keys, or by specifying &rest but not &key. Each method

can accept additional keyword arguments of its own. The checking of the validity

of keyword names is done in the generic function, not in each method. A method

is invoked as if the keyword argument pair whose keyword is :allow-other-keys

and whose value is t were supplied, though no such argument pair will be passed.

. The use of &allow-other-keys need not be consistent across lambdalists. If &allow-

other-keys is mentioned in the lambdalist of any applicable method or of the

generic function, any keyword arguments may be mentioned in the call to the

generic function.

COMMON LISP OBJECT SYSTEM 787

. The use of &aux need not be consistent across methods.

If a methoddefining form that cannot specify generic function options creates a

generic function, and if the lambdalist for the method mentions keyword arguments,

the lambdalist of the generic function will mention &key (but no keyword arguments).

28.1.6.5. Keyword Arguments in Generic Functions and Methods

When a generic function or any of its methods mentions &key in a lambdalist, the

specific set of keyword arguments accepted by the generic function varies according

to the applicable methods. The set of keyword arguments accepted by the generic

function for a particular call is the union of the keyword arguments accepted by all

applicable methods and the keyword arguments mentioned after &key in the generic

function definition, if any. A method that has &rest but not &key does not affect the

set of acceptable keyword arguments. If the lambdalist of any applicable method or

of the generic function definition contains &allow-other-keys, all keyword arguments

are accepted by the generic function.

The lambdalist congruence rules require that each method accept all of the key

word arguments mentioned after &key in the generic function definition, by accepting

them explicitly, by specifying &allow-other-keys, or by specifying &rest but not &key.

Each method can accept additional keyword arguments of its own, in addition to the

keyword arguments mentioned in the generic function definition.

788 COMMON LISP

If a generic function is passed a keyword argument that no applicable method

accepts, an error is signaled.

For example, suppose there are two methods defined for width as follows:

(defmethod width ((c character-class) &key font) ...)

(defmethod width ((p picture-class) &key pixel-size) ...)

Assume that there are no other methods and no generic function definition for width.

The evaluation of the following form will signal an error because the keyword

argument :pixel-size is not accepted by the applicable method.

(width (make-instance ´character-class :char #--\Q)

:font ´baskerville :pixel-size 10)

The evaluation of the following form will signal an error.

(width (make-instance ´picture-class :glyph (glyph #--\Q))

:font ´baskerville :pixel-size 10)

The evaluation of the following form will not signal an error if the class named

character-picture-class is a subclass of both picture-class and character-class.

(width (make-instance ´character-picture-class :char #--\Q)

:font ´baskerville :pixel-size 10)

28.1.7. Method Selection and Combination

When a generic function is called with particular arguments, it must determine the

code to execute. This code is called the effective method for those arguments. The

effective method is a combination of the applicable methods in the generic function.

A combination of methods is a Lisp expression that contains calls to some or all of the

methods. If a generic function is called and no methods apply, the generic function

no-applicable-method is invoked.

When the effective method has been determined, it is invoked with the same

arguments that were passed to the generic function. Whatever values it returns are

returned as the values of the generic function.

28.1.7.1. Determining the Effective Method

The effective method for a set of arguments is determined by the following threestep

procedure:

COMMON LISP OBJECT SYSTEM 789

1. Select the applicable methods.

2. Sort the applicable methods by precedence order, putting the most specific method

first.

3. Apply method combination to the sorted list of applicable methods, producing the

effective method.

Selecting the Applicable Methods. This step is described in section 28.1.6.2.

Sorting the Applicable Methods by Precedence Order. To compare the prece

dence of two methods, their parameter specializers are examined in order. The default

examination order is from left to right, but an alternative order may be specified by

the :argument-precedence-order option to defgeneric or to any of the other forms that

specify generic function options.

The corresponding parameter specializers from each method are compared. When

a pair of parameter specializers are equal, the next pair are compared for equality.

If all corresponding parameter specializers are equal, the two methods must have

different qualifiers; in this case, either method can be selected to precede the other.

If some corresponding parameter specializers are not equal, the first pair of pa

rameter specializers that are not equal determines the precedence. If both parameter

specializers are classes, the more specific of the two methods is the method whose

parameter specializer appears earlier in the class precedence list of the corresponding

argument. Because of the way in which the set of applicable methods is chosen, the

parameter specializers are guaranteed to be present in the class precedence list of the

class of the argument.

If just one parameter specializer is (eql object), the method with that parameter

specializer precedes the other method. If both parameter specializers are eql forms,

the specializers must be the same (otherwise the two methods would not both have

been applicable to this argument).

The resulting list of applicable methods has the most specific method first and the

least specific method last.

Applying Method Combination to the Sorted List of Applicable Methods. In

the simple case—if standard method combination is used and all applicable methods

are primary methods—the effective method is the most specific method. That method

can call the next most specific method by using the function call-next-method. The

method that call-next-method will call is referred to as the next method. The predicate

next-method-p tests whether a next method exists. If call-next-method is called and

there is no next most specific method, the generic function no-next-method is invoked.

In general, the effective method is some combination of the applicable methods. It

is defined by a Lisp form that contains calls to some or all of the applicable methods,

returns the value or values that will be returned as the value or values of the generic

790 COMMON LISP

function, and optionally makes some of the methods accessible by means of call-

next-method. This Lisp form is the body of the effective method; it is augmented with

an appropriate lambdalist to make it a function.

The role of each method in the effective method is determined by its method

qualifiers and the specificity of the method. A qualifier serves to mark a method, and

the meaning of a qualifier is determined by the way that these marks are used by this

step of the procedure. If an applicable method has an unrecognized qualifier, this

step signals an error and does not include that method in the effective method.

When standard method combination is used together with qualified methods, the

effective method is produced as described in section 28.1.7.2.

Another type of method combination can be specified by using the :method-

combination option of defgeneric or of any of the other forms that specify generic

function options. In this way this step of the procedure can be customized.

New types of method combination can be defined by using the define-method-

combination macro.

The metaobject level also offers a mechanism for defining new types of method

combination. The generic function compute-effective-method receives as arguments

the generic function, the method combination object, and the sorted list of applicable

methods. It returns the Lisp form that defines the effective method. A method for

compute-effective-method can be defined directly by using defmethod or indirectly

by using define-method-combination. A method combination object is an object that

encapsulates the method combination type and options specified by the :method-

combination option to forms that specify generic function options.

Implementation note: In the simplest implementation, the generic function would compute

the effective method each time it was called. In practice, this will be too inefficient for some

implementations. Instead, these implementations might employ a variety of optimizations of

the threestep procedure. Some illustrative examples of such optimizations are the following:

. Use a hash table keyed by the class of the arguments to store the effective method.

. Compile the effective method and save the resulting compiled function in a table.

. Recognize the Lisp form as an instance of a pattern of control structure and substitute a

closure that implements that structure.

. Examine the parameter specializers of all methods for the generic function and enumerate

all possible effective methods. Combine the effective methods, together with code to select

from among them, into a single function and compile that function. Call that function

whenever the generic function is called.

COMMON LISP OBJECT SYSTEM 791

28.1.7.2. Standard Method Combination

Standard method combination is supported by the class standard-generic-function.

It is used if no other type of method combination is specified or if the builtin method

combination type standard is specified.

Primary methods define the main action of the effective method, while auxiliary

methods modify that action in one of three ways. A primary method has no method

qualifiers.

An auxiliary method is a method whose method qualifier is :before, :after, or

:around. Standard method combination allows no more than one qualifier per method;

if a method definition specifies more than one qualifier per method, an error is

signaled.

. A :before method has the keyword :before as its only qualifier. A :before method

specifies code that is to be run before any primary method.

. An :after method has the keyword :after as its only qualifier. An :after method

specifies code that is to be run after primary methods.

. An :around method has the keyword :around as its only qualifier. An :around

method specifies code that is to be run instead of other applicable methods but that

is able to cause some of them to be run.

The semantics of standard method combination are as follows:

. If there are any :around methods, the most specific :around method is called. It

supplies the value or values of the generic function.

. Inside the body of an :around method, call-next-method can be used to call the

next method. When the next method returns, the :around method can execute

more code, perhaps based on the returned value or values. The generic function

no-next-method is invoked if call-next-method is used and there is no applicable

method to call. The function next-method-p may be used to determine whether a

next method exists.

. If an :around method invokes call-next-method, the next most specific :around

method is called, if one is applicable. If there are no :around methods or if call-

next-method is called by the least specific :around method, the other methods are

called as follows:

– All the :before methods are called, in mostspecificfirst order. Their values are

ignored. An error is signaled if call-next-method is used in a :before method.

– The most specific primary method is called. Inside the body of a primary method,

call-next-method may be used to call the next most specific primary method.

792 COMMON LISP

When that method returns, the previous primary method can execute more code,

perhaps based on the returned value or values. The generic function no-next-

method is invoked if call-next-method is used and there are no more applicable

primary methods. The function next-method-p may be used to determine whether

a next method exists. If call-next-method is not used, only the most specific

primary method is called.

– All the :after methods are called in mostspecificlast order. Their values are

ignored. An error is signaled if call-next-method is used in an :after method.

. If no :around methods were invoked, the most specific primary method supplies

the value or values returned by the generic function. The value or values returned

by the invocation of call-next-method in the least specific :around method are those

returned by the most specific primary method.

In standard method combination, if there is an applicable method but no applicable

primary method, an error is signaled.

The :before methods are run in mostspecificfirst order and the :after methods

are run in leastspecificfirst order. The design rationale for this difference can be

illustrated with an example. Suppose class C1 modifies the behavior of its superclass,

C2, by adding :before and :after methods. Whether the behavior of the class C2 is

defined directly by methods on C2 or is inherited from its superclasses does not affect

the relative order of invocation of methods on instances of the class C1. Class C1’s

:before method runs before all of class C2’s methods. Class C1’s :after method

runs after all of class C2’s methods.

By contrast, all :around methods run before any other methods run. Thus a less

specific :around method runs before a more specific primary method.

If only primary methods are used and if call-next-method is not used, only the

most specific method is invoked; that is, more specific methods shadow more general

ones.

28.1.7.3. Declarative Method Combination

The macro define-method-combination defines new forms of method combination. It

provides a mechanism for customizing the production of the effective method. The

default procedure for producing an effective method is described in section 28.1.7.1.

There are two forms of define-method-combination. The short form is a simple facility;

the long form is more powerful and more verbose. The long form resembles defmacro

in that the body is an expression that computes a Lisp form; it provides mechanisms

for implementing arbitrary control structures within method combination and for

COMMON LISP OBJECT SYSTEM 793

arbitrary processing of method qualifiers. The syntax and use of both forms of

define-method-combination are explained in section 28.2.

28.1.7.4. Builtin Method Combination Types

The Common Lisp Object System provides a set of builtin method combination

types. To specify that a generic function is to use one of these method combination

types, the name of the method combination type is given as the argument to the

:method-combination option to defgeneric or to the :method-combination option to any

of the other forms that specify generic function options.

The names of the builtin method combination types are +, and, append, list, max,

min, nconc, or, progn, and standard.

The semantics of the standard builtin method combination type were described

in section 28.1.7.2. The other builtin method combination types are called simple

builtin method combination types.

The simple builtin method combination types act as though they were defined by

the short form of define-method-combination. They recognize two roles for methods:

. An :around method has the keyword symbol :around as its sole qualifier. The

meaning of :around methods is the same as in standard method combination.

Use of the functions call-next-method and next-method-p is supported in :around

methods.

. A primary method has the name of the method combination type as its sole qualifier.

For example, the builtin method combination type and recognizes methods whose

sole qualifier is and; these are primary methods. Use of the functions call-next-

method and next-method-p is not supported in primary methods.

The semantics of the simple builtin method combination types are as follows:

. If there are any :around methods, the most specific :around method is called. It

supplies the value or values of the generic function.

. Inside the body of an :around method, the function call-next-method can be used to

call the next method. The generic function no-next-method is invoked if call-next-

method is used and there is no applicable method to call. The function next-method-p

may be used to determine whether a next method exists. When the next method

returns, the :around method can execute more code, perhaps based on the returned

value or values.

. If an :around method invokes call-next-method, the next most specific :around

method is called, if one is applicable. If there are no :around methods or if call-

next-method is called by the least specific :around method, a Lisp form derived from

794 COMMON LISP

the name of the builtin method combination type and from the list of applicable

primary methods is evaluated to produce the value of the generic function. Suppose

the name of the method combination type is operator and the call to the generic

function is of the form

(genericfunction a1 ... an)

Let M1, . . . ,Mk be the applicable primary methods in order; then the derived Lisp

form is

(operator 〈M1 a1 . . . an〉 ... 〈Mk a1 . . . an〉)

If the expression 〈Mi a1 . . . an〉 is evaluated, the method Mi will be applied to the

arguments a1 . . . an. For example, if operator is or, the expression 〈Mi a1 . . . an〉
is evaluated only if 〈Mj a1 . . . an〉, 1 ≤ j < i, returned nil.

The default order for the primary methods is :most-specific-first. However, the

order can be reversed by supplying :most-specific-last as the second argument to

the :method-combination option.

The simple builtin method combination types require exactly one qualifier per

method. An error is signaled if there are applicable methods with no qualifiers or

with qualifiers that are not supported by the method combination type. An error is

signaled if there are applicable :around methods and no applicable primary methods.

28.1.8. Metaobjects

The implementation of the Object System manipulates classes, methods, and generic

functions. The metaobject protocol specifies a set of generic functions defined by

methods on classes; the behavior of those generic functions defines the behavior of the

Object System. The instances of the classes on which those methods are defined are

called metaobjects. Programming at the metaobject protocol level involves defining

new classes of metaobjects along with methods specialized on these classes.

COMMON LISP OBJECT SYSTEM 795

28.1.8.1. Metaclasses

The metaclass of an object is the class of its class. The metaclass determines the

representation of instances of its instances and the forms of inheritance used by its

instances for slot descriptions and method inheritance. The metaclass mechanism

can be used to provide particular forms of optimization or to tailor the Common Lisp

Object System for particular uses. The protocol for defining metaclasses is discussed

in the third part of the CLOS specification, The Common Lisp Object System Meta

Object Protocol. [The third part has not yet been approved by X3J13 for inclusion in

the forthcoming Common Lisp standard and is not included in this book.—GLS]

28.1.8.2. Standard Metaclasses

The Common Lisp Object System provides a number of predefined metaclasses.

These include the classes standard-class, built-in-class, and structure-class:

. The class standard-class is the default class of classes defined by defclass.

. The class built-in-class is the class whose instances are classes that have special

implementations with restricted capabilities. Any class that corresponds to a stan

dard Common Lisp type might be an instance of built-in-class. The predefined

Common Lisp type specifiers that are required to have corresponding classes are

listed in table 281. It is implementationdependent whether each of these classes

is implemented as a builtin class.

. All classes defined by means of defstruct are instances of structure-class.

28.1.8.3. Standard Metaobjects

The Object System supplies a standard set of metaobjects, called standard meta

objects. These include the class standard-object and instances of the classes standard-

method, standard-generic-function, and method-combination.

. The class standard-method is the default class of methods that are defined by the

forms defmethod, defgeneric, generic-function, generic-flet, generic-labels, and

with-added-methods.

. The class standard-generic-function is the default class of generic functions de

fined by the forms defmethod, defgeneric, generic-function, generic-flet, generic-

labels, with-added-methods, and defclass.

. The class named standard-object is an instance of the class standard-class and is

a superclass of every class that is an instance of standard-class except itself.

796 COMMON LISP

. Every method combination object is an instance of a subclass of the class method-

combination.

28.1.9. Object Creation and Initialization

The generic function make-instance creates and returns a new instance of a class. The

first argument is a class or the name of a class, and the remaining arguments form an

initialization argument list.

The initialization of a new instance consists of several distinct steps, including

the following: combining the explicitly supplied initialization arguments with de

fault values for the unsupplied initialization arguments, checking the validity of the

initialization arguments, allocating storage for the instance, filling slots with values,

and executing usersupplied methods that perform additional initialization. Each step

of make-instance is implemented by a generic function to provide a mechanism for

customizing that step. In addition, make-instance is itself a generic function and thus

also can be customized.

The Object System specifies systemsupplied primary methods for each step and

thus specifies a welldefined standard behavior for the entire initialization process.

The standard behavior provides four simple mechanisms for controlling initialization:

. Declaring a symbol to be an initialization argument for a slot. An initialization

argument is declared by using the :initarg slot option to defclass. This provides

a mechanism for supplying a value for a slot in a call to make-instance.

. Supplying a default value form for an initialization argument. Default value forms

for initialization arguments are defined by using the :default-initargs class option

to defclass. If an initialization argument is not explicitly provided as an argument

to make-instance, the default value form is evaluated in the lexical environment of

the defclass form that defined it, and the resulting value is used as the value of the

initialization argument.

. Supplying a default initial value form for a slot. A default initial value form for a

slot is defined by using the :initform slot option to defclass. If no initialization

argument associated with that slot is given as an argument to make-instance or is

defaulted by :default-initargs, this default initial value form is evaluated in the

lexical environment of the defclass form that defined it, and the resulting value is

stored in the slot. The :initform form for a local slot may be used when creating

an instance, when updating an instance to conform to a redefined class, or when

updating an instance to conform to the definition of a different class. The :initform

form for a shared slot may be used when defining or redefining the class.

COMMON LISP OBJECT SYSTEM 797

. Defining methods for initialize-instance and shared-initialize. The slotfilling

behavior described above is implemented by a systemsupplied primary method

for initialize-instance which invokes shared-initialize. The generic function

shared-initialize implements the parts of initialization shared by these four situ

ations: when making an instance, when reinitializing an instance, when updating

an instance to conform to a redefined class, and when updating an instance to con

form to the definition of a different class. The systemsupplied primary method for

shared-initialize directly implements the slotfilling behavior described above,

and initialize-instance simply invokes shared-initialize.

28.1.9.1. Initialization Arguments

An initialization argument controls object creation and initialization. It is often

convenient to use keyword symbols to name initialization arguments, but the name

of an initialization argument can be any symbol, including nil. An initialization

argument can be used in two ways: to fill a slot with a value or to provide an

argument for an initialization method. A single initialization argument can be used

for both purposes.

An initialization argument list is a list of alternating initialization argument names

and values. Its structure is identical to a property list and also to the portion of an

argument list processed for &key parameters. As in those lists, if an initialization

argument name appears more than once in an initialization argument list, the leftmost

occurrence supplies the value and the remaining occurrences are ignored. The

arguments to make-instance (after the first argument) form an initialization argument

list. Error checking of initialization argument names is disabled if the keyword

argument pair whose keyword is :allow-other-keys and whose value is nonnil

appears in the initialization argument list.

An initialization argument can be associated with a slot. If the initialization

argument has a value in the initialization argument list, the value is stored into

the slot of the newly created object, overriding any :initform form associated with

the slot. A single initialization argument can initialize more than one slot. An

initialization argument that initializes a shared slot stores its value into the shared

slot, replacing any previous value.

An initialization argument can be associated with a method. When an object is

created and a particular initialization argument is supplied, the generic functions

initialize-instance, shared-initialize, and allocate-instance are called with that

initialization argument’s name and value as a keyword argument pair. If a value

for the initialization argument is not supplied in the initialization argument list, the

method’s lambdalist supplies a default value.

798 COMMON LISP

Initialization arguments are used in four situations: when making an instance,

when reinitializing an instance, when updating an instance to conform to a redefined

class, and when updating an instance to conform to the definition of a different class.

Because initialization arguments are used to control the creation and initialization

of an instance of some particular class, we say that an initialization argument is “an

initialization argument for” that class.

28.1.9.2. Declaring the Validity of Initialization Arguments

Initialization arguments are checked for validity in each of the four situations that use

them. An initialization argument may be valid in one situation and not another. For

example, the systemsupplied primary method for make-instance defined for the class

standard-class checks the validity of its initialization arguments and signals an error

if an initialization argument is supplied that is not declared valid in that situation.

There are two means of declaring initialization arguments valid.

. Initialization arguments that fill slots are declared valid by the :initarg slot option

to defclass. The :initarg slot option is inherited from superclasses. Thus the set

of valid initialization arguments that fill slots for a class is the union of the initial

ization arguments that fill slots declared valid by that class and its superclasses.

Initialization arguments that fill slots are valid in all four contexts.

. Initialization arguments that supply arguments to methods are declared valid by

defining those methods. The keyword name of each keyword parameter specified

in the method’s lambdalist becomes an initialization argument for all classes for

which the method is applicable. Thus method inheritance controls the set of valid

initialization arguments that supply arguments to methods. The generic functions

for which method definitions serve to declare initialization arguments valid are as

follows:

– Making an instance of a class: allocate-instance, initialize-instance, and

shared-initialize. Initialization arguments declared valid by these methods are

valid when making an instance of a class.

– Reinitializing an instance: the functions reinitialize-instance and shared-

initialize. Initialization arguments declared valid by these methods are valid

when reinitializing an instance.

– Updating an instance to conform to a redefined class: update-instance-for-

redefined-class and shared-initialize. Initialization arguments declared valid

by these methods are valid when updating an instance to conform to a redefined

class.

COMMON LISP OBJECT SYSTEM 799

– Updating an instance to conform to the definition of a different class: update-

instance-for-different-class and shared-initialize. Initialization arguments

declared valid by these methods are valid when updating an instance to conform

to the definition of a different class.

The set of valid initialization arguments for a class is the set of valid initialization

arguments that either fill slots or supply arguments to methods, along with the

predefined initialization argument :allow-other-keys. The default value for :allow-

other-keys is nil. The meaning of :allow-other-keys is the same here as when it is

passed to an ordinary function.

28.1.9.3. Defaulting of Initialization Arguments

A default value form can be supplied for an initialization argument by using the

:default-initargs class option. If an initialization argument is declared valid by

some particular class, its default value form might be specified by a different class.

In this case :default-initargs is used to supply a default value for an inherited

initialization argument.

The :default-initargs option is used only to provide default values for initializa

tion arguments; it does not declare a symbol as a valid initialization argument name.

Furthermore, the :default-initargs option is used only to provide default values for

initialization arguments when making an instance.

The argument to the :default-initargs class option is a list of alternating initial

ization argument names and forms. Each form is the default value form for the

corresponding initialization argument. The default value form of an initialization

argument is used and evaluated only if that initialization argument does not appear

in the arguments to make-instance and is not defaulted by a more specific class. The

default value form is evaluated in the lexical environment of the defclass form that

supplied it; the result is used as the initialization argument’s value.

The initialization arguments supplied to make-instance are combined with de

faulted initialization arguments to produce a defaulted initialization argument list.

A defaulted initialization argument list is a list of alternating initialization argument

names and values in which unsupplied initialization arguments are defaulted and in

which the explicitly supplied initialization arguments appear earlier in the list than

the defaulted initialization arguments. Defaulted initialization arguments are ordered

according to the order in the class precedence list of the classes that supplied the

default values.

There is a distinction between the purposes of the :default-initargs and the

:initform options with respect to the initialization of slots. The :default-initargs

class option provides a mechanism for the user to give a default value form for an

800 COMMON LISP

initialization argument without knowing whether the initialization argument initial

izes a slot or is passed to a method. If that initialization argument is not explicitly

supplied in a call to make-instance, the default value form is used, just as if it had

been supplied in the call. In contrast, the :initform slot option provides a mechanism

for the user to give a default initial value form for a slot. An :initform form is used

to initialize a slot only if no initialization argument associated with that slot is given

as an argument to make-instance or is defaulted by :default-initargs.

The order of evaluation of default value forms for initialization arguments and

the order of evaluation of :initform forms are undefined. If the order of evaluation

matters, use initialize-instance or shared-initialize methods.

28.1.9.4. Rules for Initialization Arguments

The :initarg slot option may be specified more than once for a given slot. The

following rules specify when initialization arguments may be multiply defined:

. A given initialization argument can be used to initialize more than one slot if the

same initialization argument name appears in more than one :initarg slot option.

. A given initialization argument name can appear in the lambdalist of more than

one initialization method.

. A given initialization argument name can appear both in an :initarg slot option

and in the lambdalist of an initialization method.

If two or more initialization arguments that initialize the same slot are given in

the arguments to make-instance, the leftmost of these initialization arguments in the

initialization argument list supplies the value, even if the initialization arguments

have different names.

If two or more different initialization arguments that initialize the same slot have

default values and none is given explicitly in the arguments to make-instance, the

initialization argument that appears in a :default-initargs class option in the most

specific of the classes supplies the value. If a single :default-initargs class option

specifies two or more initialization arguments that initialize the same slot and none

is given explicitly in the arguments to make-instance, the leftmost argument in the

:default-initargs class option supplies the value, and the values of the remaining

default value forms are ignored.

Initialization arguments given explicitly in the arguments to make-instance appear

to the left of defaulted initialization arguments. Suppose that the classes C1 and

C2 supply the values of defaulted initialization arguments for different slots, and

suppose that C1 is more specific than C2; then the defaulted initialization argument

whose value is supplied by C1 is to the left of the defaulted initialization argument

COMMON LISP OBJECT SYSTEM 801

whose value is supplied by C2 in the defaulted initialization argument list. If a

single :default-initargs class option supplies the values of initialization arguments

for two different slots, the initialization argument whose value is specified farther to

the left in the default-initargs class option appears farther to the left in the defaulted

initialization argument list.

If a slot has both an :initform form and an :initarg slot option, and the initialization

argument is defaulted using :default-initargs or is supplied to make-instance, the

captured :initform form is neither used nor evaluated.

The following is an example of the preceding rules:

(defclass q () ((x :initarg a)))

(defclass r (q) ((x :initarg b))

(:default-initargs a 1 b 2))

Defaulted Initialization Contents

Form Argument List of Slot

(make-instance ´r) (a 1 b 2) 1

(make-instance ´r ´a 3) (a 3 b 2) 3

(make-instance ´r ´b 4) (b 4 a 1) 4

(make-instance ´r ´a 1 ´a 2) (a 1 a 2 b 2) 1

28.1.9.5. SharedInitialize

The generic function shared-initialize is used to fill the slots of an instance using

initialization arguments and :initform forms when an instance is created, when an

instance is reinitialized, when an instance is updated to conform to a redefined class,

and when an instance is updated to conform to a different class. It uses standard

method combination. It takes the following arguments: the instance to be initialized,

a specification of a set of names of slots accessible in that instance, and any number of

initialization arguments. The arguments after the first two must form an initialization

argument list.

The second argument to shared-initialize may be one of the following:

. It can be a list of slot names, which specifies the set of those slot names.

. It can be nil, which specifies the empty set of slot names.

. It can be the symbol t, which specifies the set of all of the slots.

There is a systemsupplied primary method for shared-initialize whose first

parameter specializer is the class standard-object. This method behaves as follows

on each slot, whether shared or local:

802 COMMON LISP

. If an initialization argument in the initialization argument list specifies a value for

that slot, that value is stored into the slot, even if a value has already been stored

in the slot before the method is run. The affected slots are independent of which

slots are indicated by the second argument to shared-initialize.

. Any slots indicated by the second argument that are still unbound at this point

are initialized according to their :initform forms. For any such slot that has an

:initform form, that form is evaluated in the lexical environment of its defining

defclass form and the result is stored into the slot. For example, if a :before

method stores a value in the slot, the :initform form will not be used to supply a

value for the slot. If the second argument specifies a name that does not correspond

to any slots accessible in the instance, the results are unspecified.

. The rules mentioned in section 28.1.9.4 are obeyed.

The generic function shared-initialize is called by the systemsupplied

primary methods for the generic functions initialize-instance, reinitialize-

instance, update-instance-for-different-class, and update-instance-for-redefined-

class. Thus methods can be written for shared-initialize to specify actions that

should be taken in all of these contexts.

28.1.9.6. InitializeInstance

The generic function initialize-instance is called by make-instance to initialize

a newly created instance. It uses standard method combination. Methods for

initialize-instance can be defined in order to perform any initialization that cannot

be achieved with the simple slotfilling mechanisms.

COMMON LISP OBJECT SYSTEM 803

During initialization, initialize-instance is invoked after the following actions

have been taken:

. The defaulted initialization argument list has been computed by combining the

supplied initialization argument list with any default initialization arguments for

the class.

. The validity of the defaulted initialization argument list has been checked. If any

of the initialization arguments has not been declared valid, an error is signaled.

. A new instance whose slots are unbound has been created.

The generic function initialize-instance is called with the new instance and the

defaulted initialization arguments. There is a systemsupplied primary method for

initialize-instance whose parameter specializer is the class standard-object. This

method calls the generic function shared-initialize to fill in the slots according to

the initialization arguments and the :initform forms for the slots; the generic function

shared-initialize is called with the following arguments: the instance, t, and the

defaulted initialization arguments.

Note that initialize-instance provides the defaulted initialization argument list

in its call to shared-initialize, so the first step performed by the systemsupplied

primary method for shared-initialize takes into account both the initialization argu

ments provided in the call to make-instance and the defaulted initialization argument

list.

Methods for initialize-instance can be defined to specify actions to be taken

when an instance is initialized. If only :after methods for initialize-instance are

defined, they will be run after the systemsupplied primary method for initialization

and therefore they will not interfere with the default behavior of initialize-instance.

The Object System provides two functions that are useful in the bodies of

initialize-instance methods. The function slot-boundp returns a boolean value

that indicates whether a specified slot has a value; this provides a mechanism for

writing :after methods for initialize-instance that initialize slots only if they have

not already been initialized. The function slot-makunbound causes the slot to have no

value.

28.1.9.7. Definitions of MakeInstance and InitializeInstance

The generic function make-instance behaves as if it were defined as follows, except

that certain optimizations are permitted:

804 COMMON LISP

(defmethod make-instance ((class standard-class) &rest initargs)

(setq initargs (default-initargs class initargs))

...

(let ((instance (apply #--´allocate-instance class initargs)))

(apply #--´initialize-instance instance initargs)

instance))

(defmethod make-instance ((class-name symbol) &rest initargs)

(apply #--´make-instance (find-class class-name) initargs))

The elided code in the definition of make-instance checks the supplied initialization

arguments to determine whether an initialization argument was supplied that neither

filled a slot nor supplied an argument to an applicable method. This check could be im

plemented using the generic functions class-prototype, compute-applicable-methods,

function-keywords, and class-slot-initargs. See the third part of the Common Lisp

Object System specification for a description of this initialization argument check.

[The third part has not yet been approved by X3J13 for inclusion in the forthcoming

Common Lisp standard and is not included in this book.—GLS]

The generic function initialize-instance behaves as if it were defined as follows,

except that certain optimizations are permitted:

(defmethod initialize-instance

((instance standard-object) &rest initargs)

(apply #--´shared-initialize instance t initargs)))

These procedures can be customized at either the Programmer Interface level, the

metaobject level, or both.

Customizing at the Programmer Interface level includes using the :initform,

:initarg, and :default-initargs options to defclass, as well as defining methods

for make-instance and initialize-instance. It is also possible to define meth

ods for shared-initialize, which would be invoked by the generic functions

reinitialize-instance, update-instance-for-redefined-class, update-instance-for-

different-class, and initialize-instance. The metaobject level supports additional

customization by allowing methods to be defined on make-instance, default-initargs,

and allocate-instance. Parts 2 and 3 of the Common Lisp Object System specifi

cation document each of these generic functions and the systemsupplied primary

methods. [The third part has not yet been approved by X3J13 for inclusion in the

forthcoming Common Lisp standard and is not included in this book.—GLS]

Implementations are permitted to make certain optimizations to initialize-

instance and shared-initialize. The description of shared-initialize in section 28.2

mentions the possible optimizations.

COMMON LISP OBJECT SYSTEM 805

Because of optimization, the check for valid initialization arguments might not

be implemented using the generic functions class-prototype, compute-applicable-

methods, function-keywords, and class-slot-initargs. In addition, methods for the

generic function default-initargs and the systemsupplied primary methods for

allocate-instance, initialize-instance, and shared-initialize might not be called

on every call to make-instance or might not receive exactly the arguments that would

be expected.

28.1.10. Redefining Classes

A class that is an instance of standard-class can be redefined if the new class will also

be an instance of standard-class. Redefining a class modifies the existing class object

to reflect the new class definition; it does not create a new class object for the class.

Any method object created by a :reader, :writer, or :accessor option specified by

the old defclass form is removed from the corresponding generic function. Methods

specified by the new defclass form are added.

When the class C is redefined, changes are propagated to its instances and

to instances of any of its subclasses. Updating such an instance occurs at an

implementationdependent time, but no later than the next time a slot of that in

stance is read or written. Updating an instance does not change its identity as defined

by the eq function. The updating process may change the slots of that particular in

stance, but it does not create a new instance. Whether updating an instance consumes

storage is implementationdependent.

Note that redefining a class may cause slots to be added or deleted. If a class

is redefined in a way that changes the set of local slots accessible in instances, the

instances will be updated. It is implementationdependent whether instances are

updated if a class is redefined in a way that does not change the set of local slots

accessible in instances.

The value of a slot that is specified as shared both in the old class and in the new

class is retained. If such a shared slot was unbound in the old class, it will be unbound

in the new class. Slots that were local in the old class and that are shared in the new

class are initialized. Newly added shared slots are initialized.

Each newly added shared slot is set to the result of evaluating the captured :initform

form for the slot that was specified in the defclass form for the new class. If there is

no :initform form, the slot is unbound.

If a class is redefined in such a way that the set of local slots accessible in an instance

of the class is changed, a twostep process of updating the instances of the class takes

place. The process may be explicitly started by invoking the generic function make-

instances-obsolete. This twostep process can happen in other circumstances in

806 COMMON LISP

some implementations. For example, in some implementations this twostep process

will be triggered if the order of slots in storage is changed.

The first step modifies the structure of the instance by adding new local slots

and discarding local slots that are not defined in the new version of the class. The

second step initializes the newly added local slots and performs any other userdefined

actions. These steps are further specified in the next two sections.

28.1.10.1. Modifying the Structure of Instances

The first step modifies the structure of instances of the redefined class to conform to

its new class definition. Local slots specified by the new class definition that are not

specified as either local or shared by the old class are added, and slots not specified

as either local or shared by the new class definition that are specified as local by the

old class are discarded. The names of these added and discarded slots are passed as

arguments to update-instance-for-redefined-class as described in the next section.

The values of local slots specified by both the new and old classes are retained. If

such a local slot was unbound, it remains unbound.

The value of a slot that is specified as shared in the old class and as local in the new

class is retained. If such a shared slot was unbound, the local slot will be unbound.

28.1.10.2. Initializing Newly Added Local Slots

The second step initializes the newly added local slots and performs any other user

defined actions. This step is implemented by the generic function update-instance-

for-redefined-class, which is called after completion of the first step of modifying

the structure of the instance.

The generic function update-instance-for-redefined-class takes four required ar

guments: the instance being updated after it has undergone the first step, a list of

the names of local slots that were added, a list of the names of local slots that were

discarded, and a property list containing the slot names and values of slots that were

discarded and had values. Included among the discarded slots are slots that were

local in the old class and that are shared in the new class.

The generic function update-instance-for-redefined-class also takes any number

of initialization arguments. When it is called by the system to update an instance

whose class has been redefined, no initialization arguments are provided.

There is a systemsupplied primary method for the generic function update-

instance-for-redefined-class whose parameter specializer for its instance argument

is the class standard-object. First this method checks the validity of initialization

arguments and signals an error if an initialization argument is supplied that is not

COMMON LISP OBJECT SYSTEM 807

declared valid (see section 28.1.9.2.) Then it calls the generic function shared-

initialize with the following arguments: the instance, the list of names of the newly

added slots, and the initialization arguments it received.

28.1.10.3. Customizing Class Redefinition

Methods for update-instance-for-redefined-class may be defined to specify actions

to be taken when an instance is updated. If only :after methods for update-instance-

for-redefined-class are defined, they will be run after the systemsupplied primary

method for initialization and therefore will not interfere with the default behavior

of update-instance-for-redefined-class. Because no initialization arguments are

passed to update-instance-for-redefined-class when it is called by the system, the

:initform forms for slots that are filled by :before methods for update-instance-for-

redefined-class will not be evaluated by shared-initialize.

Methods for shared-initialize may be defined to customize class redefinition (see

section 28.1.9.5).

28.1.10.4. Extensions

There are two allowed extensions to class redefinition:

. The Object System may be extended to permit the new class to be an instance of a

metaclass other than the metaclass of the old class.

. The Object System may be extended to support an updating process when either

the old or the new class is an instance of a class other than standard-class that is

not a builtin class.

28.1.11. Changing the Class of an Instance

The function change-class can be used to change the class of an instance from its

current class, Cfrom, to a different class, Cto; it changes the structure of the instance

to conform to the definition of the class Cto.

Note that changing the class of an instance may cause slots to be added or deleted.

When change-class is invoked on an instance, a twostep updating process takes

place. The first step modifies the structure of the instance by adding new local slots

and discarding local slots that are not specified in the new version of the instance. The

second step initializes the newly added local slots and performs any other userdefined

actions. These steps are further described in the following two sections.

808 COMMON LISP

28.1.11.1. Modifying the Structure of an Instance

In order to make an instance conform to the class Cto, local slots specified by the

class Cto that are not specified by the class Cfrom are added, and local slots not

specified by the class Cto that are specified by the class Cfrom are discarded.

The values of local slots specified by both the class Cto and the class Cfrom are

retained. If such a local slot was unbound, it remains unbound.

The values of slots specified as shared in the class Cfrom and as local in the class

Cto are retained.

This first step of the update does not affect the values of any shared slots.

28.1.11.2. Initializing Newly Added Local Slots

The second step of the update initializes the newly added slots and performs any

other userdefined actions. This step is implemented by the generic function update-

instance-for-different-class. The generic function update-instance-for-different-

class is invoked by change-class after the first step of the update has been completed.

The generic function update-instance-for-different-class is invoked on two argu

ments computed by change-class. The first argument passed is a copy of the instance

being updated and is an instance of the class Cfrom; this copy has dynamic extent

within the generic function change-class. The second argument is the instance as

updated so far by change-class and is an instance of the class Cto.

The generic function update-instance-for-different-class also takes any number

of initialization arguments. When it is called by change-class, no initialization

arguments are provided.

There is a systemsupplied primary method for the generic function update-

instance-for-different-class that has two parameter specializers, each of which

is the class standard-object. First this method checks the validity of initialization

arguments and signals an error if an initialization argument is supplied that is not

declared valid (see section 28.1.9.2). Then it calls the generic function shared-

initialize with the following arguments: the instance, a list of names of the newly

added slots, and the initialization arguments it received.

28.1.11.3. Customizing the Change of Class of an Instance

Methods for update-instance-for-different-class may be defined to specify actions

to be taken when an instance is updated. If only :after methods for update-instance-

for-different-class are defined, they will be run after the systemsupplied primary

method for initialization and will not interfere with the default behavior of update-

instance-for-different-class. Because no initialization arguments are passed to

COMMON LISP OBJECT SYSTEM 809

update-instance-for-different-class when it is called by change-class, the :initform

forms for slots that are filled by :before methods for update-instance-for-different-

class will not be evaluated by shared-initialize.

Methods for shared-initialize may be defined to customize class redefinition (see

section 28.1.9.5).

28.1.12. Reinitializing an Instance

The generic function reinitialize-instance may be used to change the values of slots

according to initialization arguments.

The process of reinitialization changes the values of some slots and performs any

userdefined actions.

Reinitialization does not modify the structure of an instance to add or delete slots,

and it does not use any :initform forms to initialize slots.

The generic function reinitialize-instance may be called directly. It takes one

required argument, the instance. It also takes any number of initialization arguments

to be used by methods for reinitialize-instance or for shared-initialize. The

arguments after the required instance must form an initialization argument list.

There is a systemsupplied primary method for reinitialize-instance whose pa

rameter specializer is the class standard-object. First this method checks the validity

of initialization arguments and signals an error if an initialization argument is sup

plied that is not declared valid (see section 28.1.9.2). Then it calls the generic

function shared-initialize with the following arguments: the instance, nil, and the

initialization arguments it received.

810 COMMON LISP

28.1.12.1. Customizing Reinitialization

Methods for the generic function reinitialize-instance may be defined to spec

ify actions to be taken when an instance is updated. If only :after methods for

reinitialize-instance are defined, they will be run after the systemsupplied primary

method for initialization and therefore will not interfere with the default behavior of

reinitialize-instance.

Methods for shared-initialize may be defined to customize class redefinition (see

section 28.1.9.5).

28.2. Functions in the Programmer Interface

This section describes the functions, macros, special forms, and generic functions

provided by the Common Lisp Object System Programmer Interface. The Program

mer Interface comprises the functions and macros that are sufficient for writing most

objectoriented programs.

This section is reference material that requires an understanding of the basic con

cepts of the Common Lisp Object System. The functions are arranged in alphabetical

order for convenient reference.

The description of each function, macro, special form, and generic function in

cludes its purpose, its syntax, the semantics of its arguments and returned values, and

often an example and crossreferences to related functions.

The syntax description for a function, macro, or special form describes its param

eters. The description of a generic function includes descriptions of the methods

that are defined on that generic function by the Common Lisp Object System. A

method signature is used to describe the parameters and parameter specializers for

each method.

The following is an example of the format for the syntax description of a generic

function with the method signature for one primary method:

[Generic function]f x y &optional z &key :k

[Primary method]f (x class) (y t) &optional z &key :k

This description indicates that the generic function f has two required parameters, x

and y. In addition, there is an optional parameter z and a keyword parameter :k.

The method signature indicates that this method on the generic function f has two

required parameters, x, which must be an instance of the class class, and y, which can

be any object. In addition, there is an optional parameter z and a keyword parameter

:k. The signature also indicates that this method on f is a primary method and has

no qualifiers.

COMMON LISP OBJECT SYSTEM 811

The syntax description for a generic function describes the lambdalist of the

generic function itself, while the method signatures describe the lambdalists of the

defined methods.

The generic functions described in this book are all standard generic functions.

They all use standard method combination.

Any implementation of the Common Lisp Object System is allowed to provide

additional methods on the generic functions described here.

It is useful to categorize the functions and macros according to their role in this

standard:

. Tools used for simple objectoriented programming

These tools allow for defining new classes, methods, and generic functions and

for making instances. Some tools used within method bodies are also listed here.

Some of the macros listed here have a corresponding function that performs the

same task at a lower level of abstraction.

call-next-method initialize-instance

change-class make-instance

defclass next-method-p

defgeneric slot-boundp

defmethod slot-value

generic-flet with-accessors

generic-function with-added-methods

generic-labels with-slots

. Functions underlying the commonly used macros

add-method reinitialize-instance

class-name remove-method

compute-applicable-methods shared-initialize

ensure-generic-function slot-exists-p

find-class slot-makunbound

find-method slot-missing

function-keywords slot-unbound

make-instances-obsolete update-instance-for-different-class

no-applicable-method update-instance-for-redefined-class

no-next-method

. Tools for declarative method combination

call-method method-combination-error

define-method-combination method-qualifiers

invalid-method-error

812 COMMON LISP

. General Common Lisp support tools

class-of print-object

documentation symbol-macrolet

[Note that describe appeared in this list in the original CLOS proposal [5, 7], but

X3J13 voted in March 1989 〈63〉 not to make describe a generic function after all

(see describe-object).—GLS]

[At this point the original CLOS report contained a description of the [[]] and

↓ notation; that description is omitted here. I have adopted the notation for use

throughout this book. It is described in section 1.2.5.—GLS]

[Generic function]add-method generic-function method

[Primary method]add-method

(generic-function standard-generic-function) (method method)

The generic function add-method adds a method to a generic function. It destructively

modifies the generic function and returns the modified generic function as its result.

The genericfunction argument is a generic function object.

The method argument is a method object. The lambdalist of the method function

must be congruent with the lambdalist of the generic function, or an error is signaled.

The modified generic function is returned. The result of add-method is eq to the

genericfunction argument.

If the given method agrees with an existing method of the generic function on

parameter specializers and qualifiers, the existing method is replaced. See sec

tion 28.1.6.3 for a definition of agreement in this context.

If the method object is a method object of another generic function, an error is

signaled.

See section 28.1.6.3 as well as defmethod, defgeneric, find-method, and remove-

method.

[Macro]call-method method nextmethodlist

The macro call-method is used in method combination. This macro hides the

implementationdependent details of how methods are called. It can be used only

within an effective method form, for the name call-method is defined only within the

lexical scope of such a form.

The macro call-method invokes the specified method, supplying it with arguments

and with definitions for call-next-method and for next-method-p. The arguments

are the arguments that were supplied to the effective method form containing the

COMMON LISP OBJECT SYSTEM 813

invocation of call-method. The definitions of call-next-method and next-method-p

rely on the list of method objects given as the second argument to call-method.

The call-next-method function available to the method that is the first subform will

call the first method in the list that is the second subform. The call-next-method

function available in that method, in turn, will call the second method in the list that

is the second subform, and so on, until the list of next methods is exhausted.

The method argument is a method object; the nextmethodlist argument is a list

of method objects.

A list whose first element is the symbol make-method and whose second element is

a Lisp form can be used instead of a method object as the first subform of call-method

or as an element of the second subform of call-method. Such a list specifies a method

object whose method function has a body that is the given form.

The result of call-method is the value or values returned by the method invocation.

See call-next-method, define-method-combination, and next-method-p.

[Function]call-next-method &rest args

The function call-next-method can be used within the body of a method defined by a

methoddefining form to call the next method.

The function call-next-method returns the value or values returned by the method

it calls. If there is no next method, the generic function no-next-method is called.

The type of method combination used determines which methods can invoke call-

next-method. The standard method combination type allows call-next-method to be

used within primary methods and :around methods.

The standard method combination type defines the next method according to the

following rules:

. If call-next-method is used in an :around method, the next method is the next most

specific :around method, if one is applicable.

. If there are no :around methods at all or if call-next-method is called by the least

specific :around method, other methods are called as follows:

– All the :before methods are called, in mostspecificfirst order. The function

call-next-method cannot be used in :before methods.

– The most specific primary method is called. Inside the body of a primary method,

call-next-method may be used to pass control to the next most specific primary

method. The generic function no-next-method is called if call-next-method is

used and there are no more primary methods.

– All the :after methods are called in mostspecificlast order. The function

call-next-method cannot be used in :after methods.

814 COMMON LISP

For further discussion of the use of call-next-method, see sections 28.1.7.2

and 28.1.7.4.

When call-next-method is called with no arguments, it passes the current method’s

original arguments to the next method. Neither argument defaulting, nor using setq,

nor rebinding variables with the same names as parameters of the method affects the

values call-next-method passes to the method it calls.

When call-next-method is called with arguments, the next method is called with

those arguments. When providing arguments to call-next-method, the following rule

must be satisfied or an error is signaled: The ordered set of methods applicable for a

changed set of arguments for call-next-method must be the same as the ordered set of

applicable methods for the original arguments to the generic function. Optimizations

of the error checking are possible, but they must not change the semantics of call-

next-method.

If call-next-method is called with arguments but omits optional arguments, the next

method called defaults those arguments.

The function call-next-method returns the value or values returned by the method

it calls.

Further computation is possible after call-next-method returns.

The definition of the function call-next-method has lexical scope (for it is defined

only within the body of a method defined by a methoddefining form) and indefinite

extent.

For generic functions using a type of method combination defined by the short

form of define-method-combination, call-next-method can be used in :around methods

only.

The function next-method-p can be used to test whether or not there is a next

method.

If call-next-method is used in methods that do not support it, an error is signaled.

See sections 28.1.7, 28.1.7.2, and 28.1.7.4 as well as the functions define-method-

combination, next-method-p, and no-next-method.

[Generic function]change-class instance new-class

[Primary method]change-class (instance standard-object)

(new-class standard-class)

[Primary method]change-class (instance t) (new-class symbol)

The generic function change-class changes the class of an instance to a new class. It

destructively modifies and returns the instance.

If in the old class there is any slot of the same name as a local slot in the new

class, the value of that slot is retained. This means that if the slot has a value, the

value returned by slot-value after change-class is invoked is eql to the value returned

COMMON LISP OBJECT SYSTEM 815

by slot-value before change-class is invoked. Similarly, if the slot was unbound, it

remains unbound. The other slots are initialized as described in section 28.1.11.

The instance argument is a Lisp object.

The newclass argument is a class object or a symbol that names a class.

If the second of the preceding methods is selected, that method invokes change-

class on instance and (find-class new-class).

The modified instance is returned. The result of change-class is eq to the instance

argument.

Examples:

(defclass position () ())

(defclass x-y-position (position)

((x :initform 0 :initarg :x)

(y :initform 0 :initarg :y)))

(defclass rho-theta-position (position)

((rho :initform 0)

(theta :initform 0)))

(defmethod update-instance-for-different-class :before

((old x-y-position)

(new rho-theta-position)

&key)

;; Copy the position information from old to new to make new

;; be a rho-theta-position at the same position as old.

(let ((x (slot-value old ´x))

(y (slot-value old ´y)))

(setf (slot-value new ´rho) (sqrt (+ (* x x) (* y y)))

(slot-value new ´theta) (atan y x))))

;;; At this point an instance of the class x-y-position can be

;;; changed to be an instance of the class rho-theta-position

;;; using change-class:

(setq p1 (make-instance ´x-y-position :x 2 :y 0))

(change-class p1 ´rho-theta-position)

816 COMMON LISP

;;; The result is that the instance bound to p1 is now

;;; an instance of the class rho-theta-position.

;;; The update-instance-for-different-class method

;;; performed the initialization of the rho and theta

;;; slots based on the values of the x and y slots,

;;; which were maintained by the old instance.

After completing all other actions, change-class invokes the generic function

update-instance-for-different-class. The generic function update-instance-for-

different-class can be used to assign values to slots in the transformed instance.

The generic function change-class has several semantic difficulties. First, it per

forms a destructive operation that can be invoked within a method on an instance

that was used to select that method. When multiple methods are involved because

methods are being combined, the methods currently executing or about to be executed

may no longer be applicable. Second, some implementations might use compiler

optimizations of slot access, and when the class of an instance is changed the as

sumptions the compiler made might be violated. This implies that a programmer

must not use change-class inside a method if any methods for that generic function

access any slots, or the results are undefined.

See section 28.1.11 as well as update-instance-for-different-class.

[Generic function]class-name class

[Primary method]class-name (class class)

The generic function class-name takes a class object and returns its name. The class

argument is a class object. The newvalue argument is any object. The name of the

given class is returned.

The name of an anonymous class is nil.

If S is a symbol such that S =(class-name C) and C = (find-class S), then S is the

proper name of C (see section 28.1.2).

See also section 28.1.2 and find-class.

[Generic function](setf class-name) new-value class

[Primary method](setf class-name) new-value (class class)

The generic function (setf class-name) takes a class object and sets its name. The

class argument is a class object. The newvalue argument is any object.

COMMON LISP OBJECT SYSTEM 817

[Function]class-of object

The function class-of returns the class of which the given object is an instance. The

argument to class-of may be any Common Lisp object. The function class-of returns

the class of which the argument is an instance.

[Function]compute-applicable-methods generic-function function-arguments

Given a generic function and a set of arguments, the function compute-applicable-

methods returns the set of methods that are applicable for those arguments.

The methods are sorted according to precedence order. See section 28.1.7.

The genericfunction argument must be a generic function object. The function

arguments argument is a list of the arguments to that generic function. The result is

a list of the applicable methods in order of precedence. See section 28.1.7.

[Macro]defclass classname ({superclassname}∗)
({slotspecifier}∗) [[↓classoption]]

classname ::= symbol

superclassname ::= symbol

slotspecifier ::= slotname | (slotname [[↓slotoption]])

slotname ::= symbol

slotoption ::= {:reader readerfunctionname}∗
| {:writer writerfunctionname}∗
| {:accessor readerfunctionname}∗
| {:allocation allocationtype}
| {:initarg initargname}∗
| {:initform form}
| {:type typespecifier}
| {:documentation string}

818 COMMON LISP

readerfunctionname ::= symbol

writerfunctionname ::= functionname/

functionname ::= {symbol | (setf symbol)}
initargname ::= symbol

allocationtype ::= :instance | :class

classoption ::= (:default-initargs initarg-list)

| (:documentation string)

| (:metaclass class-name)

initarglist ::= {initargname defaultinitialvalueform}∗

The macro defclass defines a new named class. It returns the new class object as its

result.

The syntax of defclass provides options for specifying initialization arguments

for slots, for specifying default initialization values for slots, and for requesting that

methods on specified generic functions be automatically generated for reading and

writing the values of slots. No reader or writer functions are defined by default; their

generation must be explicitly requested.

Defining a new class also causes a type of the same name to be defined. The

predicate (typep object class-name) returns true if the class of the given object is

classname itself or a subclass of the class classname. A class object can be used

as a type specifier. Thus (typep object class) returns true if the class of the object is

class itself or a subclass of class.

The classname argument is a nonnil symbol. It becomes the proper name of

the new class. If a class with the same proper name already exists and that class is

an instance of standard-class, and if the defclass form for the definition of the new

class specifies a class of class standard-class, the definition of the existing class is

replaced.

Each superclassname argument is a nonnil symbol that specifies a direct super

class of the new class. The new class will inherit slots and methods from each of its

direct superclasses, from their direct superclasses, and so on. See section 28.1.3 for

a discussion of how slots and methods are inherited.

Each slotspecifier argument is the name of the slot or a list consisting of the slot

name followed by zero or more slot options. The slotname argument is a symbol

that is syntactically valid for use as a variable name. If there are any duplicate slot

names, an error is signaled.

The following slot options are available:

. The :reader slot option specifies that an unqualified method is to be defined on the

generic function named readerfunctionname to read the value of the given slot.

The readerfunctionname argument is a nonnil symbol. The :reader slot option

may be specified more than once for a given slot.

COMMON LISP OBJECT SYSTEM 819

. The :writer slot option specifies that an unqualified method is to be defined on the

generic function named writerfunctionname to write the value of the slot. The

writerfunctionname argument is a functionname. The :writer slot option may

be specified more than once for a given slot.

. The :accessor slot option specifies that an unqualified method is to be defined on

the generic function named readerfunctionname to read the value of the given slot

and that an unqualified method is to be defined on the generic function named (setf

reader-function-name) to be used with setf to modify the value of the slot. The

readerfunctionname argument is a nonnil symbol. The :accessor slot option

may be specified more than once for a given slot.

. The :allocation slot option is used to specify where storage is to be allocated for

the given slot. Storage for a slot may be located in each instance or in the class

object itself, for example. The value of the allocationtype argument can be either

the keyword :instance or the keyword :class. The :allocation slot option may

be specified at most once for a given slot. If the :allocation slot option is not

specified, the effect is the same as specifying :allocation :instance.

– If allocationtype is :instance, a local slot of the given name is allocated in each

instance of the class.

– If allocationtype is :class, a shared slot of the given name is allocated. The

value of the slot is shared by all instances of the class. If a class C1 defines

such a shared slot, any subclass C2 of C1 will share this single slot unless the

defclass form for C2 specifies a slot of the same name or there is a superclass

of C2 that precedes C1 in the class precedence list of C2 and that defines a slot

of the same name.

. The :initform slot option is used to provide a default initial value form to be used

in the initialization of the slot. The :initform slot option may be specified at most

once for a given slot. This form is evaluated every time it is used to initialize

the slot. The lexical environment in which this form is evaluated is the lexical

environment in which the defclass form was evaluated. Note that the lexical

environment refers both to variables and to functions. For local slots, the dynamic

environment is the dynamic environment in which make-instance was called; for

shared slots, the dynamic environment is the dynamic environment in which the

defclass form was evaluated. See section 28.1.9.

No implementation is permitted to extend the syntax of defclass to allow (slot-

name form) as an abbreviation for (slot-name :initform form).

820 COMMON LISP

. The :initarg slot option declares an initialization argument named initargname

and specifies that this initialization argument initializes the given slot. If the

initialization argument has a value in the call to initialize-instance, the value

will be stored into the given slot, and the slot’s :initform slot option, if any, is

not evaluated. If none of the initialization arguments specified for a given slot has

a value, the slot is initialized according to the :initform slot option, if specified.

The :initarg slot option can be specified more than once for a given slot. The

initargname argument can be any symbol.

. The :type slot option specifies that the contents of the slot will always be of the

specified data type. It effectively declares the result type of the reader generic

function when applied to an object of this class. The result of attempting to store

in a slot a value that does not satisfy the type of the slot is undefined. The :type

slot option may be specified at most once for a given slot. The :type slot option is

further discussed in section 28.1.3.2.

. The :documentation slot option provides a documentation string for the slot.

Each class option is an option that refers to the class as a whole or to all class slots.

The following class options are available:

. The :default-initargs class option is followed by a list of alternating initialization

argument names and default initial value forms. If any of these initialization argu

ments does not appear in the initialization argument list supplied to make-instance,

the corresponding default initial value form is evaluated, and the initialization

argument name and the form’s value are added to the end of the initialization

argument list before the instance is created (see section 28.1.9). The default initial

value form is evaluated each time it is used. The lexical environment in which

this form is evaluated is the lexical environment in which the defclass form was

evaluated. The dynamic environment is the dynamic environment in which make-

instance was called. If an initialization argument name appears more than once in

a :default-initargs class option, an error is signaled. The :default-initargs class

option may be specified at most once.

. The :documentation class option causes a documentation string to be attached

to the class name. The documentation type for this string is type. The form

(documentation class-name ´type) may be used to retrieve the documentation

string. The :documentation class option may be specified at most once.

. The :metaclass class option is used to specify that instances of the class being

defined are to have a different metaclass than the default provided by the system

(the class standard-class). The classname argument is the name of the desired

metaclass. The :metaclass class option may be specified at most once.

COMMON LISP OBJECT SYSTEM 821

The new class object is returned as the result.

If a class with the same proper name already exists and that class is an instance of

standard-class, and if the defclass form for the definition of the new class specifies a

class of class standard-class, the existing class is redefined, and instances of it (and

its subclasses) are updated to the new definition at the time that they are next accessed

(see section 28.1.10).

Note the following rules of defclass for standard classes:

. It is not required that the superclasses of a class be defined before the defclass

form for that class is evaluated.

. All the superclasses of a class must be defined before an instance of the class can

be made.

. A class must be defined before it can be used as a parameter specializer in a

defmethod form.

The Object System may be extended to cover situations where these rules are not

obeyed.

Some slot options are inherited by a class from its superclasses, and some can be

shadowed or altered by providing a local slot description. No class options except

:default-initargs are inherited. For a detailed description of how slots and slot

options are inherited, see section 28.1.3.2.

The options to defclass can be extended. An implementation must signal an error

if it observes a class option or a slot option that is not implemented locally.

It is valid to specify more than one reader, writer, accessor, or initialization ar

gument for a slot. No other slot option may appear more than once in a single slot

description, or an error is signaled.

If no reader, writer, or accessor is specified for a slot, the slot can be accessed only

by the function slot-value.

See sections 28.1.2, 28.1.3, 28.1.10, 28.1.5, 28.1.9 as well as slot-value, make-

instance, and initialize-instance.

[Macro]defgeneric functionname lambdalist

[[↓option | {methoddescription}∗]]

functionname ::= {symbol | (setf symbol)}
lambdalist ::= ({var}∗

[&optional {var | (var)}∗]

[&rest var]

[&key {keywordparameter}∗ [&allow-other-keys]])

822 COMMON LISP

keywordparameter ::= var | ({var | (keyword var)})

option ::= (:argument-precedence-order {parameter-name}+)

| (declare {declaration}+)

| (:documentation string)

| (:method-combination symbol {arg}∗)
| (:generic-function-class class-name)

| (:method-class class-name)

methoddescription ::= (:method {methodqualifier}∗
specializedlambdalist

[[{declaration}∗ | documentation]]

{ form}∗)

methodqualifier ::= nonnilatom

specializedlambdalist ::=

({var | (var parameterspecializername)}∗
[&optional {var | (var [initform [suppliedpparameter]])}∗]

[&rest var]

[&key {specializedkeywordparameter}∗ [&allow-other-keys]]

[&aux {var | (var [initform])}∗])

specializedkeywordparameter ::=

var | ({var | (keyword var)} [initform [suppliedpparameter]])

parameterspecializername ::= symbol | (eql eql-specializer-form)

The macro defgeneric is used to define a generic function or to specify options and

declarations that pertain to a generic function as a whole.

If (fboundp function-name) is nil, a new generic function is created. If

(fdefinition function-specifier) is a generic function, that generic function is modi

fied. If functionname/ names a nongeneric function, a macro, or a special form, an

error is signaled.

[X3J13 voted in March 1989 〈89〉 to use fdefinition in the previous paragraph, as

shown, rather than symbol-function, as it appeared in the original report on CLOS [5,

7]. The vote also changed all occurrences of functionspecifier in the original report

to functionname; this change is reflected here.—GLS]

Each methoddescription defines a method on the generic function. The lambdalist

of each method must be congruent with the lambdalist specified by the lambdalist

option. If this condition does not hold, an error is signaled. See section 28.1.6.4 for

a definition of congruence in this context.

The macro defgeneric returns the generic function object as its result.

The functionname argument is a nonnil symbol or a list of the form (setf

symbol).

COMMON LISP OBJECT SYSTEM 823

The lambdalist argument is an ordinary function lambdalist with the following

exceptions:

. The use of &aux is not allowed.

. Optional and keyword arguments may not have default initial value forms nor use

suppliedp parameters. The generic function passes to the method all the argument

values passed to it, and only those; default values are not supported. Note that

optional and keyword arguments in method definitions, however, can have default

initial value forms and can use suppliedp parameters.

The following options are provided. A given option may occur only once, or an

error is signaled.

. The :argument-precedence-order option is used to specify the order in which the

required arguments in a call to the generic function are tested for specificity when

selecting a particular method. Each required argument, as specified in the lambda

list argument, must be included exactly once as a parametername so that the full

and unambiguous precedence order is supplied. If this condition is not met, an

error is signaled.

. The declare option is used to specify declarations that pertain to the generic

function. The following standard Common Lisp declaration is allowed:

– An optimize declaration specifies whether method selection should be optimized

for speed or space, but it has no effect on methods. To control how a method is

optimized, an optimize declaration must be placed directly in the defmethod form

or method description. The optimization qualities speed and space are the only

qualities this standard requires, but an implementation can extend the Common

Lisp Object System to recognize other qualities. A simple implementation that

has only one method selection technique and ignores the optimize declaration is

valid.

The special, ftype, function, inline, notinline, and declaration declarations are

not permitted. Individual implementations can extend the declare option to support

additional declarations. If an implementation notices a declaration that it does not

support and that has not been proclaimed as a nonstandard declaration name in a

declaration proclamation, it should issue a warning.

. The :documentation argument associates a documentation string with the generic

function. The documentation type for this string is function. The form

(documentation function-name/ ´function) may be used to retrieve this string.

824 COMMON LISP

. The :generic-function-class option may be used to specify that the generic func

tion is to have a different class than the default provided by the system (the class

standard-generic-function). The classname argument is the name of a class that

can be the class of a generic function. If functionname specifies an existing generic

function that has a different value for the :generic-function-class argument and

the new generic function class is compatible with the old, change-class is called to

change the class of the generic function; otherwise an error is signaled.

. The :method-class option is used to specify that all methods on this generic function

are to have a different class from the default provided by the system (the class

standard-method). The classname argument is the name of a class that is capable

of being the class of a method.

. The :method-combination option is followed by a symbol that names a type of

method combination. The arguments (if any) that follow that symbol depend

on the type of method combination. Note that the standard method combination

type does not support any arguments. However, all types of method combination

defined by the short form of define-method-combination accept an optional argument

named order, defaulting to :most-specific-first, where a value of :most-specific-

last reverses the order of the primary methods without affecting the order of the

auxiliary methods.

The methoddescription arguments define methods that will be associated with the

generic function. The methodqualifier and specializedlambdalist arguments in a

method description are the same as for defmethod.

The form arguments specify the method body. The body of the method is enclosed

in an implicit block. If functionname is a symbol, this block bears the same name as

the generic function. If functionname is a list of the form (setf symbol), the name

of the block is symbol.

The generic function object is returned as the result.

The effect of the defgeneric macro is as if the following three steps were performed:

first, methods defined by previous defgeneric forms are removed; second, ensure-

generic-function is called; and finally, methods specified by the current defgeneric

form are added to the generic function.

If no method descriptions are specified and a generic function of the same name

does not already exist, a generic function with no methods is created.

The lambdalist argument of defgeneric specifies the shape of lambdalists for the

methods on this generic function. All methods on the resulting generic function must

have lambdalists that are congruent with this shape. If a defgeneric form is evaluated

and some methods for that generic function have lambdalists that are not congruent

COMMON LISP OBJECT SYSTEM 825

with that given in the defgeneric form, an error is signaled. For further details on

method congruence, see section 28.1.6.4.

Implementations can extend defgeneric to include other options. It is required that

an implementation signal an error if it observes an option that is not implemented

locally.

See section 28.1.6.4 as well as defmethod, ensure-generic-function, and generic-

function.

[Macro]define-method-combination name [[↓shortformoption]]

[Macro]define-method-combination name lambdalist

({methodgroupspecifier}∗)
[(:arguments . lambdalist)]

[(:generic-function genericfnsymbol)]

[[{declaration}∗ | docstring]]

{ form}∗

shortformoption ::= :documentation string

| :identity-with-one-argument boolean

| :operator operator

methodgroupspecifier ::= (variable { {qualifierpattern}+ | predicate}
[[↓longformoption]])

longformoption ::= :description format-string

| :order order

| :required boolean

The macro define-method-combination is used to define new types of method combi

nation.

There are two forms of define-method-combination. The short form is a simple

facility for the cases that are expected to be most commonly needed. The long

form is more powerful but more verbose. It resembles defmacro in that the body is

an expression, usually using backquote, that computes a Lisp form. Thus arbitrary

control structures can be implemented. The long form also allows arbitrary processing

of method qualifiers.

In both the short and long forms, name is a symbol. By convention, nonkeyword,

nonnil symbols are usually used.

The shortform syntax of define-method-combination is recognized when the second

subform is a nonnil symbol or is not present. When the short form is used, name

is defined as a type of method combination that produces a Lisp form (operator

method-call method-call . . .). The operator is a symbol that can be the name of a

826 COMMON LISP

function, macro, or special form. The operator can be specified by a keyword option;

it defaults to name.

Keyword options for the short form are the following:

. The :documentation option is used to document the methodcombination type.

. The :identity-with-one-argument option enables an optimization when boolean is

true (the default is false). If there is exactly one applicable method and it is a

primary method, that method serves as the effective method and operator is not

called. This optimization avoids the need to create a new effective method and

avoids the overhead of a function call. This option is designed to be used with

operators such as progn, and, +, and max.

. The :operator option specifies the name of the operator. The operator argument is

a symbol that can be the name of a function, macro, or special form. By convention,

name and operator are often the same symbol. This is the default, but it is not

required.

None of the subforms is evaluated.

These types of method combination require exactly one qualifier per method. An

error is signaled if there are applicable methods with no qualifiers or with qualifiers

that are not supported by the method combination type.

A method combination procedure defined in this way recognizes two roles for

methods. A method whose one qualifier is the symbol naming this type of method

combination is defined to be a primary method. At least one primary method must

be applicable or an error is signaled. A method with :around as its one qualifier is

an auxiliary method that behaves the same as an :around method in standard method

combination. The function call-next-method can be used only in :around methods; it

cannot be used in primary methods defined by the short form of the define-method-

combination macro.

A method combination procedure defined in this way accepts an optional argument

named order, which defaults to :most-specific-first. A value of :most-specific-

last reverses the order of the primary methods without affecting the order of the

auxiliary methods.

The short form automatically includes error checking and support for :around

methods.

For a discussion of builtin method combination types, see section 28.1.7.4.

The longform syntax of define-method-combination is recognized when the second

subform is a list.

The lambdalist argument is an ordinary lambdalist. It receives any arguments

provided after the name of the method combination type in the :method-combination

option to defgeneric.

COMMON LISP OBJECT SYSTEM 827

A list of method group specifiers follows. Each specifier selects a subset of

the applicable methods to play a particular role, either by matching their qualifiers

against some patterns or by testing their qualifiers with a predicate. These method

group specifiers define all method qualifiers that can be used with this type of method

combination. If an applicable method does not fall into any method group, the system

signals the error that the method is invalid for the kind of method combination in use.

Each method group specifier names a variable. During the execution of the forms in

the body of define-method-combination, this variable is bound to a list of the methods

in the method group. The methods in this list occur in mostspecificfirst order.

A qualifier pattern is a list or the symbol *. A method matches a qualifier pattern if

the method’s list of qualifiers is equal to the qualifier pattern (except that the symbol

* in a qualifier pattern matches anything). Thus a qualifier pattern can be one of

the following: the empty list (), which matches unqualified methods; the symbol *,

which matches all methods; a true list, which matches methods with the same number

of qualifiers as the length of the list when each qualifier matches the corresponding

list element; or a dotted list that ends in the symbol * (the * matches any number of

additional qualifiers).

Each applicable method is tested against the qualifier patterns and predicates in

lefttoright order. As soon as a qualifier pattern matches or a predicate returns true,

the method becomes a member of the corresponding method group and no further

tests are made. Thus if a method could be a member of more than one method group,

it joins only the first such group. If a method group has more than one qualifier

pattern, a method need only satisfy one of the qualifier patterns to be a member of

the group.

The name of a predicate function can appear instead of qualifier patterns in a

method group specifier. The predicate is called for each method that has not been

assigned to an earlier method group; it is called with one argument, the method’s

qualifier list. The predicate should return true if the method is to be a member of the

method group. A predicate can be distinguished from a qualifier pattern because it is

a symbol other than nil or *.

If there is an applicable method whose qualifiers are not valid for the method

combination type, the function invalid-method-error is called.

Method group specifiers can have keyword options following the qualifier patterns

or predicate. Keyword options can be distinguished from additional qualifier patterns

because they are neither lists nor the symbol *. The keyword options are:

. The :description option is used to provide a description of the role of methods

in the method group. Programming environment tools use (apply #--´format stream

format-string (method-qualifiers method)) to print this description, which is ex

pected to be concise. This keyword option allows the description of a method

qualifier to be defined in the same module that defines the meaning of the method

828 COMMON LISP

qualifier. In most cases, formatstring will not contain any format directives, but

they are available for generality. If :description is not specified, a default de

scription is generated based on the variable name and the qualifier patterns and

on whether this method group includes the unqualified methods. The argument

formatstring is not evaluated.

. The :order option specifies the order of methods. The order argument is a form

that evaluates to :most-specific-first or :most-specific-last. If it evaluates to

any other value, an error is signaled. This keyword option is a convenience and

does not add any expressive power. If :order is not specified, it defaults to :most-

specific-first.

. The :required option specifies whether at least one method in this method group is

required. If the boolean argument is nonnil and the method group is empty (that

is, no applicable methods match the qualifier patterns or satisfy the predicate), an

error is signaled. This keyword option is a convenience and does not add any

expressive power. If :required is not specified, it defaults to nil. The boolean

argument is not evaluated.

The use of method group specifiers provides a convenient syntax to select methods,

to divide them among the possible roles, and to perform the necessary error checking.

It is possible to perform further filtering of methods in the body forms by using normal

listprocessing operations and the functions method-qualifiers and invalid-method-

error. It is permissible to use setq on the variables named in the method group

specifiers and to bind additional variables. It is also possible to bypass the method

group specifier mechanism and do everything in the body forms. This is accomplished

by writing a single method group with * as its only qualifier pattern; the variable is

then bound to a list of all of the applicable methods, in mostspecificfirst order.

The body forms compute and return the Lisp form that specifies how the methods

are combined, that is, the effective method. The effective method uses the macro

call-method. The definition of this macro has lexical scope and is available only in

an effective method form. Given a method object in one of the lists produced by

the method group specifiers and a list of next methods, the macro call-method will

invoke the method so that call-next-method will have available the next methods.

When an effective method has no effect other than to call a single method, some

implementations employ an optimization that uses the single method directly as the

effective method, thus avoiding the need to create a new effective method. This opti

mization is active when the effective method form consists entirely of an invocation

of the call-method macro whose first subform is a method object and whose second

subform is nil. Each define-method-combination body is responsible for stripping

off redundant invocations of progn, and, multiple-value-prog1, and the like, if this

COMMON LISP OBJECT SYSTEM 829

optimization is desired.

The list (:arguments . lambda-list) can appear before any declaration or docu

mentation string. This form is useful when the method combination type performs

some specific behavior as part of the combined method and that behavior needs

access to the arguments to the generic function. Each parameter variable defined

by lambdalist is bound to a form that can be inserted into the effective method.

When this form is evaluated during execution of the effective method, its value is the

corresponding argument to the generic function. If lambdalist is not congruent to

the generic function’s lambdalist, additional ignored parameters are automatically

inserted until it is congruent. Thus it is permissible for lambdalist to receive fewer

arguments than the number that the generic function expects.

Erroneous conditions detected by the body should be reported with method-

combination-error or invalid-method-error; these functions add any necessary con

textual information to the error message and will signal the appropriate error.

The body forms are evaluated inside the bindings created by the lambdalist and

method group specifiers. Declarations at the head of the body are positioned directly

inside bindings created by the lambdalist and outside the bindings of the method

group variables. Thus method group variables cannot be declared.

Within the body forms, genericfunctionsymbol is bound to the generic function

object.

If a docstring argument is present, it provides the documentation for the method

combination type.

The functions method-combination-error and invalid-method-error can be called

from the body forms or from functions called by the body forms. The actions of

these two functions can depend on implementationdependent dynamic variables

automatically bound before the generic function compute-effective-method is called.

Note that two methods with identical specializers, but with different qualifiers,

are not ordered by the algorithm described in step 2 of the method selection and

combination process described in section 28.1.7. Normally the two methods play

different roles in the effective method because they have different qualifiers, and no

matter how they are ordered in the result of step 2 the effective method is the same.

If the two methods play the same role and their order matters, an error is signaled.

This happens as part of the qualifier pattern matching in define-method-combination.

830 COMMON LISP

The value returned by the define-method-combination macro is the new method

combination object.

Most examples of the long form of define-method-combination also illustrate the

use of the related functions that are provided as part of the declarative method

combination facility.

;;; Examples of the short form of define-method-combination

(define-method-combination and :identity-with-one-argument t)

(defmethod func and ((x class1) y)

...)

;;; The equivalent of this example in the long form is:

(define-method-combination and

(&optional (order ´:most-specific-first))

((around (:around))

(primary (and) :order order :required t))

(let ((form (if (rest primary)

`(and ,@(mapcar #--´(lambda (method)

`(call-method ,method ()))

primary))

`(call-method ,(first primary) ()))))

(if around

`(call-method ,(first around)

(,@(rest around)

(make-method ,form)))

form)))

;;; Examples of the long form of define-method-combination

;;; The default method-combination technique

(define-method-combination standard ()

((around (:around))

(before (:before))

(primary () :required t)

(after (:after)))

COMMON LISP OBJECT SYSTEM 831

(flet ((call-methods (methods)

(mapcar #--´(lambda (method)

`(call-method ,method ()))

methods)))

(let ((form (if (or before after (rest primary))

`(multiple-value-prog1

(progn ,@(call-methods before)

(call-method ,(first primary)

,(rest primary)))

,@(call-methods (reverse after)))

`(call-method ,(first primary) ()))))

(if around

`(call-method ,(first around)

(,@(rest around)

(make-method ,form)))

form))))

;;; A simple way to try several methods until one returns non-nil

(define-method-combination or ()

((methods (or)))

`(or ,@(mapcar #--´(lambda (method)

`(call-method ,method ()))

methods)))

;;; A more complete version of the preceding

(define-method-combination or

(&optional (order ´:most-specific-first))

((around (:around))

(primary (or)))

;; Process the order argument

(case order

(:most-specific-first)

(:most-specific-last (setq primary (reverse primary)))

(otherwise (method-combination-error

"˜S is an invalid order.˜@

:most-specific-first and :most-specific-last ˜
are the possible values."

order)))

832 COMMON LISP

;; Must have a primary method

(unless primary

(method-combination-error "A primary method is required."))

;; Construct the form that calls the primary methods

(let ((form (if (rest primary)

`(or ,@(mapcar #--´(lambda (method)

`(call-method ,method ()))

primary))

`(call-method ,(first primary) ()))))

;; Wrap the around methods around that form

(if around

`(call-method ,(first around)

(,@(rest around)

(make-method ,form)))

form)))

;;; The same thing, using the :order and :required keyword options

(define-method-combination or

(&optional (order ´:most-specific-first))

((around (:around))

(primary (or) :order order :required t))

(let ((form (if (rest primary)

`(or ,@(mapcar #--´(lambda (method)

`(call-method ,method ()))

primary))

`(call-method ,(first primary) ()))))

(if around

`(call-method ,(first around)

(,@(rest around)

(make-method ,form)))

form)))

;;; This short-form call is behaviorally identical to the preceding.

(define-method-combination or :identity-with-one-argument t)

;;; Order methods by positive integer qualifiers; note that :around

;;; methods are disallowed here in order to keep the example small.

(define-method-combination example-method-combination ()

((methods positive-integer-qualifier-p))

COMMON LISP OBJECT SYSTEM 833

`(progn ,@(mapcar #--´(lambda (method)

`(call-method ,method ()))

(stable-sort methods #--´<

:key #--´(lambda (method)

(first (method-qualifiers

method)))))))

(defun positive-integer-qualifier-p (method-qualifiers)

(and (−− (length method-qualifiers) 1)

(typep (first method-qualifiers) ´(integer 0 *))))

;;; Example of the use of :arguments

(define-method-combination progn-with-lock ()

((methods ()))

(:arguments object)

`(unwind-protect

(progn (lock (object-lock ,object))

,@(mapcar #--´(lambda (method)

`(call-method ,method ()))

methods))

(unlock (object-lock ,object))))

The :method-combination option of defgeneric is used to specify that a generic

function should use a particular method combination type. The argument to the

:method-combination option is the name of a method combination type.

See sections 28.1.7 and 28.1.7.4 as well as call-method, method-qualifiers, method-

combination-error, invalid-method-error, and defgeneric.

[Macro]defmethod functionname {methodqualifier}∗
specializedlambdalist

[[{declaration}∗ | docstring]] { form}∗

functionname ::= {symbol | (setf symbol)}
methodqualifier ::= nonnilatom

parameterspecializername ::= symbol | (eql eql-specializer-form)

The macro defmethod defines a method on a generic function.

If (fboundp function-name) is nil, a generic function is created with default values

for the argument precedence order (each argument is more specific than the arguments

834 COMMON LISP

to its right in the argument list), for the generic function class (the class standard-

generic-function), for the method class (the class standard-method), and for the

method combination type (the standard method combination type). The lambda

list of the generic function is congruent with the lambdalist of the method being

defined; if the defmethod form mentions keyword arguments, the lambdalist of the

generic function will mention &key (but no keyword arguments). If functionname

names a nongeneric function, a macro, or a special form, an error is signaled.

If a generic function is currently named by functionname, where functionname

is a symbol or a list of the form (setf symbol), the lambdalist of the method must

be congruent with the lambdalist of the generic function. If this condition does not

hold, an error is signaled. See section 28.1.6.4 for a definition of congruence in this

context.

The functionname argument is a nonnil symbol or a list of the form (setf

symbol). It names the generic function on which the method is defined.

Each methodqualifier argument is an object that is used by method combination

to identify the given method. A method qualifier is a nonnil atom. The method

combination type may further restrict what a method qualifier may be. The standard

method combination type allows for unqualified methods or methods whose sole

qualifier is the keyword :before, the keyword :after, or the keyword :around.

A specializedlambdalist is like an ordinary function lambdalist except that the

name of a required parameter can be replaced by a specialized parameter, a list of the

form (variable-name parameter-specializer-name). Only required parameters may

be specialized. A parameter specializer name is a symbol that names a class or (eql

eql-specializer-form). The parameter specializer name (eql eql-specializer-form)

indicates that the corresponding argument must be eql to the object that is the value

of eqlspecializerform for the method to be applicable. If no parameter specializer

name is specified for a given required parameter, the parameter specializer defaults

to the class named t. See section 28.1.6.2.

The form arguments specify the method body. The body of the method is enclosed

in an implicit block. If functionname is a symbol, this block bears the same name as

the generic function. If functionname is a list of the form (setf symbol), the name

of the block is symbol.

The result of defmethod is the method object.

The class of the method object that is created is that given by the method class

option of the generic function on which the method is defined.

If the generic function already has a method that agrees with the method being de

fined on parameter specializers and qualifiers, defmethod replaces the existing method

with the one now being defined. See section 28.1.6.3 for a definition of agreement in

this context.

The parameter specializers are derived from the parameter specializer names as

COMMON LISP OBJECT SYSTEM 835

described in section 28.1.6.2.

The expansion of the defmethod macro refers to each specialized parameter (see the

ignore declaration specifier), including parameters that have an explicit parameter

specializer name of t. This means that a compiler warning does not occur if the body

of the method does not refer to a specialized parameter. Note that a parameter that

specializes on t is not synonymous with an unspecialized parameter in this context.

See sections 28.1.6.2, 28.1.6.4, and 28.1.6.3.

[At this point the original CLOS report [5, 7] contained a specification for describe

as a generic function. This specification is omitted here because X3J13 voted in

March 1989 〈63〉 not to make describe a generic function after all (see describe-

object).—GLS]

[Generic function]documentation x &optional doc-type

[Primary method]documentation (method standard-method)

&optional doc-type

[Primary method]documentation

(generic-function standard-generic-function) &optional doc-type

[Primary method]documentation (class standard-class) &optional doc-type

[Primary method]documentation

(method-combination method-combination) &optional doc-type

[Primary method]documentation

(slot-description standard-slot-description) &optional doc-type

[Primary method]documentation (symbol symbol) &optional doc-type

[Primary method]documentation (list list) &optional doc-type

The ordinary function documentation (see section 25.2) is replaced by a generic func

tion. The generic function documentation returns the documentation string associated

with the given object if it is available; otherwise documentation returns nil.

The first argument of documentation is a symbol, a functionname list of the form

(setf symbol), a method object, a class object, a generic function object, a method

combination object, or a slot description object. Whether a second argument should

be supplied depends on the type of the first argument.

. If the first argument is a method object, a class object, a generic function object, a

method combination object, or a slot description object, the second argument must

not be supplied, or an error is signaled.

. If the first argument is a symbol or a list of the form (setf symbol), the second

argument must be supplied.

– The forms

836 COMMON LISP

(documentation symbol ´function)

and

(documentation ´(setf symbol) ´function)

return the documentation string of the function, generic function, special form,

or macro named by the symbol or list.

– The form (documentation symbol ´variable) returns the documentation string

of the special variable or constant named by the symbol.

– The form (documentation symbol ´structure) returns the documentation string

of the defstruct structure named by the symbol.

– The form (documentation symbol ´type) returns the documentation string of the

class object named by the symbol, if there is such a class. If there is no such

class, it returns the documentation string of the type specifier named by the

symbol.

– The form (documentation symbol ´setf) returns the documentation string of the

defsetf or define-setf-method definition associated with the symbol.

– The form (documentation symbol ´method-combination) returns the documenta

tion string of the method combination type named by the symbol.

An implementation may extend the set of symbols that are acceptable as the

second argument. If a symbol is not recognized as an acceptable argument by the

implementation, an error must be signaled.

The documentation string associated with the given object is returned unless none

is available, in which case documentation returns nil.

COMMON LISP OBJECT SYSTEM 837

[Generic function](setf documentation) new-value x &optional doc-type

[Primary method](setf documentation) new-value

(method standard-method) &optional doc-type

[Primary method](setf documentation) new-value

(generic-function standard-generic-function) &optional

doc-type

[Primary method](setf documentation) new-value

(class standard-class) &optional doc-type

[Primary method](setf documentation) new-value

(method-combination method-combination) &optional

doc-type

[Primary method](setf documentation) new-value

(slot-description standard-slot-description) &optional

doc-type

[Primary method](setf documentation) new-value (symbol symbol)

&optional doc-type

[Primary method](setf documentation) new-value (list list)

&optional doc-type

The generic function (setf documentation) is used to update the documentation.

The first argument of (setf documentation) is the new documentation.

The second argument of documentation is a symbol, a functionname list of the

form (setf symbol), a method object, a class object, a generic function object, a

method combination object, or a slot description object. Whether a third argument

should be supplied depends on the type of the second argument. See documentation.

[Function]ensure-generic-function function-name &key :lambda-list

:argument-precedence-order :declare :documentation :generic-function-class

:method-combination :method-class :environment

functionname ::= {symbol | (setf symbol)}

The function ensure-generic-function is used to define a globally named generic

function with no methods or to specify or modify options and declarations that

pertain to a globally named generic function as a whole.

If (fboundp function-name) is nil, a new generic function is created. If

(fdefinition function-name) is a nongeneric function, a macro, or a special form,

an error is signaled.

[X3J13 voted in March 1989 〈89〉 to use fdefinition in the previous paragraph, as

shown, rather than symbol-function, as it appeared in the original report on CLOS [5,

838 COMMON LISP

7]. The vote also changed all occurrences of functionspecifier in the original report

to functionname; this change is reflected here.—GLS]

If functionname specifies a generic function that has a different value for any of

the following arguments, the generic function is modified to have the new value:

:argument-precedence-order, :declare, :documentation, :method-combination.

If functionname specifies a generic function that has a different value for the

:lambda-list argument, and the new value is congruent with the lambdalists of all

existing methods or there are no methods, the value is changed; otherwise an error is

signaled.

If functionname specifies a generic function that has a different value for the

:generic-function-class argument and if the new generic function class is compatible

with the old, change-class is called to change the class of the generic function;

otherwise an error is signaled.

If functionname specifies a generic function that has a different :method-class

value, the value is changed but any existing methods are not changed.

The functionname argument is a symbol or a list of the form (setf symbol).

The keyword arguments correspond to the option arguments of defgeneric, except

that the :method-class and :generic-function-class arguments can be class objects

as well as names.

The :environment argument is the same as the &environment argument to macro

expansion functions. It is typically used to distinguish between compiletime and

runtime environments.

The :method-combination argument is a method combination object.

The generic function object is returned. See defgeneric.

[Function]find-class symbol &optional errorp environment

The function find-class returns the class object named by the given symbol in the

given environment.

The first argument to find-class is a symbol.

If there is no such class and the errorp argument is not supplied or is nonnil,

find-class signals an error. If there is no such class and the errorp argument is nil,

find-class returns nil. The default value of errorp is t.

The optional environment argument is the same as the &environment argument to

macro expansion functions. It is typically used to distinguish between compiletime

and runtime environments.

The result of find-class is the class object named by the given symbol.

The class associated with a particular symbol can be changed by using setf with

find-class. The results are undefined if the user attempts to change the class associ

ated with a symbol that is defined as a type specifier in chapter 4. See section 28.1.4.

COMMON LISP OBJECT SYSTEM 839

[Generic function]find-method generic-function method-qualifiers specializers

&optional errorp

[Primary method]find-method

(generic-function standard-generic-function) method-qualifiers specializers

&optional errorp

The generic function find-method takes a generic function and returns the method

object that agrees on method qualifiers and parameter specializers with the method

qualifiers and specializers arguments of find-method. See section 28.1.6.3 for a

definition of agreement in this context.

The genericfunction argument is a generic function.

The methodqualifiers argument is a list of the method qualifiers for the method.

The order of the method qualifiers is significant.

The specializers argument is a list of the parameter specializers for the method.

It must correspond in length to the number of required arguments of the generic

function, or an error is signaled. This means that to obtain the default method on a

given generic function, a list whose elements are the class named t must be given.

If there is no such method and the errorp argument is not supplied or is nonnil,

find-method signals an error. If there is no such method and the errorp argument is

nil, find-method returns nil. The default value of errorp is t.

The result of find-method is the method object with the given method qualifiers

and parameter specializers.

See section 28.1.6.3.

[Generic function]function-keywords method

[Primary method]function-keywords (method standard-method)

The generic function function-keywords is used to return the keyword parameter

specifiers for a given method.

The method argument is a method object.

The generic function function-keywords returns two values: a list of the explic

itly named keywords and a boolean that states whether &allow-other-keys had been

specified in the method definition.

[Special form]generic-flet ({(functionname lambdalist

[[↓option | {methoddescription}∗]])}∗)
{ form}∗

The generic-flet special form is analogous to the flet special form. It produces

new generic functions and establishes new lexical function definition bindings. Each

840 COMMON LISP

generic function is created with the set of methods specified by its method descrip

tions.

The special form generic-flet is used to define generic functions whose names are

meaningful only locally and to execute a series of forms with these function definition

bindings. Any number of such local generic functions may be defined.

The names of functions defined by generic-flet have lexical scope; they retain

their local definitions only within the body of the generic-flet. Any references

within the body of the generic-flet to functions whose names are the same as those

defined within the generic-flet are thus references to the local functions instead of

to any global functions of the same names. The scope of these generic function

definition bindings, however, includes only the body of generic-flet, not the defini

tions themselves. Within the method bodies, local function names that match those

being defined refer to global functions defined outside the generic-flet. It is thus not

possible to define recursive functions with generic-flet.

The functionname, lambdalist, option, methodqualifier, and specialized

lambdalist arguments are the same as for defgeneric.

A generic-flet local method definition is identical in form to the method definition

part of a defmethod.

The body of each method is enclosed in an implicit block. If functionname is a

symbol, this block bears the same name as the generic function. If functionname is

a list of the form (setf symbol), the name of the block is symbol.

The result returned by generic-flet is the value or values returned by the last form

executed. If no forms are specified, generic-flet returns nil.

See generic-labels, defmethod, defgeneric, and generic-function.

[Macro]generic-function lambdalist [[↓option | {methoddescription}∗]]

option ::= (:argument-precedence-order {parameter-name}+)

| (declare {declaration}+)

| (:documentation string)

| (:method-combination symbol {arg}∗)
| (:generic-function-class class-name)

| (:method-class class-name)

methoddescription ::= (:method {methodqualifier}∗
specializedlambdalist

{declaration | documentation}∗
{ form}∗)

The generic-function macro creates an anonymous generic function. The generic

function is created with the set of methods specified by its method descriptions.

COMMON LISP OBJECT SYSTEM 841

The option, methodqualifier, and specializedlambdalist arguments are the same

as for defgeneric.

The generic function object is returned as the result.

If no method descriptions are specified, an anonymous generic function with no

methods is created.

See defgeneric, generic-flet, generic-labels, and defmethod.

[Special form]generic-labels ({(functionname lambdalist

[[↓option | {methoddescription}∗]])}∗)
{ form}∗

The generic-labels special form is analogous to the labels special form. It pro

duces new generic functions and establishes new lexical function definition bindings.

Each generic function is created with the set of methods specified by its method

descriptions.

The special form generic-labels is used to define generic functions whose names

are meaningful only locally and to execute a series of forms with these function

definition bindings. Any number of such local generic functions may be defined.

The names of functions defined by generic-labels have lexical scope; they retain

their local definitions only within the body of the generic-labels construct. Any

references within the body of the generic-labels construct to functions whose names

are the same as those defined within the generic-labels form are thus references to

the local functions instead of to any global functions of the same names. The scope

of these generic function definition bindings includes the method bodies themselves

as well as the body of the generic-labels construct.

The functionname, lambdalist, option, methodqualifier, and specialized

lambdalist arguments are the same as for defgeneric.

A generic-labels local method definition is identical in form to the method defini

tion part of a defmethod.

The body of each method is enclosed in an implicit block. If functionname is a

symbol, this block bears the same name as the generic function. If functionname is

a list of the form (setf symbol), the name of the block is symbol.

The result returned by generic-labels is the value or values returned by the last

form executed. If no forms are specified, generic-labels returns nil.

See generic-flet, defmethod, defgeneric, generic-function.

[Generic function]initialize-instance instance &rest initargs

[Primary method]initialize-instance (instance standard-object) &rest initargs

The generic function initialize-instance is called by make-instance to initialize a

842 COMMON LISP

newly created instance. The generic function initialize-instance is called with the

new instance and the defaulted initialization arguments.

The systemsupplied primary method on initialize-instance initializes the slots

of the instance with values according to the initialization arguments and the :initform

forms of the slots. It does this by calling the generic function shared-initialize with

the following arguments: the instance, t (this indicates that all slots for which no

initialization arguments are provided should be initialized according to their :initform

forms) and the defaulted initialization arguments.

The instance argument is the object to be initialized.

The initargs argument consists of alternating initialization argument names and

values.

The modified instance is returned as the result.

Programmers can define methods for initialize-instance to specify actions to be

taken when an instance is initialized. If only :after methods are defined, they will

be run after the systemsupplied primary method for initialization and therefore will

not interfere with the default behavior of initialize-instance.

See sections 28.1.9, 28.1.9.4, and 28.1.9.2 as well as shared-initialize, make-

instance, slot-boundp, and slot-makunbound.

[Function]invalid-method-error method format-string &rest args

The function invalid-method-error is used to signal an error when there is an applica

ble method whose qualifiers are not valid for the method combination type. The error

message is constructed by using a format string and any arguments to it. Because

an implementation may need to add additional contextual information to the error

message, invalid-method-error should be called only within the dynamic extent of a

method combination function.

The function invalid-method-error is called automatically when a method fails to

satisfy every qualifier pattern and predicate in a define-method-combination form. A

method combination function that imposes additional restrictions should call invalid-

method-error explicitly if it encounters a method it cannot accept.

The method argument is the invalid method object.

The formatstring argument is a control string that can be given to format, and args

are any arguments required by that string.

Whether invalid-method-error returns to its caller or exits via throw is

implementationdependent.

See define-method-combination.

COMMON LISP OBJECT SYSTEM 843

[Generic function]make-instance class &rest initargs

[Primary method]make-instance (class standard-class) &rest initargs

[Primary method]make-instance (class symbol) &rest initargs

The generic function make-instance creates a new instance of the given class.

The generic function make-instance may be used as described in section 28.1.9.

The class argument is a class object or a symbol that names a class. The remaining

arguments form a list of alternating initialization argument names and values.

If the second of the preceding methods is selected, that method invokes make-

instance on the arguments (find-class class) and initargs.

The initialization arguments are checked within make-instance (see section 28.1.9).

The new instance is returned.

The metaobject protocol can be used to define new methods on make-instance to

replace the objectcreation protocol.

See section 28.1.9 as well as defclass, initialize-instance, and class-of.

[Generic function]make-instances-obsolete class

[Primary method]make-instances-obsolete (class standard-class)

[Primary method]make-instances-obsolete (class symbol)

The generic function make-instances-obsolete is invoked automatically by the system

when defclass has been used to redefine an existing standard class and the set of local

slots accessible in an instance is changed or the order of slots in storage is changed.

It can also be explicitly invoked by the user.

The function make-instances-obsolete has the effect of initiating the process of

updating the instances of the class. During updating, the generic function update-

instance-for-redefined-class will be invoked.

The class argument is a class object symbol that names the class whose instances

are to be made obsolete.

If the second of the preceding methods is selected, that method invokes make-

instances-obsolete on (find-class class).

The modified class is returned. The result of make-instances-obsolete is eq to the

class argument supplied to the first of the preceding methods.

See section 28.1.10 as well as update-instance-for-redefined-class.

[Function]method-combination-error format-string &rest args

The function method-combination-error is used to signal an error in method combi

nation. The error message is constructed by using a format string and any arguments

844 COMMON LISP

to it. Because an implementation may need to add additional contextual informa

tion to the error message, method-combination-error should be called only within the

dynamic extent of a method combination function.

The formatstring argument is a control string that can be given to format, and args

are any arguments required by that string.

Whether method-combination-error returns to its caller or exits via throw is

implementationdependent.

See define-method-combination.

[Generic function]method-qualifiers method

[Primary method]method-qualifiers (method standard-method)

The generic function method-qualifiers returns a list of the qualifiers of the given

method.

The method argument is a method object.

A list of the qualifiers of the given method is returned.

Example:

(setq methods (remove-duplicates methods

:from-end t

:key #--´method-qualifiers

:test #--´equal))

See define-method-combination.

[Function]next-method-p

The locally defined function next-method-p can be used within the body of a method

defined by a methoddefining form to determine whether a next method exists.

The function next-method-p takes no arguments.

The function next-method-p returns true or false.

Like call-next-method, the function next-method-p has lexical scope (for it is defined

only within the body of a method defined by a methoddefining form) and indefinite

extent.

See call-next-method.

[Generic function]no-applicable-method generic-function

&rest function-arguments

[Primary method]no-applicable-method (generic-function t)

&rest function-arguments

The generic function no-applicable-method is called when a generic function of the

COMMON LISP OBJECT SYSTEM 845

class standard-generic-function is invoked and no method on that generic function

is applicable. The default method signals an error.

The generic function no-applicable-method is not intended to be called by pro

grammers. Programmers may write methods for it.

The genericfunction argument of no-applicable-method is the generic function

object on which no applicable method was found.

The functionarguments argument is a list of the arguments to that generic function.

[Generic function]no-next-method generic-function method &rest args

[Primary method]no-next-method

(generic-function standard-generic-function) (method standard-method)

&rest args

The generic function no-next-method is called by call-next-method when there is no

next method. The systemsupplied method on no-next-method signals an error.

The generic function no-next-method is not intended to be called by programmers.

Programmers may write methods for it.

The genericfunction argument is the generic function object to which the method

that is the second argument belongs.

The method argument is the method that contains the call to call-next-method for

which there is no next method.

The args argument is a list of the arguments to call-next-method.

See call-next-method.

[Generic function]print-object object stream

[Primary method]print-object (object standard-object) stream

The generic function print-object writes the printed representation of an object to

a stream. The function print-object is called by the print system; it should not be

called by the user.

846 COMMON LISP

Each implementation must provide a method on the class standard-object and

methods on enough other classes so as to ensure that there is always an applicable

method. Implementations are free to add methods for other classes. Users can write

methods for print-object for their own classes if they do not wish to inherit an

implementationsupplied method.

The first argument is any Lisp object. The second argument is a stream; it cannot

be t or nil.

The function print-object returns its first argument, the object.

Methods on print-object must obey the print control special variables named

print-xxx for various xxx. The specific details are the following:

. Each method must implement *print-escape*.

. The *print-pretty* control variable can be ignored by most methods other than

the one for lists.

. The *print-circle* control variable is handled by the printer and can be ignored

by methods.

. The printer takes care of *print-level* automatically, provided that each method

handles exactly one level of structure and calls write (or an equivalent function)

recursively if there are more structural levels. The printer’s decision of whether

an object has components (and therefore should not be printed when the printing

depth is not less than *print-level*) is implementationdependent. In some im

plementations its print-object method is not called; in others the method is called,

and the determination that the object has components is based on what it tries to

write to the stream.

. Methods that produce output of indefinite length must obey *print-length*, but

most methods other than the one for lists can ignore it.

. The *print-base*, *print-radix*, *print-case*, *print-gensym*, and *print-array*

control variables apply to specific types of objects and are handled by the methods

for those objects.

. X3J13 voted in June 1989 〈40〉 to add the following point. All methods for print-

object must obey *print-readably*, which takes precedence over all other printer

control variables. This includes both userdefined methods and implementation

defined methods.

If these rules are not obeyed, the results are undefined.

In general, the printer and the print-object methods should not rebind the

print control variables as they operate recursively through the structure, but this

is implementationdependent.

COMMON LISP OBJECT SYSTEM 847

In some implementations the stream argument passed to a print-object method

is not the original stream but is an intermediate stream that implements part of the

printer. Methods should therefore not depend on the identity of this stream.

All of the existing printing functions (write, prin1, print, princ, pprint, write-to-

string, prin1-to-string, princ-to-string, the ˜S and ˜A format operations, and the ˜B,

˜D, ˜E, ˜F, ˜G, ˜$, ˜O, ˜R, and ˜X format operations when they encounter a nonnumeric

value) are required to be changed to go through the print-object generic function.

Each implementation is required to replace its former implementation of printing

with one or more print-object methods. Exactly which classes have methods for

print-object is not specified; it would be valid for an implementation to have one

default method that is inherited by all systemdefined classes.

[Generic function]reinitialize-instance instance &rest initargs

[Primary method]reinitialize-instance (instance standard-object)

&rest initargs

The generic function reinitialize-instance can be used to change the values of local

slots according to initialization arguments. This generic function is called by the

MetaObject Protocol. It can also be called by users.

The systemsupplied primary method for reinitialize-instance checks the va

lidity of initialization arguments and signals an error if an initialization argument

is supplied that is not declared valid. The method then calls the generic function

shared-initialize with the following arguments: the instance, nil (which means no

slots should be initialized according to their :initform forms) and the initialization

arguments it received.

The instance argument is the object to be initialized.

The initargs argument consists of alternating initialization argument names and

values.

The modified instance is returned as the result.

Initialization arguments are declared valid by using the :initarg option to defclass,

or by defining methods for reinitialize-instance or shared-initialize. The keyword

name of each keyword parameter specifier in the lambdalist of any method defined on

reinitialize-instance or shared-initialize is declared a valid initialization argument

name for all classes for which that method is applicable.

See sections 28.1.12, 28.1.9.4, 28.1.9.2 as well as initialize-instance, slot-

boundp, update-instance-for-redefined-class, update-instance-for-different-class,

slot-makunbound, and shared-initialize.

848 COMMON LISP

[Generic function]remove-method generic-function method

[Primary method]remove-method

(generic-function standard-generic-function) method

The generic function remove-method removes a method from a generic function. It

destructively modifies the specified generic function and returns the modified generic

function as its result.

The genericfunction argument is a generic function object.

The method argument is a method object. The function remove-method does not

signal an error if the method is not one of the methods on the generic function.

The modified generic function is returned. The result of remove-method is eq to the

genericfunction argument.

See find-method.

[Generic function]shared-initialize instance slot-names &rest initargs

[Primary method]shared-initialize (instance standard-object) slot-names

&rest initargs

The generic function shared-initialize is used to fill the slots of an instance us

ing initialization arguments and :initform forms. It is called when an instance is

created, when an instance is reinitialized, when an instance is updated to conform

to a redefined class, and when an instance is updated to conform to a different

class. The generic function shared-initialize is called by the systemsupplied pri

mary method for initialize-instance, reinitialize-instance, update-instance-for-

redefined-class, and update-instance-for-different-class.

The generic function shared-initialize takes the following arguments: the in

stance to be initialized, a specification of a set of names of slots accessible in that

instance, and any number of initialization arguments. The arguments after the first

two must form an initialization argument list. The systemsupplied primary method

on shared-initialize initializes the slots with values according to the initialization

arguments and specified :initform forms. The second argument indicates which slots

should be initialized according to their :initform forms if no initialization arguments

are provided for those slots.

The systemsupplied primary method behaves as follows, regardless of whether

the slots are local or shared:

. If an initialization argument in the initialization argument list specifies a value for

that slot, that value is stored into the slot, even if a value has already been stored

in the slot before the method is run.

. Any slots indicated by the second argument that are still unbound at this point

are initialized according to their :initform forms. For any such slot that has an

COMMON LISP OBJECT SYSTEM 849

:initform form, that form is evaluated in the lexical environment of its defining

defclass form and the result is stored into the slot. For example, if a :before

method stores a value in the slot, the :initform form will not be used to supply a

value for the slot.

. The rules mentioned in section 28.1.9.4 are obeyed.

The instance argument is the object to be initialized.

The slotnames argument specifies the slots that are to be initialized according to

their :initform forms if no initialization arguments apply. It is supplied in one of

three forms as follows:

. It can be a list of slot names, which specifies the set of those slot names.

. It can be nil, which specifies the empty set of slot names.

. It can be the symbol t, which specifies the set of all of the slots.

The initargs argument consists of alternating initialization argument names and

values.

The modified instance is returned as the result.

Initialization arguments are declared valid by using the :initarg option to defclass,

or by defining methods for shared-initialize. The keyword name of each keyword

parameter specifier in the lambdalist of any method defined on shared-initialize is

declared a valid initialization argument name for all classes for which that method is

applicable.

Implementations are permitted to optimize :initform forms that neither produce

nor depend on side effects by evaluating these forms and storing them into slots

before running any initialize-instance methods, rather than by handling them in the

primary initialize-instance method. (This optimization might be implemented by

having the allocate-instance method copy a prototype instance.)

Implementations are permitted to optimize default initial value forms for initial

ization arguments associated with slots by not actually creating the complete initial

ization argument list when the only method that would receive the complete list is the

method on standard-object. In this case, default initial value forms can be treated like

:initform forms. This optimization has no visible effects other than a performance

improvement.

See sections 28.1.9, 28.1.9.4, 28.1.9.2 as well as initialize-instance,

reinitialize-instance, update-instance-for-redefined-class, update-instance-for-

different-class, slot-boundp, and slot-makunbound.

[Function]slot-boundp instance slot-name

The function slot-boundp tests whether a specific slot in an instance is bound.

850 COMMON LISP

The arguments are the instance and the name of the slot.

The function slot-boundp returns true or false.

This function allows for writing :after methods on initialize-instance in order

to initialize only those slots that have not already been bound.

If no slot of the given name exists in the instance, slot-missing is called as follows:

(slot-missing (class-of instance)

instance

slotname

´slot-boundp)

The function slot-boundp is implemented using slot-boundp-using-class. See

slot-missing.

[Function]slot-exists-p object slot-name

The function slot-exists-p tests whether the specified object has a slot of the given

name.

The object argument is any object. The slotname argument is a symbol.

The function slot-exists-p returns true or false.

The function slot-exists-p is implemented using slot-exists-p-using-class.

[Function]slot-makunbound instance slot-name

The function slot-makunbound restores a slot in an instance to the unbound state.

The arguments to slot-makunbound are the instance and the name of the slot.

The instance is returned as the result.

If no slot of the given name exists in the instance, slot-missing is called as follows:

(slot-missing (class-of instance)

instance

slotname

´slot-makunbound)

The function slot-makunbound is implemented using slot-makunbound-using-class.

See slot-missing.

COMMON LISP OBJECT SYSTEM 851

[Generic function]slot-missing class object slot-name operation &optional

new-value

[Primary method]slot-missing (class t) object slot-name operation &optional

new-value

The generic function slot-missing is invoked when an attempt is made to access a

slot in an object whose metaclass is standard-class and the name of the slot provided

is not a name of a slot in that class. The default method signals an error.

The generic function slot-missing is not intended to be called by programmers.

Programmers may write methods for it.

The required arguments to slot-missing are the class of the object that is being

accessed, the object, the slot name, and a symbol that indicates the operation that

caused slot-missing to be invoked. The optional argument to slot-missing is used

when the operation is attempting to set the value of the slot.

If a method written for slot-missing returns values, these values get returned as

the values of the original function invocation.

The generic function slot-missing may be called during evaluation of slot-value,

(setf slot-value), slot-boundp, and slot-makunbound. For each of these operations the

corresponding symbol for the operation argument is slot-value, setf, slot-boundp,

and slot-makunbound, respectively.

The set of arguments (including the class of the instance) facilitates defining

methods on the metaclass for slot-missing.

[Generic function]slot-unbound class instance slot-name

[Primary method]slot-unbound (class t) instance slot-name

The generic function slot-unbound is called when an unbound slot is read in an

instance whose metaclass is standard-class. The default method signals an error.

The generic function slot-unbound is not intended to be called by programmers.

Programmers may write methods for it. The function slot-unbound is called only by

the function slot-value-using-class and thus indirectly by slot-value.

The arguments to slot-unbound are the class of the instance whose slot was accessed,

the instance itself, and the name of the slot.

If a method written for slot-unbound returns values, these values get returned as

the values of the original function invocation.

An unbound slot may occur if no :initform form was specified for the slot and the

slot value has not been set, or if slot-makunbound has been called on the slot.

See slot-makunbound.

852 COMMON LISP

[Function]slot-value object slot-name

The function slot-value returns the value contained in the slot slotname of the given

object. If there is no slot with that name, slot-missing is called. If the slot is unbound,

slot-unbound is called.

The macro setf can be used with slot-value to change the value of a slot.

The arguments are the object and the name of the given slot.

The result is the value contained in the given slot.

If an attempt is made to read a slot and no slot of the given name exists in the

instance, slot-missing is called as follows:

(slot-missing (class-of instance)

instance

slotname

´slot-value)

If an attempt is made to write a slot and no slot of the given name exists in the

instance, slot-missing is called as follows:

(slot-missing (class-of instance)

instance

slotname

´setf

newvalue)

The function slot-value is implemented using slot-value-using-class.

Implementations may optimize slot-value by compiling it inline.

See slot-missing and slot-unbound.

[At this point the original CLOS report [5, 7] contained a specification for symbol-

macrolet. This specification is omitted here. Instead, a description of symbol-macrolet

appears with those of related constructs in chapter 7.—GLS]

[Generic function]update-instance-for-different-class previous

current &rest initargs

[Primary method]update-instance-for-different-class

(previous standard-object) (current standard-object) &rest initargs

The generic function update-instance-for-different-class is not intended to be called

by programmers. Programmers may write methods for it. This function is called

only by the function change-class.

COMMON LISP OBJECT SYSTEM 853

The systemsupplied primary method on update-instance-for-different-class

checks the validity of initialization arguments and signals an error if an initial

ization argument is supplied that is not declared valid. This method then initializes

slots with values according to the initialization arguments and initializes the newly

added slots with values according to their :initform forms. It does this by calling

the generic function shared-initialize with the following arguments: the instance,

a list of names of the newly added slots, and the initialization arguments it received.

Newly added slots are those local slots for which no slot of the same name exists in

the previous class.

Methods for update-instance-for-different-class can be defined to specify actions

to be taken when an instance is updated. If only :after methods for update-instance-

for-different-class are defined, they will be run after the systemsupplied primary

method for initialization and therefore will not interfere with the default behavior of

update-instance-for-different-class.

The arguments to update-instance-for-different-class are computed by change-

class. When change-class is invoked on an instance, a copy of that instance is

made; change-class then destructively alters the original instance. The first argu

ment to update-instance-for-different-class, previous, is that copy; it holds the old

slot values temporarily. This argument has dynamic extent within change-class; if

it is referenced in any way once update-instance-for-different-class returns, the

results are undefined. The second argument to update-instance-for-different-class,

current, is the altered original instance.

The intended use of previous is to extract old slot values by using slot-value or

with-slots or by invoking a reader generic function, or to run other methods that

were applicable to instances of the original class.

The initargs argument consists of alternating initialization argument names and

values.

The value returned by update-instance-for-different-class is ignored by change-

class.

See the example for the function change-class.

Initialization arguments are declared valid by using the :initarg option to

defclass, or by defining methods for update-instance-for-different-class or shared-

initialize. The keyword name of each keyword parameter specifier in the lambdalist

of any method defined on update-instance-for-different-class or shared-initialize

is declared a valid initialization argument name for all classes for which that method

is applicable.

Methods on update-instance-for-different-class can be defined to initialize slots

differently from change-class. The default behavior of change-class is described in

section 28.1.11.

See sections 28.1.11, 28.1.9.4, and 28.1.9.2 as well as change-class and shared-

854 COMMON LISP

initialize.

COMMON LISP OBJECT SYSTEM 855

[Generic function]update-instance-for-redefined-class instance

added-slots discarded-slots property-list &rest initargs

[Primary method]update-instance-for-redefined-class

(instance standard-object) added-slots discarded-slots property-list

&rest initargs

The generic function update-instance-for-redefined-class is not intended to be called

by programmers. Programmers may write methods for it. The generic function

update-instance-for-redefined-class is called by the mechanism activated by make-

instances-obsolete.

The systemsupplied primary method on update-instance-for-different-class

checks the validity of initialization arguments and signals an error if an initial

ization argument is supplied that is not declared valid. This method then initializes

slots with values according to the initialization arguments and initializes the newly

added slots with values according to their :initform forms. It does this by calling

the generic function shared-initialize with the following arguments: the instance,

a list of names of the newly added slots, and the initialization arguments it received.

Newly added slots are those local slots for which no slot of the same name exists in

the old version of the class.

When make-instances-obsolete is invoked or when a class has been redefined and

an instance is being updated, a property list is created that captures the slot names

and values of all the discarded slots with values in the original instance. The structure

of the instance is transformed so that it conforms to the current class definition. The

arguments to update-instance-for-redefined-class are this transformed instance, a

list of the names of the new slots added to the instance, a list of the names of the old

slots discarded from the instance, and the property list containing the slot names and

values for slots that were discarded and had values. Included in this list of discarded

slots are slots that were local in the old class and are shared in the new class.

The initargs argument consists of alternating initialization argument names and

values.

The value returned by update-instance-for-redefined-class is ignored.

Initialization arguments are declared valid by using the :initarg option to

defclass or by defining methods for update-instance-for-redefined-class or shared-

initialize. The keyword name of each keyword parameter specifier in the lambdalist

of any method defined on update-instance-for-redefined-class or shared-initialize

is declared a valid initialization argument name for all classes for which that method

is applicable.

See sections 28.1.10, 28.1.9.4, and 28.1.9.2 as well as shared-initialize and

make-instances-obsolete.

(defclass position () ())

856 COMMON LISP

(defclass x-y-position (position)

((x :initform 0 :accessor position-x)

(y :initform 0 :accessor position-y)))

;;; It turns out polar coordinates are used more than Cartesian

;;; coordinates, so the representation is altered and some new

;;; accessor methods are added.

(defmethod update-instance-for-redefined-class :before

((pos x-y-position) added deleted plist &key)

;; Transform the x-y coordinates to polar coordinates

;; and store into the new slots.

(let ((x (getf plist ´x))

(y (getf plist ´y)))

(setf (position-rho pos) (sqrt (+ (* x x) (* y y)))

(position-theta pos) (atan y x))))

(defclass x-y-position (position)

((rho :initform 0 :accessor position-rho)

(theta :initform 0 :accessor position-theta)))

;;; All instances of the old x-y-position class will be updated

;;; automatically.

;;; The new representation has the look and feel of the old one.

(defmethod position-x ((pos x-y-position))

(with-slots (rho theta) pos (* rho (cos theta))))

(defmethod (setf position-x) (new-x (pos x-y-position))

(with-slots (rho theta) pos

(let ((y (position-y pos)))

(setq rho (sqrt (+ (* new-x new-x) (* y y)))

theta (atan y new-x))

new-x)))

(defmethod position-y ((pos x-y-position))

(with-slots (rho theta) pos (* rho (sin theta))))

COMMON LISP OBJECT SYSTEM 857

(defmethod (setf position-y) (new-y (pos x-y-position))

(with-slots (rho theta) pos

(let ((x (position-x pos)))

(setq rho (sqrt (+ (* x x) (* new-y new-y)))

theta (atan new-y x))

new-y)))

[Macro]with-accessors ({slotentry}∗) instanceform

{declaration}∗ { form}∗

The macro with-accessors creates a lexical environment in which specified slots are

lexically available through their accessors as if they were variables. The macro with-

accessors invokes the appropriate accessors to access the specified slots. Both setf

and setq can be used to set the value of the slot.

The result returned is that obtained by executing the forms specified by the body

argument.

Example:

(with-accessors ((x position-x) (y position-y)) p1

(setq x y))

A with-accessors expression of the form

(with-accessors (slotentry1 ... slotentryn) instance

declaration1 ... declarationm)

form1 ... formk)

expands into the equivalent of

(let ((in instance))

(symbol-macrolet ((variablename1 (accessorname1 in))

...

(variablenamen (accessornamen in)))

declaration1 ... declarationm)

form1 ... formk)

[X3J13 voted in March 1989 〈173〉 to modify the definition of symbol-macrolet

substantially and also voted 〈172〉 to allow declarations before the body of symbol-

macrolet but with peculiar treatment of special and type declarations. The syntactic

changes are reflected in this definition of with-accessors.—GLS]

See with-slots and symbol-macrolet.

858 COMMON LISP

[Special form]with-added-methods (functionname lambdalist

[[↓option | {methoddescription}∗]])

{ form}∗

The with-added-methods special form produces new generic functions and establishes

new lexical function definition bindings. Each generic function is created by adding

the set of methods specified by its method definitions to a copy of the lexically visible

generic function of the same name and its methods. If such a generic function does

not already exist, a new generic function is created; this generic function has lexical

scope.

The special form with-added-methods is used to define functions whose names are

meaningful only locally and to execute a series of forms with these function definition

bindings.

The names of functions defined by with-added-methods have lexical scope; they

retain their local definitions only within the body of the with-added-methods construct.

Any references within the body of the with-added-methods construct to functions

whose names are the same as those defined within the with-added-methods form are

thus references to the local functions instead of to any global functions of the same

names. The scope of these generic function definition bindings includes the method

bodies themselves as well as the body of the with-added-methods construct.

The functionname, option, methodqualifier, and specializedlambdalist argu

ments are the same as for defgeneric.

The body of each method is enclosed in an implicit block. If functionname is a

symbol, this block bears the same name as the generic function. If functionname is

a list of the form (setf symbol), the name of the block is symbol.

The result returned by with-added-methods is the value or values of the last form

executed. If no forms are specified, with-added-methods returns nil.

If a generic function with the given name already exists, the lambdalist specified

in the with-added-methods form must be congruent with the lambdalists of all existing

methods on that function as well as with the lambdalists of all methods defined by

the with-added-methods form; otherwise an error is signaled.

If functionname specifies an existing generic function that has a different value for

any of the following option arguments, the copy of that generic function is modified to

have the new value: :argument-precedence-order, declare, :documentation, :generic-

function-class, :method-combination.

If functionname specifies an existing generic function that has a different value for

the :method-class option argument, that value is changed in the copy of that generic

function, but any methods copied from the existing generic function are not changed.

If a function of the given name already exists, that function is copied into the

default method for a generic function of the given name. Note that this behavior

COMMON LISP OBJECT SYSTEM 859

differs from that of defgeneric.

If a macro or special form of the given name already exists, an error is signaled.

If there is no existing generic function, the option arguments have the same default

values as the option arguments to defgeneric.

See generic-labels, generic-flet, defmethod, defgeneric, and ensure-generic-

function.

[Macro]with-slots ({slotentry}∗) instanceform {declaration}∗ { form}∗

slotentry ::= slotname | (variable-name slot-name)

The macro with-slots creates a lexical context for referring to specified slots as

though they were variables. Within such a context the value of the slot can be

specified by using its slot name, as if it were a lexically bound variable. Both setf

and setq can be used to set the value of the slot.

The macro with-slots translates an appearance of the slot name as a variable into

a call to slot-value.

The result returned is that obtained by executing the forms specified by the body

argument.

Example:

(with-slots (x y) position-1

(sqrt (+ (* x x) (* y y))))

(with-slots ((x1 x) (y1 y)) position-1

(with-slots ((x2 x) (y2 y)) position-2

(psetf x1 x2

y1 y2))))

(with-slots (x y) position

(setq x (1+ x)

y (1+ y)))

A with-slots expression of the form:

(with-slots (slotentry1 ... slotentryn) instance

declaration1 ... declarationm)

form1 ... formk)

expands into the equivalent of

860 COMMON LISP

(let ((in instance))

(symbol-macrolet (Q1 ... Qn)

declaration1 ... declarationm)

form1 ... formk)

where Qj is

(slotentryj (slot-value in ´slotentryj))

if slotentryj is a symbol and is

(variablenamej (slot-value in ´slotnamej))

if slotentryj is of the form (variablenamej slotnamej).

[X3J13 voted in March 1989 〈173〉 to modify the definition of symbol-macrolet

substantially and also voted 〈172〉 to allow declarations before the body of symbol-

macrolet but with peculiar treatment of special and type declarations. The syntactic

changes are reflected in this definition of with-slots.—GLS]

See with-accessors and symbol-macrolet.

29

Conditions

BY KENT M. PITMAN

preface: The language defined by the first edition contained an enormous lacuna:

although facilities were specified for signaling errors, no means was defined for

handling errors. This occurred not through neglect of the issue, but because this part

of the Lisp language generally was in a state of flux. There were several proposals at

the time. The committee, finding that it could not agree on any one proposal, agreed

to disagree and omit error handling from Common Lisp for the time being. This

defect has now been addressed.

X3J13 voted in June 1988 〈30〉 to adopt the Common Lisp Condition System as

a part of the forthcoming draft Common Lisp standard. X3J13 voted in March 1989

〈186〉 to amend the specification of conditions to integrate them with the Common

Lisp Object System (see chapter 28). X3J13 voted in June 1989 〈31〉 to amend the

specification of restarts in certain ways. These amendments have been incorporated

here with little further comment.

This chapter presents the bulk of the Common Lisp Condition System proposal,

written by Kent M. Pitman and amended by X3J13. I have edited it only very lightly

to conform to the overall style of this book and have inserted a small number of

bracketed remarks identified by the initials GLS. Please see the Acknowledgments

to this second edition for the author’s acknowledgments to others who contributed to

the Condition System proposal.

—Guy L. Steele Jr.

29.1. Introduction

Often we find it useful to describe a function in terms of its behavior in “normal

situations.” For example, we may say informally that the function + returns the sum

of its arguments or that the function read-char returns the next available character on

a given input stream.

861

862 COMMON LISP

Sometimes, however, an “exceptional situation” will arise that does not fit neatly

into such descriptions. For example, + might receive an argument that is not a number,

or read-char might receive as a single argument a stream that has no more available

characters. This distinction between normal and exceptional situations is in some

sense arbitrary but is often very useful in practice.

For example, suppose a function f were defined to allow only integer arguments

but also guaranteed to detect and signal an error for noninteger arguments. Such a

description is in fact internally inconsistent (that is, paradoxical) because the func

tion’s behavior is welldefined for nonintegers. Yet we would not want this annoying

paradox to force description of f as a function that accepts any kind of argument (just

in case f is being called only as a quick way to signal an error, for example). Using

the normal/exceptional distinction, we can say clearly that f accepts integers in the

normal situation and signals an error in exceptional situations. Moreover, we can

say that when we refer to the definition of a function informally, it is acceptable to

speak only of its normal behavior. For example, we can speak informally about f

as a function that accepts only integers without feeling that we are committing some

awful fraud.

Not all exceptional situations are errors. For example, a program that is directing

the typing of a long line of text may come to an endofline. It is possible that

no real harm will result from failing to signal endofline to its caller because the

operating system will simply force a carriage return on the output device, which will

continue typing on the next line. However, it may still be interesting to establish a

protocol whereby the printing program can inform its caller of endofline exceptions.

The caller could then opt to deal with these situations in interesting ways at certain

times. For example, a caller might choose to terminate printing, obtaining an end

ofline truncation. The important thing, however, is that the failure of the caller

to provide advice about the situation need not prevent the printer program from

operating correctly.

Mechanisms for dealing with exceptional situations vary widely. When an excep

tional situation is encountered, a program may attempt to handle it by returning a

distinguished value, returning an additional value, setting a variable, calling a func

tion, performing a special transfer of control, or stopping the program altogether and

entering the debugger.

For the most part, the facilities described in this chapter do not introduce any fun

damentally new way of dealing with exceptional situations. Rather, they encapsulate

and formalize useful patterns of data and control flow that have been seen to be useful

in dealing with exceptional situations.

A proper conceptual approach to errors should perhaps begin from first principles,

with a discussion of conditions in general, and eventually work up to the concept of an

error as just one of the many kinds of conditions. However, given the primitive state

CONDITIONS 863

of errorhandling technology, a proper buildup may be as inappropriate as requiring

that a beggar learn to cook a gourmet meal before being allowed to eat. Thus, we

deal first with the essentials—error handling—and then go back later to fill in the

missing details.

29.2. Changes in Terminology

In this section, we introduce changes to the terminology defined in section 1.2.4.

A condition is an interesting situation in a program that has been detected and

announced. Later we allow this term also to refer to objects that programs use to

represent such situations.

An error is a condition in which normal program execution may not continue

without some form of intervention (either interactively by the user or under some sort

of program control, as described below).

The process by which a condition is formally announced by a program is called sig

naling. The function signal is the primitive mechanism by which such announcement

is done. Other abstractions, such as error and cerror, are built using signal.

The first edition is ambiguous about the reason why a particular program action

“is an error.” There are two principal reasons why an action may be an error without

being required to signal an error:

. Detecting the error might be prohibitively expensive.

For example, (+ nil 3) is an error. It is likely that the designers of Common

Lisp believed this would be an error in all implementations but felt it might be

excessively expensive to detect the problem in compiled code on stock hardware,

so they did not require that it signal an error.

. Some implementations might implement the behavior as an extension.

For example, (loop for x from 1 to 3 do (print x)) is an error because loop is

not defined to take atoms in its body. In fact, however, some implementations

offer an extension that makes this welldefined. In order to leave room for such

extensions, the first edition used the “is an error” terminology to keep implementors

from being forced to signal an error in the extended implementations.

[This example was written well before the vote by X3J13 in January 1989 to add

exactly this extension to the forthcoming draft standard (see chapter 26).—GLS]

In this chapter, we use the following terminology. [Compare this to the terminology

presented in section 28.1.1.—GLS]

. If the signaling of a condition or error is part of a function’s contract in all situations,

we say that it “signals” or “must signal” that condition or error.

864 COMMON LISP

. If the signaling of a condition or error is optional for some important reason (such

as performance), we say that the program “might signal” that condition or error.

In this case, we are defining the operation to be illegal in all implementations, but

allowing some implementations to fail to detect the error.

. If an action is left undefined for the sake of implementationdependent extension,

we say that it “is undefined” or “has undefined effect.” This means that it is

not possible to depend portably upon the effects of that action. A program that

has undefined effect may enter the debugger, transfer control, or modify data in

unpredictable ways.

. In the special case where only the return value of an operation is not well defined

but any side effect and transferofcontrol behavior is well defined, we say that it

has “undefined value.” In this case, the number and nature of the return values

is not defined, but the function can reasonably be expected to return. It is worth

noting that under this description, there are some (though not many) legitimate

ways in which such return value(s) can be used. For example, if the function foo

has no side effects and undefined value, the expression (length (list (foo))) is

completely well defined even for portable code. However, the effect of (print

(list (foo))) is not well defined.

29.3. Survey of Concepts

This section discusses various aspects of the condition system by topic, illustrating

them with extensive examples. The next section contains definitions of specific

functions, macros, and other facilities.

29.3.1. Signaling Errors

Conceptually, signaling an error in a program is an admission by that program that it

does not know how to continue and requires external intervention. Once an error is

signaled, any decision about how to continue must come from the “outside.”

The simplest way to signal an error is to use the error function with formatstyle

arguments describing the error for the sake of the user interface. If error is called and

there are no active handlers (described in sections 29.3.2 and 29.3.3), the debugger

will be entered and the error message will be typed out. For example:

Lisp> (defun factorial (x)

(cond ((or (not (typep x ´integer)) (minusp x))

(error "˜S is not a valid argument to FACTORIAL."

x))

CONDITIONS 865

((zerop x) 1)

(t (* x (factorial (- x 1))))))

⇒ FACTORIAL

Lisp> (factorial 20)

⇒ 2432902008176640000

Lisp> (factorial -1)

Error: -1 is not a valid argument to FACTORIAL.

To continue, type :CONTINUE followed by an option number:

1: Return to Lisp Toplevel.

Debug>

In general, a call to error cannot directly return. Unless special work has been done

to override this behavior, the debugger will be entered and there will be no option to

simply continue.

The only exception may be that some implementations may provide debugger com

mands for interactively returning from individual stack frames; even then, however,

such commands should never be used except by someone who has read the erring

code and understands the consequences of continuing from that point. In particular,

the programmer should feel confident about writing code like this:

(defun wargames:no-win-scenario ()

(when (true) (error "Pushing the button would be stupid."))

(push-the-button))

In this scenario, there should be no chance that the function error will return and the

button will be pushed.

Remark: It should be noted that the notion of “no chance” that the button will be pushed is

relative only to the language model; it assumes that the language is accurately implemented.

In practice, compilers have bugs, computers have glitches, and users have been known to

interrupt at inopportune moments and use the debugger to return from arbitrary stack frames.

Such violations of the language model are beyond the scope of the condition system but

not necessarily beyond the scope of potential failures that the programmer should consider

and defend against. The possibility of such unusual failures may of course also influence

the design of code meant to handle less drastic situations, such as maintaining a database

uncorrupted.—KMP and GLS

In some cases, the programmer may have a single, welldefined idea of a reasonable

recovery strategy for this particular error. In that case, he can use the function cerror,

which specifies information about what would happen if the user did simply continue

from the call to cerror. For example:

866 COMMON LISP

Lisp> (defun factorial (x)

(cond ((not (typep x ´integer))

(error "˜S is not a valid argument to FACTORIAL."

x))

((minusp x)

(let ((x-magnitude (- x)))

(cerror "Compute -(˜D!) instead."

"(-˜D)! is not defined." x-magnitude)

(- (factorial x-magnitude))))

((zerop x) 1)

(t (* x (factorial (- x 1))))))

⇒ FACTORIAL

Lisp> (factorial -3)

Error: (-3)! is not defined.

To continue, type :CONTINUE followed by an option number:

1: Compute -(3!) instead.

2: Return to Lisp Toplevel.

Debug> :continue 1

⇒ -6

29.3.2. Trapping Errors

By default, a call to error will force entry into the debugger. You can override that

behavior in a variety of ways. The simplest (and most blunt) tool for inhibiting entry

to the debugger on an error is to use ignore-errors. In the normal situation, forms in

the body of ignore-errors are evaluated sequentially and the last value is returned. If

a condition of type error is signaled, ignore-errors immediately returns two values,

namely nil and the condition that was signaled; the debugger is not entered and no

error message is printed. For example:

Lisp> (setq filename "nosuchfile")

⇒ "nosuchfile"

Lisp> (ignore-errors (open filename :direction :input))

⇒ NIL and #--<FILE-ERROR 3437523>

The second return value is an object that represents the kind of error. This is explained

in greater detail in section 29.3.4.

In many cases, however, ignore-errors is not desirable because it deals with too

many kinds of errors. Contrary to the belief of some, a program that does not enter the

debugger is not necessarily better than one that does. Excessive use of ignore-errors

CONDITIONS 867

may keep the program out of the debugger, but it may not increase the program’s

reliability, because the program may continue to run after encountering errors other

than those you meant to work past. In general, it is better to attempt to deal only with

the particular kinds of errors that you believe could legitimately happen. That way,

if an unexpected error comes along, you will still find out about it.

ignore-errors is a useful special case built from a more general facility, handler-

case, that allows the programmer to deal with particular kinds of conditions (including

nonerror conditions) without affecting what happens when other kinds of conditions

are signaled. For example, an effect equivalent to that of ignore-errors above is

achieved in the following example:

Lisp> (setq filename "nosuchfile")

⇒ "nosuchfile"

Lisp> (handler-case (open filename :direction :input)

(error (condition)

(values nil condition)))

⇒ NIL and #--<FILE-ERROR 3437525>

However, using handler-case, one can indicate a more specific condition type than

just “error.” Condition types are explained in detail later, but the syntax looks roughly

like the following:

Lisp> (makunbound ´filename)

⇒ FILENAME

Lisp> (handler-case (open filename :direction :input)

(file-error (condition)

(values nil condition)))

Error: The variable FILENAME is unbound.

To continue, type :CONTINUE followed by an option number:

1: Retry getting the value of FILENAME.

2: Specify a value of FILENAME to use this time.

3: Specify a value of FILENAME to store and use.

4: Return to Lisp Toplevel.

Debug>

29.3.3. Handling Conditions

Blind transfer of control to a handler-case is only one possible kind of recovery action

that can be taken when a condition is signaled. The lowlevel mechanism offers great

flexibility in how to continue once a condition has been signaled.

868 COMMON LISP

The basic idea behind condition handling is that a piece of code called the signaler

recognizes and announces the existence of an exceptional situation using signal or

some function built on signal (such as error).

The process of signaling involves the search for and invocation of a handler, a

piece of code that will attempt to deal appropriately with the situation.

If a handler is found, it may either handle the situation, by performing some non

local transfer of control, or decline to handle it, by failing to perform a nonlocal

transfer of control. If it declines, other handlers are sought.

Since the lexical environment of the signaler might not be available to handlers, a

data structure called a condition is created to represent explicitly the relevant state of

the situation. A condition either is created explicitly using make-condition and then

passed to a function such as signal, or is created implicitly by a function such as

signal when given appropriate noncondition arguments.

In order to handle the error, a handler is permitted to use any nonlocal transfer of

control such as go to a tag in a tagbody, return from a block, or throw to a catch. In

addition, structured abstractions of these primitives are provided for convenience in

exception handling.

A handler can be made dynamically accessible to a program by use of handler-

bind. For example, to create a handler for a condition of type arithmetic-error, one

might write:

(handler-bind ((arithmetic-error handler))body)

The handler is a function of one argument, the condition. If a condition of the

designated type is signaled while the body is executing (and there are no intervening

handlers), the handler would be invoked on the given condition, allowing it the option

of transferring control. For example, one might write a macro that executes a body,

returning either its value(s) or the two values nil and the condition:

(defmacro without-arithmetic-errors (&body forms)

(let ((tag (gensym)))

‘(block ,tag

(handler-bind ((arithmetic-error

#--´(lambda (c) ;Argument c is a condition

(return-from ,tag (values nil c)))))

,@body))))

The handler is executed in the dynamic context of the signaler, except that the set

of available condition handlers will have been rebound to the value that was active

at the time the condition handler was made active. If a handler declines (that is,

CONDITIONS 869

it does not transfer control), other handlers are sought. If no handler is found and

the condition was signaled by error or cerror (or some function such as assert that

behaves like these functions), the debugger is entered, still in the dynamic context of

the signaler.

29.3.4. ObjectOriented Basis of Condition Handling

Of course, the ability of the handler to usefully handle an exceptional situation is

related to the quality of the information it is provided. For example, if all errors were

signaled by

(error "some format string")

then the only piece of information that would be accessible to the handler would be

an object of type simple-error that had a slot containing the format string.

If this were done, string-equal would be the preferred way to tell one error from

another, and it would be very hard to allow flexibility in the presentation of error

messages because existing handlers would tend to be broken by even tiny variations

in the wording of an error message. This phenomenon has been the major failing

of most error systems previously available in Lisp. It is fundamentally important

to decouple the error message string (the human interface) from the objects that

formally represent the error state (the program interface). We therefore have the

notion of typed conditions, and of formal operations on those conditions that make

them inspectable in a structured way.

This objectoriented approach to condition handling has the following important

advantages over a textbased approach:

. Conditions are classified according to subtype relationships, making it easy to test

for categories of conditions.

. Conditions have named slot values through which parameters are conveyed from

the program that signals the condition to the program that handles it.

. Inheritance of methods and slots reduces the amount of explicit specification

necessary to achieve various interesting effects.

Some condition types are defined by this document, but the set of condition types

is extensible using define-condition. Common Lisp condition types are in fact CLOS

classes, and condition objects are ordinary CLOS objects; define-condition merely

provides an abstract interface that is a bit more convenient than defclass for defining

conditions.

Here, as an example, we define a twoargument function called divide that is

patterned after the / function but does some stylized error checking:

870 COMMON LISP

(defun divide (numerator denominator)

(cond ((or (not (numberp numerator))

(not (numberp denominator)))

(error "(DIVIDE ´˜S ´˜S) - Bad arguments."

numerator denominator))

((zerop denominator)

(error ´division-by-zero

:operator ´divide

:operands (list numerator denominator)))

(t ...)))

Note that in the first clause we have used error with a string argument and in the

second clause we have named a particular condition type, division-by-zero. In the

case of a string argument, the condition type that will be signaled is simple-error.

The particular kind of error that is signaled may be important in cases where

handlers are active. For example, simple-error inherits from type error, which in

turn inherits from type condition. On the other hand, division-by-zero inherits from

arithmetic-error, which inherits from error, which inherits from condition. So if a

handler existed for arithmetic-errorwhile a division-by-zero condition was signaled,

that handler would be tried; however, if a simple-error condition were signaled in the

same context, the handler for type arithmetic-error would not be tried.

29.3.5. Restarts

In older Lisp dialects (such as MacLisp), an attempt to signal an error of a given type

often carried with it an implicit promise to support the standard recovery strategy

for that type of error. If the signaler knew the type of error but for whatever reason

was unable to deal with the standard recovery strategy for that kind of error, it

was necessary to signal an untyped error (for which there was no defined recovery

strategy). This sometimes led to confusion when people signaled typed errors without

realizing the full implications of having done so, but more often than not it meant

that users simply avoided typed errors altogether.

The Common Lisp Condition System,which is modeled after the Zetalisp condition

system, corrects this troublesome aspect of previous Lisp dialects by creating a clear

separation between the act of signaling an error of a particular type and the act of

saying that a particular way of recovery is appropriate. In the divide example above,

simply signaling an error does not imply a willingness on the part of the signaler to

cooperate in any corrective action. For example, the following sample interaction

illustrates that the only recovery action offered for this error is “Return to Lisp

Toplevel”:

CONDITIONS 871

Lisp> (+ (divide 3 0) 7)

Error: Attempt to divide 3 by 0.

To continue, type :CONTINUE followed by an option number:

1: Return to Lisp Toplevel.

Debug> :continue 1

Returned to Lisp Toplevel.

Lisp>

When an error is detected and the function error is called, execution cannot continue

normally because error will not directly return. Control can be transferred to other

points in the program, however, by means of specially established “restarts.”

29.3.6. Anonymous Restarts

The simplest kind of restart involves structured transfer of control using a macro

called restart-case. The restart-case form allows execution of a piece of code in a

context where zero or more restarts are active, and where if one of those restarts is

“invoked,” control will be transferred to the corresponding clause in the restart-case

form. For example, we could rewrite the previous divide example as follows.

(defun divide (numerator denominator)

(loop

(restart-case

(return

(cond ((or (not (numberp numerator))

(not (numberp denominator)))

(error "(DIVIDE ´˜S ´˜S) - Bad arguments."

numerator denominator))

((zerop denominator)

(error ´division-by-zero

:operator ´divide

:operands (list numerator denominator)))

(t ...)))

(nil (arg1 arg2)

:report "Provide new arguments for use by DIVIDE."

:interactive

(lambda ()

(list (prompt-for ´number "Numerator: ")

(prompt-for ´number "Denominator: ")))

(setq numerator arg1 denominator arg2))

872 COMMON LISP

(nil (result)

:report "Provide a value to return from DIVIDE."

:interactive

(lambda () (list (prompt-for ´number "Result: ")))

(return result)))))

Remark: The function prompt-for used in this chapter in a number of places is not a part of

Common Lisp. It is used in the examples in this chapter only to keep the presentation simple.

It is assumed to accept a type specifier and optionally a format string and associated arguments.

It uses the format string and associated arguments as part of an interactive prompt, and uses

read to read a Lisp object; however, only an object of the type indicated by the type specifier

is accepted.

The question of whether or not prompt-for (or something like it) would be a useful addition

to Common Lisp is under consideration by X3J13, but as of January 1989 no action has been

taken. In spite of its use in a number of examples, nothing in the Common Lisp Condition

System depends on this function.

In the example, the nil at the head of each clause means that it is an “anonymous”

restart. Anonymous restarts are typically invoked only from within the debugger. As

we shall see later, it is possible to have “named restarts” that may be invoked from

code without the need for user intervention.

If the arguments to anonymous restarts are not optional, then special information

must be provided about what the debugger should use as arguments. Here the

:interactive keyword is used to specify that information.

The :report keyword introduces information to be used when presenting the restart

option to the user (by the debugger, for example).

Here is a sample interaction that takes advantage of the restarts provided by the

revised definition of divide:

Lisp> (+ (divide 3 0) 7)

Error: Attempt to divide 3 by 0.

To continue, type :CONTINUE followed by an option number:

1: Provide new arguments for use by the DIVIDE function.

2: Provide a value to return from the DIVIDE function.

3: Return to Lisp Toplevel.

Debug> :continue 1

1

Numerator: 4

Denominator: 2

⇒ 9

CONDITIONS 873

29.3.7. Named Restarts

In addition to anonymous restarts, one can have named restarts, which can be invoked

by name from within code. As a trivial example, one could write

(restart-case (invoke-restart ´foo 3)

(foo (x) (+ x 1)))

to add 3 to 1, returning 4. This trivial example is conceptually analogous to writing:

(+ (catch ´something (throw ´something 3)) 1)

For a more realistic example, the code for the function symbol-value might signal

an unbound variable error as follows:

(restart-case (error "The variable ˜S is unbound." variable)

(continue ()

:report

(lambda (s) ;Argument s is a stream

(format s "Retry getting the value of ˜S." variable))

(symbol-value variable))

(use-value (value)

:report

(lambda (s) ;Argument s is a stream

(format s "Specify a value of ˜S to use this time."

variable))

value)

(store-value (value)

:report

(lambda (s) ;Argument s is a stream

(format s "Specify a value of ˜S to store and use."

variable))

(setf (symbol-value variable) value)

value))

If this were part of the implementation of symbol-value, then it would be possible

for users to write a variety of automatic handlers for unbound variable errors. For

example, to make unbound variables evaluate to themselves, one might write

(handler-bind ((unbound-variable

#--´(lambda (c) ;Argument c is a condition

(when (find-restart ´use-value)

(invoke-restart ´use-value

874 COMMON LISP

(cell-error-name c))))))

body)

29.3.8. Restart Functions

For commonly used restarts, it is conventional to define a program interface that

hides the use of invoke-restart. Such program interfaces to restarts are called restart

functions.

The normal convention is for the function to share the name of the restart. The

predefined functions abort, continue, muffle-warning, store-value, and use-value are

restart functions. With use-value the above example of handler-bind could have been

written more concisely as

(handler-bind ((unbound-variable

#--´(lambda (c) ;Argument c is a condition

(use-value (cell-error-name c)))))

body)

29.3.9. Comparison of Restarts and Catch/Throw

One important feature that restart-case (or restart-bind) offers that catch does not is

the ability to reason about the available points to which control might be transferred

without actually attempting the transfer. One could, for example, write

(ignore-errors (throw ...))

which is a sort of poor man’s variation of

(when (find-restart ´something)

(invoke-restart ´something))

but there is no way to use ignore-errors and throw to simulate something like

(when (and (find-restart ´something)

(find-restart ´something-else))

(invoke-restart ´something))

or even just

(when (and (find-restart ´something)

(yes-or-no-p "Do something? "))

(invoke-restart ´something))

CONDITIONS 875

because the degree of inspectability that comes with simply writing

(ignore-errors (throw ...))

is too primitive—getting the desired information also forces transfer of control,

perhaps at a time when it is not desirable.

Many programmers have previously evolved strategies like the following on a

casebycase basis:

(defvar *foo-tag-is-available* nil)

(defun fn-1 ()

(catch ´foo

(let ((*foo-tag-is-available* t))

... (fn-2) ...)))

(defun fn-2 ()

...

(if *foo-tag-is-available* (throw ´foo t))

...)

The facility provided by restart-case and find-restart is intended to provide a stan

dardized protocol for this sort of information to be communicated between programs

that were developed independently so that individual variations from program to

program do not thwart the overall modularity and debuggability of programs.

Another difference between the restart facility and the catch/throw facility is that

a catch with any given tag completely shadows any outer pending catch that uses the

same tag. Because of the presence of compute-restarts, however, it is possible to see

shadowed restarts, which may be very useful in some situations (particularly in an

interactive debugger).

876 COMMON LISP

29.3.10. Generalized Restarts

restart-case is a mechanism that allows only imperative transfer of control for its

associated restarts. restart-case is built on a lowerlevel mechanism called restart-

bind, which does not force transfer of control.

restart-bind is to restart-case as handler-bind is to handler-case. The syntax is

(restart-bind ((name function . options)) . body)

The body is executed in a dynamic context within which the function will be called

whenever (invoke-restart ´name) is executed. The options are keywordstyle and

are used to pass information such as that provided with the :report keyword in

restart-case.

A restart-case expands into a call to restart-bind where the function simply

does an unconditional transfer of control to a particular body of code, passing along

“argument” information in a structured way.

It is also possible to write restarts that do not transfer control. Such restarts may

be useful in implementing various special commands for the debugger that are of

interest only in certain situations. For example, one might imagine a situation where

file space was exhausted and the following was done in an attempt to free space in

directory dir:

(restart-bind ((nil #--´(lambda () (expunge-directory dir))

:report-function

#--´(lambda (stream)

(format stream "Expunge ˜A."

(directory-namestring dir)))))

(cerror "Try this file operation again."

´directory-full :directory dir))

In this case, the debugger might be entered and the user could first perform the

expunge (which would not transfer control from the debugger context) and then retry

the file operation:

Lisp> (open "FOO" :direction :output)

Error: The directory PS:<JDOE> is full.

To continue, type :CONTINUE followed by an option number:

1: Try this file operation again.

2: Expunge PS:<JDOE>.

3: Return to Lisp Toplevel.

Debug> :continue 2

Expunging PS:<JDOE> ... 3 records freed.

CONDITIONS 877

Debug> :continue 1

⇒ #--<OUTPUT-STREAM "PS:<JDOE>FOO.LSP" 2323473>

29.3.11. Interactive Condition Handling

When a program does not know how to continue, and no active handler is able to

advise it, the “interactive condition handler,” or “debugger,” can be entered. This

happens implicitly through the use of functions such as error and cerror, or explicitly

through the use of the function invoke-debugger.

The interactive condition handler never returns directly; it returns only through

structured nonlocal transfer of control to specially defined restart points that can

be set up either by the system or by user code. The mechanisms that support

the establishment of such structured restart points for portable code are outlined in

sections 29.3.5 through 29.3.10.

Actually, implementations may also provide extended debugging facilities that

allow return from arbitrary stack frames. Although such commands are frequently

useful in practice, their effects are implementationdependentbecause they violate the

Common Lisp program abstraction. The effect of using such commands is undefined

with respect to Common Lisp.

29.3.12. Serious Conditions

The ignore-errors macro will trap conditions of type error. There are, however,

conditions that are not of type error.

Some conditions are not considered errors but are still very serious, so we call

them serious conditions and we use the type serious-condition to represent them.

Conditions such as those that might be signaled for “stack overflow” or “storage

exhausted” are in this category.

The type error is a subtype of serious-condition, and it would technically be

correct to use the term “serious condition” to refer to all serious conditions whether

errors or not. However, normally we use the term “serious condition” to refer to

things of type serious-condition but not of type error.

The point of the distinction between errors and other serious conditions is that some

conditions are known to occur for reasons that are beyond the scope of Common Lisp

to specify clearly. For example, we know that a stack will generally be used to

implement function calling, and we know that stacks tend to be of finite size and

are prone to overflow. Since the available stack size may vary from implementation

to implementation, from session to session, or from function call to function call,

it would be confusing to have expressions such as (ignore-errors (+ a b)) return

878 COMMON LISP

a number sometimes and nil other times if a and b were always bound to numbers

and the stack just happened to overflow on a particular call. For this reason, only

conditions of type error and not all conditions of type serious-condition are trapped

by ignore-errors. To trap other conditions, a lowerlevel facility must be used (such

as handler-bind or handler-case).

By convention, the function error is preferred over signal to signal conditions of

type serious-condition (including those of type error). It is the use of the function

error, and not the type of the condition being signaled, that actually causes the

debugger to be entered.

Compatibility note: The Common Lisp Condition System differs from that of Zetalisp in this

respect. In Zetalisp the debugger is entered for an unhandled signal if the error function is

used or if the condition is of type error.

29.3.13. NonSerious Conditions

Some conditions are neither errors nor serious conditions. They are signaled to give

other programs a chance to intervene, but if no action is taken, computation simply

continues normally.

For example, an implementation might choose to signal a nonserious (and

implementationdependent) condition called end-of-line when output reaches the

last character position on a line of character output. In such an implementation,

the signaling of this condition might allow a convenient way for other programs to

intervene, producing output that is truncated at the end of a line.

By convention, the function signal is used to signal conditions that are not serious.

It would be possible to signal serious conditions using signal, and the debugger would

not be entered if the condition went unhandled. However, by convention, handlers

will generally tend to assume that serious conditions and errors were signaled by

calling the error function (and will therefore force entry to the interactive condition

handler) and that they should work to avoid this.

29.3.14. Condition Types

Some types of conditions are predefined by the system. All types of conditions are

subtypes of condition. That is, (typep x ´condition) is true if and only if the value

of x is a condition.

Implementations supporting multiple (or nonhierarchical) type inheritance are

expressly permitted to exploit multiple inheritance in the tree of condition types as

implementationdependent extensions,as long as such extensions are compatible with

CONDITIONS 879

the specifications in this chapter. [X3J13 voted in March 1989 〈186〉 to integrate the

Condition System and the Object System, so multiple inheritance is always available

for condition types.—GLS]

In order to avoid problems in portable code that runs both in systems with mul

tiple type inheritance and in systems without it, programmers are explicitly warned

that while all correct Common Lisp implementations will ensure that (typep c

´condition) is true for all conditions c (and all subtype relationships indicated in

this chapter will also be true), it should not be assumed that two condition types

specified to be subtypes of the same third type are disjoint. (In some cases, disjoint

subtypes are identified explicitly, but such disjointness is not to be assumed by de

fault.) For example, it follows from the subtype descriptions contained in this chapter

that in all implementations (typep c ´control-error) implies (typep c ´error), but

note that (typep c ´control-error) does not imply (not (typep c ´cell-error)).

29.3.15. Signaling Conditions

When a condition is signaled, the system tries to locate the most appropriate handler

for the condition and to invoke that handler.

Handlers are established dynamically using handler-bind or abstractions built on

handler-bind.

If an appropriate handler is found, it is called. In some circumstances, the handler

may decline simply by returning without performing a nonlocal transfer of control.

In such cases, the search for an appropriate handler is picked up where it left off, as

if the called handler had never been present.

If no handler is found, or if all handlers that were found decline, signal returns

nil.

Although it follows from the description above, it is perhaps worth noting explicitly

that the lookup procedure described here will prefer a general but more (dynamically)

local handler over a specific but less (dynamically) local handler. Experience with

existing condition systems suggests that this is a reasonable approach and works

adequately in most situations. Some care should be taken when binding handlers for

very general kinds of conditions, such as is done in ignore-errors. Often, binding

for a more specific condition type than error is more appropriate.

29.3.16. Resignaling Conditions

[The contents of this section are still a subject of some debate within X3J13. The

reader may wish to take this section with a grain of salt.—GLS]

880 COMMON LISP

Note that signaling a condition has no side effect on that condition, and that there

is no dynamic state contained in a condition object. As such, it may at times be

reasonable and appropriate to consider caching condition objects for repeated use,

resignaling conditions from within handlers, or saving conditions away somewhere

and resignaling them later.

For example, it may be desirable for the system to preallocate objects of type

storage-condition so that they can be signaled when needed without attempting to

allocate more storage.

29.3.17. Condition Handlers

A handler is a function of one argument, the condition to be handled. The handler

may inspect the object to be sure it is “interested” in handling the condition.

A handler is executed in the dynamic context of the signaler, except that the set

of available condition handlers will have been rebound to the value that was active

at the time the condition handler was made active. The intent of this is to prevent

infinite recursion because of errors in a condition handler.

After inspecting the condition, the handler should take one of the following actions:

. It might decline to handle the condition (by simply returning). When this happens,

the returned values are ignored and the effect is the same as if the handler had been

invisible to the mechanism seeking to find a handler. The next handler in line will

be tried, or if no such handler exists, the condition will go unhandled.

. It might handle the condition (by performing some nonlocal transfer of control).

This may be done either primitively using go, return, or throw, or more abstractly

using a function such as abort or invoke-restart.

. It might signal another condition.

. It might invoke the interactive debugger.

In fact, the latter two actions (signaling another condition or entering the debugger)

are really just ways of putting off the decision to either handle or decline, or trying

to get someone else to make such a decision. Ultimately, all a handler can do is to

handle or decline to handle.

29.3.18. Printing Conditions

When *print-escape* is nil (for example, when the princ function or the ˜A directive

is used with format), the report method for the condition will be invoked. This will be

done automatically by functions such as invoke-debugger, break, and warn, but there

CONDITIONS 881

may still be situations in which it is desirable to have a condition report under explicit

user control. For example,

(let ((form ´(open "nosuchfile")))

(handler-case (eval form)

(serious-condition (c)

(format t "˜&Evaluation of ˜S failed:˜%˜A" form c))))

might print something like

Evaluation of (OPEN "nosuchfile") failed:

The file "nosuchfile" was not found.

Some suggestions about the form of text typed by report methods:

. The message should generally be a complete sentence, beginning with a capital

letter and ending with appropriate punctuation (usually a period).

. The message should not include any introductory text such as “Error:” or

“Warning:” and should not be followed by a trailing newline. Such text will be

added as may be appropriate to context by the routine invoking the report method.

. Except where unavoidable, the tab character (which is only semistandard anyway)

should not be used in error messages. Its effect may vary from one implementation

to another and may cause problems even within an implementation because it may

do different things depending on the column at which the error report begins.

. Singleline messages are preferred, but newlines in the middle of long messages

are acceptable.

. If any program (for example, the debugger) displays messages indented from

the prevailing left margin (for example, indented seven spaces because they are

prefixed by the sevencharacter herald “Error: ”), then that program will take

care of inserting the appropriate indentation into the extra lines of a multiline

error message. Similarly, a program that prefixes error messages with semicolons

so that they appear to be comments should take care of inserting a semicolon

at the beginning of each line in a multiline error message. (These rules are

important because, even within a single implementation, there may be more than

one program that presents error messages to the user, and they may use different

styles of presentation. The caller of error cannot anticipate all such possible styles,

and so it is incumbent upon the presenter of the message to make any necessary

adjustments.)

[Note: These recommendations expand upon those in section 24.1.—GLS]

882 COMMON LISP

When *print-escape* is not nil, the object should print in some useful (but usually

fairly abbreviated) fashion according to the style of the implementation. It is not

expected that a condition will be printed in a form suitable for read. Something like

#--<ARITHMETIC-ERROR 1734> is fine.

X3J13 voted in March 1989 〈186〉 to integrate the Condition System and the

Object System. In the original Condition System proposal, no function was provided

for directly accessing or setting the printer for a condition type, or for invoking

it; the techniques described above were the sole interface to reporting. The vote

specified that, in CLOS terms, condition reporting is mediated through the print-

object method for the condition type (that is, class) in question, with *print-escape*

bound to nil. Specifying (:report fn) to define-condition when defining condition

type C is equivalent to a separate method definition:

(defmethod print-object ((x C) stream)

(if *print-escape*

(call-next-method)

(funcall #--´fn x stream)))

Note that the method uses fn to print the condition only when *print-escape* has the

value nil.

29.4. Program Interface to the Condition System

This section describes functions, macros, variables, and condition types associated

with the Common Lisp Condition System.

29.4.1. Signaling Conditions

The functions in this section provide various mechanisms for signaling warnings,

breaks, continuable errors, and fatal errors.

[Function]error datum &rest arguments

[This supersedes the description of error given in section 24.1.—GLS]

Invokes the signal facility on a condition. If the condition is not handled, (invoke-

debugger condition) is executed. As a consequence of calling invoke-debugger, error

never directly returns to its caller; the only exit from this function can come by non

local transfer of control in a handler or by use of an interactive debugging command.

If datum is a condition, then that condition is used directly. In this case, it is an

error for the list of arguments to be nonempty; that is, error must have been called

with exactly one argument, the condition.

CONDITIONS 883

If datum is a condition type (a class or class name), then the condition used is

effectively the result of (apply #--´make-condition datum arguments).

If datum is a string, then the condition used is effectively the result of

(make-condition ´simple-error

:format-string datum

:format-arguments arguments)

[Function]cerror continue-format-string datum &rest arguments

[This supersedes the description of cerror given in section 24.1.—GLS]

The function cerror invokes the error facility on a condition. If the condition is not

handled, (invoke-debugger condition) is executed. While signaling is going on, and

while control is in the debugger (if it is reached), it is possible to continue program

execution (thereby returning from the call to cerror) using the continue restart.

If datum is a condition, then that condition is used directly. In this case, the list of

arguments need not be empty, but will be used only with the continueformatstring

and will not be used to initialize datum.

If datum is a condition type (a class or class name), then the condition used is

effectively the result of (apply #--´make-condition datum arguments).

If datum is a string, then the condition used is effectively the result of

(make-condition ´simple-error

:format-string datum

:format-arguments arguments)

The continueformatstring must be a string. Note that if datum is not a string,

then the format arguments used by the continueformatstring will still be the list

of arguments (which is in keyword format if datum is a condition type). In this

case, some care may be necessary to set up the continueformatstring correctly.

The format directive ˜*, which ignores and skips over format arguments, may be

particularly useful in this situation.

The value returned by cerror is nil.

[Function]signal datum &rest arguments

Invokes the signal facility on a condition. If the condition is not handled, signal

returns nil.

If datum is a condition, then that condition is used directly. In this case, it is an

error for the list of arguments to be nonempty; that is, error must have been called

with exactly one argument, the condition.

884 COMMON LISP

If datum is a condition type (a class or class name), then the condition used is

effectively the result of (apply #--´make-condition datum arguments).

If datum is a string, then the condition used is effectively the result of

(make-condition ´simple-error

:format-string datum

:format-arguments arguments)

Note that if (typep condition *break-on-signals*) is true, then the debugger will

be entered prior to beginning the process of signaling. The continue restart function

may be used to continue with the signaling process; the restart is associated with the

signaled condition as if by use of with-condition-restarts. This is true also for all

other functions and macros that signal conditions, such as warn, error, cerror, assert,

and check-type.

During the dynamic extent of a call to signal with a particular condition, the

effect of calling signal again on that condition object for a distinct abstract event is

not defined. For example, although a handler may resignal a condition in order to

allow outer handlers first shot at handling the condition, two distinct asynchronous

keyboard events must not signal an the same (eq) condition object at the same time.

For further details about signaling and handling, see the discussion of condition

handlers in section 29.3.17.

[Variable]*break-on-signals*

This variable is intended primarily for use when the user is debugging programs

that do signaling. The value of *break-on-signals* should be suitable as a second

argument to typep, that is, a type or type specifier.

When (typep condition *break-on-signals*) is true, then calls to signal (and to

other advertised functions such as error that implicitly call signal) will enter the

debugger prior to signaling that condition. The continue restart may be used to

continue with the normal signaling process; the restart is associated with the signaled

condition as if by use of with-condition-restarts.

Note that nil is a valid type specifier. If the value of *break-on-signals* is nil,

then signal will never enter the debugger in this implicit manner.

When setting this variable, the user is encouraged to choose the most restrictive

specification that suffices. Setting this flag effectively violates the modular handling

of condition signaling that this chapter seeks to establish. Its complete effect may

be unpredictable in some cases, since the user may not be aware of the variety or

number of calls to signal that are used in programs called only incidentally.

CONDITIONS 885

By default—and certainly in any “production” use—the value of this variable

should be nil, both for reasons of performance and for reasons of modularity and

abstraction.

X3J13 voted in March 1989 〈10〉 to remove *break-on-warnings* from the language;

break-on-signals offers all the power of *break-on-warnings* and more.

Compatibility note: This variable is similar to the Zetalisp variable trace-conditions except

for the obvious difference that zl:trace-conditions takes a type or list of types while *break-

on-signals* takes a single type specifier.

[There is no loss of generality in Common Lisp because the or type specifier may be used

to indicate that any of a set of conditions should enter the debugger.—GLS]

29.4.2. Assertions

These facilities are designed to make it convenient for the user to insert error checks

into code.

[Macro]check-type place typespec [string]

[This supersedes the description of check-type given in section 24.2.—GLS]

A check-type form signals an error of type type-error if the contents of place are

not of the desired type.

If a condition is signaled, handlers of this condition can use the functions type-

error-datum and type-error-expected-type to access the contents of place and the

typespec, respectively.

This function can return only if the store-value restart is invoked, either explicitly

from a handler or implicitly as one of the options offered by the debugger. The restart

is associated with the signaled condition as if by use of with-condition-restarts.

If store-value is called, check-type will store the new value that is the argument to

store-value (or that is prompted for interactively by the debugger) in place and start

over, checking the type of the new value and signaling another error if it is still not

the desired type. Subforms of place may be evaluated multiple times because of the

implicit loop generated. check-type returns nil.

The place must be a generalized variable reference acceptable to setf. The type

spec must be a type specifier; it is not evaluated. The string should be an English

description of the type, starting with an indefinite article (“a” or “an”); it is evalu

ated. If the string is not supplied, it is computed automatically from the typespec.

(The optional string argument is allowed because some applications of check-type

may require a more specific description of what is wanted than can be generated

automatically from the type specifier.)

886 COMMON LISP

The error message will mention the place, its contents, and the desired type.

Implementation note: An implementation may choose to generate a somewhat differently

worded error message if it recognizes that place is of a particular form, such as one of the

arguments to the function that called check-type.

Lisp> (setq aardvarks ´(sam harry fred))

⇒ (SAM HARRY FRED)

Lisp> (check-type aardvarks (array * (3)))

Error: The value of AARDVARKS, (SAM HARRY FRED),

is not a 3-long array.

To continue, type :CONTINUE followed by an option number:

1: Specify a value to use instead.

2: Return to Lisp Toplevel.

Debug> :continue 1

Use Value: #--(sam fred harry)

⇒ NIL

Lisp> aardvarks

⇒ #--<ARRAY-3 13571>

Lisp> (map ´list #--´identity aardvarks)

⇒ (SAM FRED HARRY)

Lisp> (setq aacount ´foo)

⇒ FOO

Lisp> (check-type aacount (integer 0 *) "a non-negative integer")

Error: The value of AACOUNT, FOO, is not a non-negative integer.

To continue, type :CONTINUE followed by an option number:

1: Specify a value to use instead.

2: Return to Lisp Toplevel.

Debug> :continue 2

Lisp>

Compatibility note: In Zetalisp, the equivalent facility is called check-arg-type.

[Macro]assert testform [({place}∗) [datum {argument}∗]]

[This supersedes the description of assert given in section 24.2.—GLS]

An assert form signals an error if the value of the testform is nil. Continuing

from this error using the continue restart will allow the user to alter the values of some

variables, and assert will then start over, evaluating the testform again. (The restart

CONDITIONS 887

is associated with the signaled condition as if by use of with-condition-restarts.)

assert returns nil.

The testform may be any form. Each place (there may be any number of them,

or none) must be a generalized variable reference acceptable to setf. These should

be variables on which testform depends, whose values may sensibly be changed by

the user in attempting to correct the error. Subforms of each place are evaluated

only if an error is signaled, and may be reevaluated if the error is resignaled (after

continuing without actually fixing the problem).

The datum and arguments are evaluated only if an error is to be signaled, and

reevaluated if the error is to be signaled again.

If datum is a condition, then that condition is used directly. In this case, it is an

error to specify any arguments.

If datum is a condition type (a class or class name), then the condition used is

effectively the result of (apply #--´make-condition datum (list {argument}∗)).

If datum is a string, then the condition used is effectively the result of

(make-condition ´simple-error

:format-string datum

:format-arguments (list {argument}∗))

If datum is omitted, then a condition of type simple-error is constructed using the

testform as data. For example, the following might be used:

(make-condition ´simple-error

:format-string "The assertion ˜S failed."

:format-arguments ´(testform))

Note that the testform itself, and not its value, is used as the format argument.

Implementation note: The debugger need not include the testform in the error message,

and any places should not be included in the message, but they should be made available

for the user’s perusal. If the user gives the “continue” command, an opportunity should be

presented to alter the values of any or all of the references. The details of this depend on the

implementation’s style of user interface, of course.

Here is an example of the use of assert:

(setq x (make-array ´(3 5) :initial-element 3))

(setq y (make-array ´(3 5) :initial-element 7))

888 COMMON LISP

(defun matrix-multiply (a b)

(let ((*print-array* nil))

(assert (and (−− (array-rank a) (array-rank b) 2)

(−− (array-dimension a 1)

(array-dimension b 0)))

(a b)

"Cannot multiply ˜S by ˜S." a b)

(really-matrix-multiply a b)))

(matrix-multiply x y)

Error: Cannot multiply #--<ARRAY-3-5 12345> by #--<ARRAY-3-5 12364>.

To continue, type :CONTINUE followed by an option number:

1: Specify new values.

2: Return to Lisp Toplevel.

Debug> :continue 1

Value for A: x

Value for B: (make-array ´(5 3) :initial-element 6)

⇒#--2A((54 54 54 54 54)

(54 54 54 54 54)

(54 54 54 54 54)

(54 54 54 54 54)

(54 54 54 54 54))

29.4.3. Exhaustive Case Analysis

The syntax for etypecase and ctypecase is the same as for typecase, except that no

otherwise clause is permitted. Similarly, the syntax for ecase and ccase is the same

as for case except for the otherwise clause.

etypecase and ecase are similar to typecase and case, respectively, but signal a

noncontinuable error rather than returning nil if no clause is selected.

ctypecase and ccase are also similar to typecase and case, respectively, but signal

a continuable error if no clause is selected.

[Macro]etypecase keyform {(type { form}∗)}∗

[This supersedes the description of etypecase given in section 24.3.—GLS]

This control construct is similar to typecase, but no explicit otherwise or t clause

is permitted. If no clause is satisfied, etypecase signals an error (of type type-error)

with a message constructed from the clauses. It is not permissible to continue from

this error. To supply an error message, the user should use typecase with an otherwise

CONDITIONS 889

clause containing a call to error. The name of this function stands for “exhaustive

type case” or “errorchecking type case.”

Example:

Lisp> (setq x 1/3)

⇒ 1/3

Lisp> (etypecase x

(integer (* x 4))

(symbol (symbol-value x)))

Error: The value of X, 1/3, is neither an integer nor a symbol.

To continue, type :CONTINUE followed by an option number:

1: Return to Lisp Toplevel.

Debug>

[Macro]ctypecase keyplace {(type { form}∗)}∗

[This supersedes the description of ctypecase given in section 24.3.—GLS]

This control construct is similar to typecase, but no explicit otherwise or t clause

is permitted.

The keyplace must be a generalized variable reference acceptable to setf. If no

clause is satisfied, ctypecase signals an error (of type type-error) with a message

constructed from the clauses. This error may be continued using the store-value

restart. The argument to store-value is stored in keyplace and then ctypecase starts

over, making the type tests again. Subforms of keyplace may be evaluated multiple

times. If the store-value restart is invoked interactively, the user will be prompted

for the value to be used.

The name of this function is mnemonic for “continuable (exhaustive) type case.”

Example:

Lisp> (setq x 1/3)

⇒ 1/3

Lisp> (ctypecase x

(integer (* x 4))

(symbol (symbol-value x)))

Error: The value of X, 1/3, is neither an integer nor a symbol.

To continue, type :CONTINUE followed by an option number:

1: Specify a value to use instead.

2: Return to Lisp Toplevel.

Debug> :continue 1

Use value: 3.7

890 COMMON LISP

Error: The value of X, 3.7, is neither an integer nor a symbol.

To continue, type :CONTINUE followed by an option number:

1: Specify a value to use instead.

2: Return to Lisp Toplevel.

Debug> :continue 1

Use value: 12

⇒ 48

[Macro]ecase keyform {({({key}∗) | key} { form}∗)}∗

[This supersedes the description of ecase given in section 24.3.—GLS]

This control construct is similar to case, but no explicit otherwise or t clause is

permitted. If no clause is satisfied, ecase signals an error (of type type-error) with

a message constructed from the clauses. It is not permissible to continue from this

error. To supply an error message, the user should use case with an otherwise clause

containing a call to error. The name of this function stands for “exhaustive case” or

“errorchecking case.”

Example:

Lisp> (setq x 1/3)

⇒ 1/3

Lisp> (ecase x

(alpha (foo))

(omega (bar))

((zeta phi) (baz)))

Error: The value of X, 1/3, is not ALPHA, OMEGA, ZETA, or PHI.

To continue, type :CONTINUE followed by an option number:

1: Return to Lisp Toplevel.

Debug>

[Macro]ccase keyplace {({({key}∗) | key} { form}∗)}∗

[This supersedes the description of ccase given in section 24.3.—GLS]

This control construct is similar to case, but no explicit otherwise or t clause is

permitted.

The keyplace must be a generalized variable reference acceptable to setf. If

no clause is satisfied, ccase signals an error (of type type-error) with a message

constructed from the clauses. This error may be continued using the store-value

restart. The argument to store-value is stored in keyplace and then ccase starts over,

making the type tests again. Subforms of keyplace may be evaluated multiple times.

CONDITIONS 891

If the store-value restart is invoked interactively, the user will be prompted for the

value to be used.

The name of this function is mnemonic for “continuable (exhaustive) case.”

Implementation note: The type-error signaled by ccase and ecase is free to choose any

representation of the acceptable argument type that it wishes for placement in the expected

type slot. It will always work to use type (member . keys), but in some cases it may be more

efficient, for example, to use a type that represents an integer subrange or a type composed

using the or type specifier.

29.4.4. Handling Conditions

These macros allow a program to gain control when a condition is signaled.

[Macro]handler-case expression {(typespec ([var]) { form}∗)}∗

Executes the given expression in a context where various specified handlers are active.

Each typespec may be any type specifier. If during the execution of the expression

a condition is signaled for which there is an appropriate clause—that is, one for

which (typep condition ´typespec) is true—and if there is no intervening handler for

conditions of that type, then control is transferred to the body of the relevant clause

(unwinding the dynamic state appropriately in the process) and the given variable var

is bound to the condition that was signaled. If no such condition is signaled and the

computation runs to completion, then the values resulting from the expression are

returned by the handler-case form.

If more than one case is provided, those cases are made accessible in parallel. That

is, in

(handler-case expression

(type1 (var1) form1)

(type2 (var2) form2))

if the first clause (containing form1) has been selected, the handler for the second is

no longer visible (and vice versa).

The cases are searched sequentially from top to bottom. If a signaled condition

matches more than one case (possible if there is type overlap) the earlier of the two

cases will be selected.

892 COMMON LISP

If the variable var is not needed, it may be omitted. That is, a clause such as

(type (var) (declare (ignore var)) form)

may be written using the following shorthand notation:

(type () form)

If there are no forms in a selected case, the case returns nil. Note that

(handler-case expression

(type1 (var1) . body1)

(type2 (var2) . body2)

...)

is approximately equivalent to

(block #--1−−#--:block-1

(let (#--2−−#--:var-2)

(tagbody

(handler-bind ((type1 #--´(lambda (temp)

(setq #--2#-- temp)

(go #--3−−#--:tag-3)))

(type2 #--´(lambda (temp)

(setq #--2#-- temp)

(go #--4−−#--:tag-4)))

...)

(return-from #--1#-- expression))

#--3#-- (return-from #--1#-- (let ((var1 #--2#--)) . body1))

#--4#-- (return-from #--1#-- (let ((var2 #--2#--)) . body2))

...)))

[Note the use of “gensyms” such as #--:block-1 as block names, variables, and tagbody

tags in this example, and the use of #--n−− and #--n#-- readmacro syntax to indicate that

the very same gensym appears in multiple places.—GLS]

As a special case, the typespec can also be the symbol :no-error in the last clause.

If it is, it designates a clause that will take control if the expression returns normally.

In that case, a completely general lambdalist may follow the symbol :no-error,

and the arguments to which the lambdalist parameters are bound are like those for

multiple-value-call on the return value of the expression. For example,

CONDITIONS 893

(handler-case expression

(type1 (var1) . body1)

(type2 (var2) . body2)

...

(typen (varn) . bodyn)

(:no-error (nvar1 nvar2 ... nvarm) . nbody))

is approximately equivalent to

(block #--1−−#--:error-return

(multiple-value-call #--´(lambda (nvar1 nvar2 ... nvarm) . nbody)

(block #--2−−#--:normal-return

(return-from #--1#--

(handler-case (return-from #--2#-- expression)

(type1 (var1) . body1)

(type2 (var2) . body2)

...

(typen (varn) . bodyn))))))

Examples of the use of handler-case:

(handler-case (/ x y)

(division-by-zero () nil))

(handler-case (open *the-file* :direction :input)

(file-error (condition) (format t "˜&Fooey: ˜A˜%" condition)))

(handler-case (some-user-function)

(file-error (condition) condition)

(division-by-zero () 0)

((or unbound-variable undefined-function) () ´unbound))

(handler-case (intern x y)

(error (condition) condition)

(:no-error (symbol status)

(declare (ignore symbol))

status))

[Macro]ignore-errors { form}∗

Executes its body in a context that handles conditions of type error by returning

control to this form. If no such condition is signaled, any values returned by the last

894 COMMON LISP

form are returned by ignore-errors. Otherwise, two values are returned: nil and the

error condition that was signaled.

ignore-errors could be defined by

(defmacro ignore-errors (&body forms)

`(handler-case (progn ,@forms)

(error (c) (values nil c)))

[Macro]handler-bind ({(typespec handler)}∗) { form}∗

Executes body in a dynamic context where the given handler bindings are in effect.

Each typespec may be any type specifier. Each handler form should evaluate to a

function to be used to handle conditions of the given type(s) during execution of the

forms. This function should take a single argument, the condition being signaled.

If more than one binding is specified, the bindings are searched sequentially from

top to bottom in search of a match (by visual analogy with typecase). If an appropriate

typespec is found, the associated handler is run in a context where none of the handler

bindings are visible (to avoid recursive errors). For example, in the case of

(handler-bind ((unbound-variable #--´(lambda ...))

(error #--´(lambda ...)))

...)

if an unbound variable error is signaled in the body (and not handled by an intervening

handler), the first function will be called. If any other kind of error is signaled, the

second function will be called. In either case, neither handler will be active while

executing the code in the associated function.

29.4.5. Defining Conditions

[The contents of this section are still a subject of some debate within X3J13. The

reader may wish to take this section with a grain of salt, two aspirin tablets, and call

a hacker in the morning.—GLS]

[Macro]define-condition name ({parenttype}∗)
[({slotspecifier}∗) {option}∗]

Defines a new condition type called name, which is a subtype of each given parent

type. Except as otherwise noted, the arguments are not evaluated.

CONDITIONS 895

Objects of this condition type will have all of the indicated slots, plus any additional

slots inherited from the parent types (its superclasses). If the slots list is omitted, the

empty list is assumed.

A slot must have the form

slotspecifier ::= slotname | (slotname [[↓slotoption]])

For the syntax of a slotoption, see defclass. The slots of a condition object are

normal CLOS slots. Note that with-slots may be used instead of accessor functions

to access slots of a condition object.

make-condition will accept keywords (in the keyword package) with the print name

of any of the designated slots, and will initialize the corresponding slots in conditions

it creates.

Accessors are created according to the same rules as used by defclass.

The valid options are as follows:

(:documentation docstring)

The docstring should be either nil or a string that describes the purpose of the

condition type. If this option is omitted, nil is assumed. Calling (documentation

´name ´type) will retrieve this information.

(:report exp)

If exp is not a literal string, it must be a suitable argument to the function special form.

The expression (function exp) will be evaluated in the current lexical environment.

It should produce a function of two arguments, a condition and a stream, that prints

on the stream a description of the condition. This function is called whenever the

condition is printed while *print-escape* is nil.

If exp is a literal string, it is shorthand for

(lambda (c s)

(declare (ignore c))

(write-string exp s))

[That is, a function is provided that will simply write the given string literally to the

stream, regardless of the particular condition object supplied.—GLS]

The :report option is processed after the new condition type has been defined, so

use of the slot accessors within the report function is permitted. If this option is not

specified, information about how to report this type of condition will be inherited

from the parenttype.

896 COMMON LISP

[X3J13 voted in March 1989 〈186〉 to integrate the Condition System and the Object

System. In the original Condition System proposal, define-condition allowed only

one parenttype (the inheritance structure was a simple hierarchy). Slot descriptions

were much simpler, even simpler than those for defstruct:

slot ::= slotname | (slotname) | (slotname defaultvalue)

Similarly, define-condition allowed a :conc-name option similar to that of defstruct:

(:conc-name symbolorstring)

Not now part of Common Lisp. As with defstruct, this sets up automatic prefixing

of the names of slot accessors. Also as in defstruct, the default behavior is to use the

name of the new type, name, followed by a hyphen. (Generated names are interned

in the package that is current at the time that the define-condition is processed).

One consequence of the vote was to make define-condition slot descriptions like

those of defclass.—GLS]

Here are some examples of the use of define-condition.

The following form defines a condition of type peg/hole-mismatch that inherits from

a condition type called blocks-world-error:

(define-condition peg/hole-mismatch (blocks-world-error)

(peg-shape hole-shape)

(:report

(lambda (condition stream)

(with-slots (peg-shape hole-shape) condition

(format stream "A ˜A peg cannot go in a ˜A hole."

peg-shape hole-shape))))

The new type has slots peg-shape and hole-shape, so make-condition will accept :peg-

shape and :hole-shape keywords. The with-slots macro may be used to access the

peg-shape and hole-shape slots, as illustrated in the :report information.

Here is another example. This defines a condition called machine-error that inherits

from error:

(define-condition machine-error (error)

((machine-name

:reader machine-error-machine-name))

(:report (lambda (condition stream)

(format stream "There is a problem with ˜A."

(machine-error-machine-name condition)))))

CONDITIONS 897

Building on this definition, we can define a new error condition that is a subtype of

machine-error for use when machines are not available:

(define-condition machine-not-available-error (machine-error) ()

(:report (lambda (condition stream)

(format stream "The machine ˜A is not available."

(machine-error-machine-name condition)))))

We may now define a still more specific condition, built upon machine-not-available-

error, that provides a default for machine-name but does not provide any new slots or

report information. It just gives the machine-name slot a default initialization:

(define-condition my-favorite-machine-not-available-error

(machine-not-available-error)

((machine-name :initform "MC.LCS.MIT.EDU")))

Note that since no :report clause was given, the information inherited from machine-

not-available-error will be used to report this type of condition.

29.4.6. Creating Conditions

The function make-condition is the basic means for creating condition objects.

[Function]make-condition type &rest slot-initializations

Constructs a condition object of the given type using slotinitializations as a specifi

cation of the initial value of the slots. The newly created condition is returned.

The slotinitializations are alternating keyword/value pairs. For example:

(make-condition ´peg/hole-mismatch

:peg-shape ´square :hole-shape ´round)

29.4.7. Establishing Restarts

The lowestlevel form that creates restart points is called restart-bind. The restart-

case macro is an abstraction that addresses many common needs for restart-bind

while offering a more palatable syntax. See also with-simple-restart. The function

898 COMMON LISP

that transfers control to a restart point established by one of these macros is called

invoke-restart.

All restarts have dynamic extent; a restart does not survive execution of the form

that establishes it.

[Macro]with-simple-restart (name formatstring { formatargument}∗)
{ form}∗

This is shorthand for one of the most common uses of restart-case.

If the restart designated by name is not invoked while executing the forms,all values

returned by the last form are returned. If that restart is invoked, control is transferred

to the with-simple-restart form, which immediately returns the two values nil and

t.

The name may be nil, in which case an anonymous restart is established.

with-simple-restart could be defined by

(defmacro with-simple-restart ((restart-name format-string

&rest format-arguments)

&body forms)

`(restart-case (progn ,@forms)

(,restart-name ()

:report

(lambda (stream)

(format stream ,format-string ,@format-arguments))

(values nil t))))

Here is an example of the use of with-simple-restart.

Lisp> (defun read-eval-print-loop (level)

(with-simple-restart

(abort "Exit command level ˜D." level)

(loop

(with-simple-restart

(abort "Return to command level ˜D." level)

(let ((form (prog2 (fresh-line)

(read)

(fresh-line))))

(prin1 (eval form)))))))

⇒ READ-EVAL-PRINT-LOOP

Lisp> (read-eval-print-loop 1)

(+ ´a 3)

CONDITIONS 899

Error: The argument, A, to the function + was of the wrong type.

The function expected a number.

To continue, type :CONTINUE followed by an option number:

1: Specify a value to use this time.

2: Return to command level 1.

3: Exit command level 1.

4: Return to Lisp Toplevel.

Debug>

Compatibility note: In contrast to the way that Zetalisp has traditionally defined abort as a

kind of condition to be handled, the Common Lisp Condition System defines abort as a way

to restart (“proceed” in Zetalisp terms).

Remark: Some readers may wonder what ought to be done by the “abort” key (or whatever

the implementation’s interrupt key is—ControlC or ControlG, for example). Such interrupts,

whether synchronous or asynchronous in nature, are beyond the scope of this chapter and indeed

are not currently addressed by Common Lisp at all. This may be a topic worth standardizing

under separate cover. Here is some speculation about some possible things that might happen.

An implementation might simply call abort or break directly without signaling any condition.

Another implementation might signal some condition related to the fact that a key had

been pressed rather than to the action that should be taken. This is one way to allow user

customization. Perhaps there would be an implementationdependent keyboard-interrupt con

dition type with a slot containing the key that was pressed—or perhaps there would be such a

condition type, but rather than its having slots, different subtypes of that type with names like

keyboard-abort, keyboard-break, and so on might be signaled. That implementation would then

document the action it would take if user programs failed to handle the condition, and perhaps

ways for user programs to usefully dismiss the interrupt.

Implementation note: Implementors are encouraged to make sure that there is always a

restart named abort around any user code so that user code can call abort at any time and

expect something reasonable to happen; exactly what the reasonable thing is may vary some

what. Typically, in an interactive program, invoking abort should return the user to top level,

though in some batch or multiprocessing situations killing the running process might be more

appropriate.

[Macro]restart-case expression {(casename arglist

{keyword value}∗
{ form}∗)}∗

The expression is evaluated in a dynamic context where the clauses have special

meanings as points to which control may be transferred. If the expression finishes

900 COMMON LISP

executing and returns any values, all such values are simply returned by the restart-

case form. While the expression is running, any code may transfer control to one

of the clauses (see invoke-restart). If a transfer occurs, the forms in the body of

that clause will be evaluated and any values returned by the last such form will be

returned by the restart-case form.

As a special case, if the expression is a list whose car is signal, error, cerror, or

warn, then with-condition-restarts is implicitly used to associate the restarts with the

condition to be signaled. For example,

(restart-case (signal weird-error)

(become-confused ...)

(rewind-line-printer ...)

(halt-and-catch-fire ...))

is equivalent to

(restart-case (with-condition-restarts

weird-error

(list (find-restart ´become-confused)

(find-restart ´rewind-line-printer)

(find-restart ´halt-and-catch-fire))

(signal weird-error))

(become-confused ...)

(rewind-line-printer ...)

(halt-and-catch-fire ...))

If there are no forms in a selected clause, restart-case returns nil.

The casename may be nil or a symbol naming this restart.

It is possible to have more than one clause use the same casename. In this case,

the first clause with that name will be found by find-restart. The other clauses are

accessible using compute-restarts. [In this respect, restart-case is rather different

from case!—GLS]

Each arglist is a normal lambdalist containing parameters to be bound during

the execution of its corresponding forms. These parameters are used to pass any

necessary data from a call to invoke-restart to the restart-case clause.

By default, invoke-restart-interactively will pass no arguments and all parame

ters must be optional in order to accommodate interactive restarting. However, the

parameters need not be optional if the :interactive keyword has been used to inform

invoke-restart-interactively about how to compute a proper argument list.

The valid keyword value pairs are the following:

CONDITIONS 901

:test fn

The fn must be a suitable argument for the function special form. The expression

(function fn) will be evaluated in the current lexical environment. It should produce

a function of one argument, a condition. If this function returns nil when given some

condition, functions such as find-restart, compute-restart, and invoke-restart will

not consider this restart when searching for restarts associated with that condition. If

this pair is not supplied, it is as if

(lambda (c) (declare (ignore c)) t)

were used for the fn.

:interactive fn

The fn must be a suitable argument for the function special form. The expression

(function fn) will be evaluated in the current lexical environment. It should produce

a function of no arguments that returns arguments to be used by invoke-restart-

interactively when invoking this function. This function will be called in the

dynamic environment available prior to any restart attempt. It may interact with the

user on the stream in *query-io*.

If a restart is invoked interactively but no :interactive option was supplied, the

argument list used in the invocation is the empty list.

:report exp

If exp is not a literal string, it must be a suitable argument to the function special form.

The expression (function exp) will be evaluated in the current lexical environment.

It should produce a function of one argument, a stream, that prints on the stream a

description of the restart. This function is called whenever the restart is printed while

print-escape is nil.

If exp is a literal string, it is shorthand for

(lambda (s) (write-string exp s))

[That is, a function is provided that will simply write the given string literally to the

stream.—GLS]

If a named restart is asked to report but no report information has been supplied,

the name of the restart is used in generating default report text.

When *print-escape* is nil, the printer will use the report information for a

restart. For example, a debugger might announce the action of typing “:continue” by

executing the equivalent of

902 COMMON LISP

(format *debug-io* "˜&˜S -- ˜A˜%" ´:continue some-restart)

which might then display as something like

:CONTINUE -- Return to command level.

It is an error if an unnamed restart is used and no report information is provided.

Rationale: Unnamed restarts are required to have report information on the grounds that they

are generally only useful interactively, and an interactive option that has no description is of

little value.

Implementation note: Implementations are encouraged to warn about this error at compilation

time.

At run time, this error might be noticed when entering the debugger. Since signaling an

error would probably cause recursive entry into the debugger (causing yet another recursive

error, and so on), it is suggested that the debugger print some indication of such problems

when they occur, but not actually signal errors.

Note that

(restart-case expression

(name1 arglist1 options1 . body1)

(name2 arglist2 options2 . body2)

...)

is essentially equivalent to

(block #--1−−#--:block-1

(let ((#--2−−#--:var-2 nil))

(tagbody

(restart-bind ((name1 #--´(lambda (&rest temp)

(setq #--2#-- temp)

(go #--3−−#--:tag-3))

〈slightly transformed options1〉)
(name2 #--´(lambda (&rest temp)

(setq #--2#-- temp)

(go #--4−−#--:tag-4))

〈slightly transformed options2〉)
...)

(return-from #--1#-- expression))

CONDITIONS 903

#--3#-- (return-from #--1#--

(apply #--´(lambda arglist1 . body1) #--2#--))

#--4#-- (return-from #--1#--

(apply #--´(lambda arglist2 . body2) #--2#--))

...)))

[Note the use of “gensyms” such as #--:block-1 as block names, variables, and tagbody

tags in this example, and the use of #--n−− and #--n#-- readmacro syntax to indicate that

the very same gensym appears in multiple places.—GLS]

Here are some examples of the use of restart-case.

(loop

(restart-case (return (apply function some-args))

(new-function (new-function)

:report "Use a different function."

:interactive

(lambda ()

(list (prompt-for ´function "Function: ")))

(setq function new-function))))

(loop

(restart-case (return (apply function some-args))

(nil (new-function)

:report "Use a different function."

:interactive

(lambda ()

(list (prompt-for ´function "Function: ")))

(setq function new-function))))

(restart-case (a-command-loop)

(return-from-command-level ()

:report

(lambda (s) ;Argument s is a stream

(format s "Return from command level ˜D." level))

nil))

(loop

(restart-case (another-random-computation)

(continue () nil)))

The first and second examples are equivalent from the point of view of someone using

904 COMMON LISP

the interactive debugger, but they differ in one important aspect for noninteractive

handling. If a handler “knows about” named restarts, as in, for example,

(when (find-restart ´new-function)

(invoke-restart ´new-function the-replacement))

then only the first example, and not the second, will have control transferred to its

correction clause, since only the first example uses a restart named new-function.

Here is a more complete example:

(let ((my-food ´milk)

(my-color ´greenish-blue))

(do ()

((not (bad-food-color-p my-food my-color)))

(restart-case (error ´bad-food-color

:food my-food :color my-color)

(use-food (new-food)

:report "Use another food."

(setq my-food new-food))

(use-color (new-color)

:report "Use another color."

(setq my-color new-color))))

;; We won´t get to here until MY-FOOD

;; and MY-COLOR are compatible.

(list my-food my-color))

Assuming that use-food and use-color have been defined as

(defun use-food (new-food)

(invoke-restart ´use-food new-food))

(defun use-color (new-color)

(invoke-restart ´use-color new-color))

a handler can then restart from the error in either of two ways. It may correct the

color or correct the food. For example:

#--´(lambda (c) ... (use-color ´white) ...) ;Corrects color

#--´(lambda (c) ... (use-food ´cheese) ...) ;Corrects food

Here is an example using handler-bind and restart-case that refers to a condition

type foo-error, presumably defined elsewhere:

CONDITIONS 905

(handler-bind ((foo-error #--´(lambda (ignore) (use-value 7))))

(restart-case (error ´foo-error)

(use-value (x) (* x x))))

⇒ 49

[Macro]restart-bind ({(name function {keyword value}∗)}∗) { form}∗

Executes a body of forms in a dynamic context where the given restart bindings are

in effect.

Each name may be nil to indicate an anonymous restart, or some other symbol to

indicate a named restart.

Each function is a form that should evaluate to a function to be used to perform the

restart. If invoked, this function may either perform a nonlocal transfer of control or

it may return normally. The function may take whatever arguments the programmer

feels are appropriate; it will be invoked only if invoke-restart is used from a program,

or if a user interactively asks the debugger to invoke it. In the case of interactive

invocation, the :interactive-function option is used.

The valid keyword value pairs are as follows:

:test-function form

The form will be evaluated in the current lexical environment and should return a

function of one argument, a condition. If this function returns nil when given some

condition, functions such as find-restart, compute-restart, and invoke-restart will

not consider this restart when searching for restarts associated with that condition. If

this pair is not supplied, it is as if

#--´(lambda (c) (declare (ignore c)) t)

were used for the form.

:interactive-function form

The form will be evaluated in the current lexical environment and should return a

function of no arguments that constructs a list of arguments to be used by invoke-

restart-interactively when invoking this restart. The function may prompt interac

tively using *query-io* if necessary.

:report-function form

The form will be evaluated in the current lexical environment and should return a

function of one argument, a stream, that prints on the stream a summary of the action

906 COMMON LISP

this restart will take. This function is called whenever the restart is printed while

print-escape is nil.

[Macro]with-condition-restarts conditionform restartsform

{declaration}∗ { form}∗

The value of conditionform should be a condition C and the value of restartsform

should be a list of restarts (R1 R2 ...). The forms of the body are evaluated as an

implicit progn. While in the dynamic context of the body, an attempt to find a restart

associated with a particular condition C′ will consider the restarts R1, R2, . . . if C′ is

eq to C.

Usually this macro is not used explicitly in code, because restart-case handles

most of the common uses in a way that is syntactically more concise.

[The X3J13 vote 〈31〉 left it unclear whether with-condition-restarts permits

declarations to appear at the heads of its body. I believe that was the intent, but this

is only my interpretation.—GLS]

29.4.8. Finding and Manipulating Restarts

The following functions determine what restarts are active and invoke restarts.

[Function]compute-restarts &optional condition

Uses the dynamic state of the program to compute a list of the restarts that are

currently active. See restart-bind.

If condition is nil or not supplied, all outstanding restarts are returned. If condition

is not nil, only restarts associated with that condition are returned.

Each restart represents a function that can be called to perform some form of

recovery action, usually a transfer of control to an outer point in the running program.

Implementations are free to implement these objects in whatever manner is most

convenient; the objects need have only dynamic extent (relative to the scope of the

binding form that instantiates them).

The list that results from a call to compute-restarts is ordered so that the inner (that

is, more recently established) restarts are nearer the head of the list.

Note, too, that compute-restarts returns all valid restarts, including anonymous

ones, even if some of them have the same name as others and would therefore not be

found by find-restart when given a symbol argument.

Implementations are permitted, but not required, to return different (that is, noneq)

lists from repeated calls to compute-restarts while in the same dynamic environment.

It is an error to modify the list that is returned by compute-restarts.

CONDITIONS 907

[Function]restart-name restart

Returns the name of the given restart, or nil if it is not named.

[Function]find-restart restart-identifier &optional condition

Searches for a particular restart in the current dynamic environment.

If condition is nil or not supplied, all outstanding restarts are considered. If

condition is not nil, only restarts associated with that condition are considered.

If the restartidentifier is a nonnil symbol, then the innermost (that is, most

recently established) restart with that name is returned; nil is returned if no such

restart is found.

If restartidentifier is a restart object, then it is simply returned, unless it is not

currently active, in which case nil is returned.

Although anonymous restarts have a name of nil, it is an error for the symbol nil

to be given as the restartidentifier. Applications that would seem to require this

should be rewritten to make appropriate use of compute-restarts instead.

[Function]invoke-restart restart-identifier &rest arguments

Calls the function associated with the given restartidentifier, passing any given

arguments. The restartidentifier must be a restart or the nonnull name of a restart

that is valid in the current dynamic context. If the argument is not valid, an error of

type control-error will be signaled.

Implementation note: Restart functions call this function, not vice versa.

[Function]invoke-restart-interactively restart-identifier

Calls the function associated with the given restartidentifier, prompting for any

necessary arguments. The restartidentifier must be a restart or the nonnull name of

a restart that is valid in the current dynamic context. If the argument is not valid, an

error of type control-error will be signaled.

The function invoke-restart-interactively will prompt for arguments by execut

ing the code provided in the :interactive keyword to restart-case or :interactive-

function keyword to restart-bind.

If no :interactive or :interactive-function option has been supplied in the corre

sponding restart-case or restart-bind, then it is an error if the restart takes required

arguments. If the arguments are optional, an empty argument list will be used in this

case.

908 COMMON LISP

Once invoke-restart-interactively has calculated the arguments, it simply per

forms (apply #--´invoke-restart restart-identifier arguments).

invoke-restart-interactively is used internally by the debugger and may also be

useful in implementing other portable, interactive debugging tools.

29.4.9. Warnings

Warnings are a subclass of errors that are conventionally regarded as “mild.”

[Function]warn datum &rest arguments

[This supersedes the description of warn given in section 24.1.—GLS]

Warns about a situation, by signaling a condition of type warning.

If datum is a condition, then that condition is used directly. In this case, if the

condition is not of type warning or arguments is nonnil, an error of type type-error

is signaled.

If datum is a condition type (a class or class name), then the condition used

is effectively the result of (apply #--´make-condition datum arguments). This result

must be of type warning or an error of type type-error is signaled.

If datum is a string, then the condition used is effectively the result of

(make-condition ´simple-error

:format-string datum

:format-arguments arguments)

The precise mechanism for warning is as follows.

1. The warning condition is signaled.

While the warning condition is being signaled, the muffle-warning restart is estab

lished for use by a handler to bypass further action by warn (that is, to cause warn

to immediately return nil).

As part of the signaling process, if (typep condition *break-on-signals*) is true,

then a break will occur prior to beginning the signaling process.

2. If no handlers for the warning condition are found, or if all such handlers decline,

then the condition will be reported to *error-output* by the warn function (with

possible implementationspecific extra output such as motion to a fresh line before

or after the display of the warning, or supplying some introductory text mentioning

the name of the function that called warn or the fact that this is a warning).

3. The value returned by warn (if it returns) is nil.

CONDITIONS 909

29.4.10. Restart Functions

Common Lisp has the following restart functions built in.

[Function]abort &optional condition

This function transfers control to the restart named abort. If no such restart exists,

abort signals an error of type control-error.

If condition is nil or not supplied, all outstanding restarts are considered. If

condition is not nil, only restarts associated with that condition are considered.

The purpose of the abort restart is generally to allow control to return to the

innermost “command level.”

[Function]continue &optional condition

This function transfers control to the restart named continue. If no such restart exists,

continue returns nil.

If condition is nil or not supplied, all outstanding restarts are considered. If

condition is not nil, only restarts associated with that condition are considered.

The continue restart is generally part of simple protocols where there is a single

“obvious” way to continue, as with break and cerror. Some userdefined protocols

may also wish to incorporate it for similar reasons. In general, however, it is more

reliable to design a specialpurpose restart with a name that better suits the particular

application.

[Function]muffle-warning &optional condition

This function transfers control to the restart named muffle-warning. If no such restart

exists, muffle-warning signals an error of type control-error.

If condition is nil or not supplied, all outstanding restarts are considered. If

condition is not nil, only restarts associated with that condition are considered.

warn sets up this restart so that handlers of warning conditions have a way to tell

warn that a warning has already been dealt with and that no further action is warranted.

[Function]store-value value &optional condition

This function transfers control (and one value) to the restart named store-value. If

no such restart exists, store-value returns nil.

If condition is nil or not supplied, all outstanding restarts are considered. If

condition is not nil, only restarts associated with that condition are considered.

910 COMMON LISP

The store-value restart is generally used by handlers trying to recover from errors

of types such as cell-error or type-error, where the handler may wish to supply a

replacement datum to be stored permanently.

[Function]use-value value &optional condition

This function transfers control (and one value) to the restart named use-value. If no

such restart exists, use-value returns nil.

If condition is nil or not supplied, all outstanding restarts are considered. If

condition is not nil, only restarts associated with that condition are considered.

The use-value restart is generally used by handlers trying to recover from errors of

types such as cell-error, where the handler may wish to supply a replacement datum

for onetime use.

29.4.11. Debugging Utilities

Common Lisp does not specify exactly what a debugger is or does, but it does provide

certain means for indicating intent to transfer control to a supervisory or debugging

facility.

[Function]break &optional format-string &rest format-arguments

[This supersedes the description of break given in section 24.1.—GLS]

The function break prints the message described by the formatstring and format

arguments and then goes directly into the debugger without allowing any possibility

of interception by programmed errorhandling facilities.

If no formatstring is supplied, a suitable default will be generated.

If continued, break returns nil.

Note that break is presumed to be used as a way of inserting temporary debugging

“breakpoints” in a program, not as a way of signaling errors; it is expected that

continuing from a break will not trigger any unusual recovery action. For this reason,

break does not take the additional format control string that cerror takes as its first

argument. This and the lack of any possibility of interception by programmed error

handling are the only programvisible differences between break and cerror. The user

interface aspects of these functions are permitted to vary more widely; for example,

it is permissible for a readevalprint loop to be entered by break rather than by the

conventional debugger.

break could be defined by

CONDITIONS 911

(defun break (&optional (format-string "Break")

&rest format-arguments)

(with-simple-restart (continue "Return from BREAK.")

(invoke-debugger

(make-condition ´simple-condition

:format-string format-string

:format-arguments format-arguments)))

nil)

[Function]invoke-debugger condition

Attempts interactive handling of its argument, which must be a condition.

If the variable *debugger-hook* is not nil, it will be called as a function on two

arguments: the condition being handled and the value of *debugger-hook*. If a hook

function returns normally, the standard debugger will be tried.

The standard debugger will never directly return. Return can occur only by a

special transfer of control, such as the use of a restart.

Remark: The exact way in which the debugger interacts with users is expected to vary

considerably from system to system. For example, some systems may use a keyboard interface,

while others may use a mouse interface. Of those systems using keyboard commands, some

may use singlecharacter commands and others may use parsed lineatatime commands. The

exact set of commands will vary as well. The important properties of a debugger are that

it makes information about the error accessible and that it makes the set of apparent restarts

easily accessible.

It is desirable to have a mode where the debugger allows other features, such as the ability

to inspect data, stacks, etc. However, it may sometimes be appropriate to have this kind

of information hidden from users. Experience on the Lisp Machines has shown that some

users who are not programmers develop a terrible phobia of debuggers. The reason for this

usually may be traced to the fact that the debugger is very foreign to them and provides an

overwhelming amount of information of interest only to programmers. With the advent of

restarts, there is a clear mechanism for the construction of “friendly” debuggers. Programmers

can be taught how to get to the information they need for debugging, but it should be possible to

construct user interfaces to the debugger that are natural, convenient, intelligible, and friendly

even to nonprogrammers.

[Variable]*debugger-hook*

This variable should hold either nil or a function of two arguments, a condition and

the value of *debugger-hook*. This function may either handle the condition (transfer

control) or return normally (allowing the standard debugger to run).

912 COMMON LISP

Note that, to minimize recursive errors while debugging, *debugger-hook* is bound

to nil when calling this function. When evaluating code typed in by the user

interactively, the hook function may want to bind *debugger-hook* to the function

that was its second argument so that recursive errors can be handled using the same

interactive facility.

29.5. Predefined Condition Types

[The proposal for the Common Lisp Condition System introduced a new notation

for documenting types, treating them in the same syntactic manner as functions and

variables. This notation is used in this section but is not reflected throughout the

entire book.—GLS]

X3J13 voted in March 1989 〈186〉 to integrate the Condition System and the Object

System. All condition types are CLOS classes and all condition objects are ordinary

CLOS objects.

[Type]restart

This is the data type used to represent a restart.

The Common Lisp condition type hierarchy is illustrated in table 291.

The types that are not leaves in the hierarchy (that is, condition, warning, storage-

condition, error, arithmetic-error, control-error, and so on) are provided primarily

for type inclusion purposes. Normally they would not be directly instantiated.

Implementations are permitted to support nonportable synonyms for these types,

as well as to introduce other types that are above, below, or between the types shown

in this tree as long as the indicated subtype relationships are not violated.

The types simple-condition, serious-condition, and warning are pairwise disjoint.

The type error is also disjoint from types simple-condition and warning.

[Type]condition

All types of conditions, whether error or nonerror, must inherit from this type.

[Type]warning

All types of warnings should inherit from this type. This is a subtype of condition.

[Type]serious-condition

All serious conditions (conditions serious enough to require interactive intervention

if not handled) should inherit from this type. This is a subtype of condition.

CONDITIONS 913

Table 291: Condition Type Hierarchy

condition

simple-condition

serious-condition

error

simple-error

arithmetic-error

division-by-zero

floating-point-overflow

floating-point-underflow

...

cell-error

unbound-variable

undefined-function

...

control-error

file-error

package-error

program-error

stream-error

end-of-file

...

type-error

simple-type-error

...

...

storage-condition

...

warning

simple-warning

...

...

This condition type is provided primarily for terminological convenience. In fact,

signaling a condition that inherits from serious-condition does not force entry into

the debugger. Rather, it is conventional to use error (or something built on error) to

signal conditions that are of this type, and to use signal to signal conditions that are

not of this type.

914 COMMON LISP

[Type]error

All types of error conditions inherit from this condition. This is a subtype of serious-

condition.

The default condition type for signal and warn is simple-condition. The default

condition type for error and cerror is simple-error.

[Type]simple-condition

Conditions signaled by signal when given a format string as a first argument are of this

type. This is a subtype of condition. The initialization keywords :format-string and

:format-arguments are supported to initialize the slots, which can be accessed using

simple-condition-format-string and simple-condition-format-arguments. If :format-

arguments is not supplied to make-condition, the formatarguments slot defaults to

nil.

[Type]simple-warning

Conditions signaled by warn when given a format string as a first argument are of this

type. This is a subtype of warning. The initialization keywords :format-string and

:format-arguments are supported to initialize the slots, which can be accessed using

simple-condition-format-string and simple-condition-format-arguments. If :format-

arguments is not supplied to make-condition, the formatarguments slot defaults to

nil.

In implementations supporting multiple inheritance, this type will also be a subtype

of simple-condition.

[Type]simple-error

Conditions signaled by error and cerror when given a format string as a first argument

are of this type. This is a subtype of error. The initialization keywords :format-string

and :format-arguments are supported to initialize the slots, which can be accessed

using simple-condition-format-string and simple-condition-format-arguments. If

:format-arguments is not supplied to make-condition, the formatarguments slot de

faults to nil.

In implementations supporting multiple inheritance, this type will also be a subtype

of simple-condition.

[Function]simple-condition-format-string condition

Accesses the formatstring slot of a given condition, which must be of type simple-

condition, simple-warning, simple-error, or simple-type-error.

CONDITIONS 915

[Function]simple-condition-format-arguments condition

Accesses the formatarguments slot of a given condition, which must be of type

simple-condition, simple-warning, simple-error, or simple-type-error.

[Type]storage-condition

Conditions that relate to storage overflow should inherit from this type. This is a

subtype of serious-condition.

[Type]type-error

Errors in the transfer of data in a program should inherit from this type. This is

a subtype of error. For example, conditions to be signaled by check-type should

inherit from this type. The initialization keywords :datum and :expected-type are

supported to initialize the slots, which can be accessed using type-error-datum and

type-error-expected-type.

[Function]type-error-datum condition

Accesses the datum slot of a given condition, which must be of type type-error.

[Function]type-error-expected-type condition

Accesses the expectedtype slot of a given condition, which must be of type type-

error. Users of type-error conditions are expected to fill this slot with an object that

is a valid Common Lisp type specifier.

[Type]simple-type-error

Conditions signaled by facilities similar to check-type may want to use this type.

The initialization keywords :format-string and :format-arguments are supported to

initialize the slots, which can be accessed using simple-condition-format-string and

simple-condition-format-arguments. If :format-arguments is not supplied to make-

condition, the formatarguments slot defaults to nil.

In implementations supporting multiple inheritance, this type will also be a subtype

of simple-condition.

[Type]program-error

Errors relating to incorrect program syntax that are statically detectable should inherit

from this type (regardless of whether they are in fact statically detected). This is a

subtype of error. This is not a subtype of control-error.

916 COMMON LISP

[Type]control-error

Errors in the dynamic transfer of control in a program should inherit from this type.

This is a subtype of error. This is not a subtype of program-error.

The errors that result from giving throw a tag that is not active or from giving go or

return-from a tag that is no longer dynamically available are control errors.

On the other hand, the errors that result from naming a go tag or return-from tag

that is not lexically apparent are not control errors. They are program errors. See

program-error.

[Type]package-error

Errors that occur during operations on packages should inherit from this type. This

is a subtype of error. The initialization keyword :package is supported to initialize

the slot, which can be accessed using package-error-package.

[Function]package-error-package condition

Accesses the package (or package name) that was being modified or manipulated in

a condition of type package-error.

[Type]stream-error

Errors that occur during input from, output to, or closing a stream should inherit from

this type. This is a subtype of error. The initialization keyword :stream is supported

to initialize the slot, which can be accessed using stream-error-stream.

[Function]stream-error-stream condition

Accesses the offending stream of a condition of type stream-error.

[Type]end-of-file

The error that results when a read operation is done on a stream that has no more

tokens or characters should inherit from this type. This is a subtype of stream-error.

[Type]file-error

Errors that occur during an attempt to open a file, or during some lowlevel transaction

with a file system, should inherit from this type. This is a subtype of error. The

CONDITIONS 917

initialization keyword :pathname is supported to initialize the slot, which can be

accessed using file-error-pathname.

[Function]file-error-pathname condition

Accesses the offending pathname of a condition of type file-error.

[Type]cell-error

Errors that occur while accessing a location should inherit from this type. This is a

subtype of error. The initialization keyword :name is supported to initialize the slot,

which can be accessed using cell-error-name.

[Function]cell-error-name condition

Accesses the offending cell name of a condition of type cell-error.

[Type]unbound-variable

The error that results from trying to access the value of an unbound variable should

inherit from this type. This is a subtype of cell-error.

[Type]undefined-function

The error that results from trying to access the value of an undefined function should

inherit from this type. This is a subtype of cell-error.

Remark: [Note: This remark was written well before the vote by X3J13 in June 1988 〈12〉 to

add the Common Lisp Object System to the forthcoming draft standard (see chapter 28) and

the vote to integrate the Condition System and the Object System. I have retained the remark

here for reasons of historical interest.—GLS]

Some readers may wonder why undefined-function is not defined to inherit from some

condition such as control-error. The answer is that any such arrangement would require the

presence of multiple inheritance—a luxury we do not currently have (without resorting to

deftype, which we are currently avoiding). When the Common Lisp Object System comes into

being, we might want to consider issues like this. Multiple inheritance makes a lot of things

in a condition system much more flexible to deal with.

[Type]arithmetic-error

Errors that occur while doing arithmetic type operations should inherit from this type.

This is a subtype of error. The initialization keywords :operation and :operands are

918 COMMON LISP

supported to initialize the slots, which can be accessed using arithmetic-error-

operation and arithmetic-error-operands.

[Function]arithmetic-error-operation condition

Accesses the offending operation of a condition of type arithmetic-error.

[Function]arithmetic-error-operands condition

Accesses a list of the offending operands in a condition of type arithmetic-error.

[Type]division-by-zero

Errors that occur because of division by zero should inherit from this type. This is a

subtype of arithmetic-error.

[Type]floating-point-overflow

Errors that occur because of floatingpoint overflow should inherit from this type.

This is a subtype of arithmetic-error.

[Type]floating-point-underflow

Errors that occur because of floatingpoint underflow should inherit from this type.

This is a subtype of arithmetic-error.

Appendix A

Series

BY RICHARD C. WATERS

preface: A series is a data structure much like a sequence, with similar kinds

of operations. The difference is that in many situations, operations on series may

be composed functionally and yet execute iteratively, without the need to construct

intermediate series values explicitly. In this manner, series provide both the clarity of

a functional programming style and the efficiency of an iterative programming style.

The remainder of this chapter consists of a description by Richard C. Waters of his

work on an existing implementation of series. This is the culmination of many years

of design and use of this approach, during which some 100,000 lines of application

code have been written (by about half a dozen people over the course of seven years)

using the series facility in nearly all iteration situations. This includes one large

system (KBEmacs) of over 40,000 lines of code.

I have edited the chapter only very lightly to conform to the overall style of this

book. Please see the Preface to this book for more information about the genesis of

the series approach and its relationship to the work of X3J13.

—Guy L. Steele Jr.

A.1. Introduction

Series combine aspects of sequences, streams, and loops. Like sequences, series

represent totally ordered multisets. In addition, the series functions have the same

flavor as the sequence functions—namely, they operate on whole series, rather than

extracting elements to be processed by other functions. For instance, the series

expression below computes the sum of the positive elements in a list.

(collect-sum (choose-if #--´plusp (scan ´(1 -2 3 -4)))) ⇒ 4

Like streams, series can represent unbounded sets of elements and are supported

by lazy evaluation: each element of a series is not computed until it is needed.

For instance, the series expression below returns a list of the first five even natural

919

920 COMMON LISP

numbers and their sum. The call on scan-range returns a series of all the even natural

numbers. However, since no elements beyond the first five are ever used, no elements

beyond the first five are ever computed.

(let ((x (subseries (scan-range :from 0 :by 2) 0 5)))

(values (collect x) (collect-sum x)))

⇒ (0 2 4 6 8) and 20

Like sequences and unlike streams, a series is not altered when its elements are

accessed. For instance, both users of x above receive the same elements.

A totally ordered multiset of elements can be represented in a loop by the succes

sive values of a variable. This is extremely efficient, because it avoids the need to

store the elements as a group in any kind of data structure. In most situations, series

expressions achieve this same high level of efficiency, because they are automatically

transformed into loops before being evaluated or compiled. For instance, the first

expression above is transformed into a loop like the following.

(let ((sum 0))

(dolist (i ´(1 -2 3 -4) sum)

(when (plusp i) (setq sum (+ sum i))))) ⇒ 4

A wide variety of algorithms can be expressed clearly and succinctly with series

expressions. In particular, at least 90 percent of the loops programmers typically

write can be replaced by series expressions that are much easier to understand and

modify, and just as efficient. From this perspective, the key feature of series is that

they are supported by a rich set of functions. These functions more or less correspond

to the union of the operations provided by the sequence functions, the loop clauses,

and the vector operations of APL.

Some series expressions cannot be transformed into loops. This is unfortunate, be

cause while transformable series expressions are much more efficient than equivalent

expressions involving sequences or streams, nontransformable series expressions are

much less efficient. Whenever a problem comes up that blocks the transformation of

a series expression, a warning message is issued. On the basis of information in the

message, it is usually easy to provide an efficient fix for the problem (see section A.3).

Fortunately, most series expressions can be transformed into loops. In particular,

pure expressions (ones that do not store series in variables) can always be transformed.

As a result, the best approach for programmers to take is simply to write series

expressions without worrying about transformability. When problems come up, they

can be ignored (since they cannot lead to the computation of incorrect results) or

dealt with on an individual basis.

SERIES 921

Implementation note: The series functions and the theory underlying them are described in

greater detail in [52, 53]. These reports also discuss the algorithms required to transform series

expressions into loops and explain how to obtain a portable implementation.

A.2. Series Functions

Throughout this chapter the notation Sj is used to denote the jth element of the series

S. As in a list or vector, the first element of a series has the subscript zero.

The #-- macro character syntax #--Zlist denotes a series that contains the elements of

list. This syntax is also used when series are printed.

(choose-if #--´symbolp #--Z(a 2 b)) ⇒ #--Z(a b)

Series are selfevaluating objects and the series data type is disjoint from all other

types.

[Type specifier]series element-type

The type specifier (series element-type) denotes the set of series whose elements

are all members of the type elementtype.

[Function]series arg &rest args

The function series returns an unbounded series that endlessly repeats the values of

the arguments. The second example below shows the preferred method for construct

ing a bounded series.

(series ´b ´c) ⇒ #--Z(b c b c b c ...)

(scan (list ´a ´b ´c)) ⇒ #--Z(a b c)

A.2.1. Scanners

Scanners create series outputs based on nonseries inputs. Either they operate based

on some formula (for example, scanning a range of integers) or they enumerate the

elements in an aggregate data structure (for example, scanning the elements in a list

or array).

922 COMMON LISP

[Function]scan-range &key (:start 0) (:by 1) (:type ´number) :upto :below

:downto :above :length

The function scan-range returns a series of numbers starting with the :start argument

(default integer 0) and counting up by the :by argument (default integer 1). The :type

argument (default number) is a type specifier indicating the type of numbers in the

series produced. The :type argument must be a (not necessarily proper) subtype of

number. The :start and :by arguments must be of that type.

One of the last five arguments may be used to specify the kind of end test to be used;

these are called termination arguments. If :upto is specified, counting continues only

so long as the numbers generated are less than or equal to :upto. If :below is specified,

counting continues only so long as the numbers generated are less than :below. If

:downto is specified, counting continues only so long as the numbers generated are

greater than or equal to :downto. If :above is specified, counting continues only so

long as the numbers generated are greater than :above. If :length is specified, it must

be a nonnegative integer and the output series has this length.

If none of the termination arguments are specified, the output has unbounded

length. If more than one termination argument is specified, it is an error.

(scan-range :upto 4) ⇒ #--Z(0 1 2 3 4)

(scan-range :from 1 :by -1 :above -4) ⇒ #--Z(1 0 -1 -2 -3)

(scan-range :from .5 :by .1 :type ´float) ⇒ #--Z(.5 .6 .7 ...)

(scan-range) ⇒ #--Z(0 1 2 3 4 5 6 ...)

[Function]scan sequence

[Function]scan type sequence

scan returns a series containing the elements of sequence in order. The type argument

is a type specifier indicating the type of sequence to be scanned; it must be a (not

necessarily proper) subtype of sequence. If type is omitted, it defaults to list. (This

function exhibits an argument pattern that is unusual for Common Lisp: an “optional”

argument preceding a required argument. This pattern cannot be expressed in the

usual manner with &optional. It is indicated above by two definition lines, showing

the two possible argument patterns.)

If the sequence is a list, it must be a proper list ending in nil. Scanning is

significantly more efficient if it can be determined at compile time whether type is a

subtype of list or vector and for vectors what the length of the vector is.

(scan ´(a b c)) ⇒ #--Z(a b c)

(scan ´string "BAR") ⇒ #--Z(#--\B #--\A #--\R)

SERIES 923

[Function]scan-sublists list

scan-sublists returns a series containing the successive sublists of list. The list must

be a proper list ending in nil.

(scan-sublists ´(a b c)) ⇒ #--Z((a b c) (b c) (c))

[Function]scan-multiple type first-sequence &rest more-sequences

Several sequences can be scanned at once by using several calls on scan. Each call on

scan will test to see when its sequence runs out of elements and execution will stop

as soon as any of the sequences are exhausted. Although very robust, this approach

to scanning can be inefficient. In situations where it is known in advance which

sequence is the shortest, scan-multiple can be used to obtain the same results more

rapidly.

scan-multiple is similar to scan except that several sequences can be scanned at

once. If there are n sequence inputs, scan-multiple returns n series containing the

elements of these sequences. It must be the case that none of the sequence inputs

is shorter than the first sequence. All of the output series are the same length as

the first input sequence. Extra elements in the other input sequences are ignored.

Using scan-multiple is more efficient than using multiple instances of scan, because

scan-multiple only has to check for the first input running out of elements.

If type is of the form (values t1 . . . txm), then there must be m sequence inputs

and the ith sequence must have type ti. Otherwise there can be any number of

sequence inputs, each of which must have type type.

(multiple-value-bind (data weights)

(scan-multiple ´list ´(1 6 3 2 8) ´(2 3 3 3 2))

(collect (map-fn t #--´* data weights)))

⇒ (2 18 9 6 16)

[Function]scan-lists-of-lists lists-of-lists &optional leaf-test

[Function]scan-lists-of-lists-fringe lists-of-lists &optional leaf-test

The argument listsoflists is viewed as a tree where each internal node is a nonempty

list and the elements of the list are the children of the node. scan-lists-of-lists and

scan-lists-of-lists-fringe each scan listsoflists in preorder and return a series of

its nodes. scan-lists-of-lists returns every node in the tree. scan-lists-of-lists-

fringe returns only the leaf nodes.

The scan proceeds as follows. The argument listsoflists can be any Lisp object.

If listsoflists is an atom or satisfies the predicate leaftest (if present), it is a leaf

924 COMMON LISP

node. (The predicate can count on being applied only to conses.) Otherwise, listsof

lists is a (not necessarily proper) list. The first element of listsoflists is recursively

scanned in full, followed by the second and so on until a noncons cdr is encountered.

Whether or not this final cdr is nil, it is ignored.

(scan-lists-of-lists ´((2) (nil)))

⇒ #--Z(((2) (nil)) (2) 2 (nil) nil)

(scan-lists-of-lists-fringe ´((2) (nil))) ⇒ #--Z(2 nil)

(scan-lists-of-lists-fringe ´((2) (nil))

#--´(lambda (e) (numberp (car e))))

⇒ #--Z((2) nil)

[Function]scan-alist a-list &optional (test #--´eql)

[Function]scan-plist plist

[Function]scan-hash table

When given an association list, a property list, or a hash table (respectively), each

of these functions produces two outputs: a series of keys K and a series of the

corresponding values V. Each key in the input appears exactly once in the output,

even if it appears more than once in the input. (The test argument of scan-alist

specifies the equality test between keys; it defaults to eql.) The two outputs have the

same length. Each Vj is the value returned by the appropriate accessing function (cdr

of assoc, getf, or gethash, respectively) when given Kj. scan-alist and scan-plist

scan keys in the order they appear in the underlying structure. scan-hash scans keys

in no particular order.

(scan-plist ´(a 1 b 3)) ⇒ #--Z(a b) and #--Z(1 3)

(scan-alist ´((a . 1) nil (a . 3) (b . 2)))

⇒ #--Z(a b) and #--Z(1 2)

[Function]scan-symbols &optional (package *package*)

scan-symbols returns a series, in no particular order, and possibly containing dupli

cates, of the symbols accessible in package (which defaults to the current package).

[Function]scan-file file-name &optional (reader #--´read)

scan-file opens the file named by the string filename and applies the function reader

to it repeatedly until the end of the file is reached. Reader must accept the standard

input function arguments inputstream, eoferrorp, and eofvalue as its arguments.

SERIES 925

(For instance, reader can be read, read-preserving-white-space, read-line, or read-

char.) If omitted, reader defaults to read. scan-file returns a series of the values

returned by reader, up to but not including the value returned when the end of the

file is reached. The file is correctly closed, even if an abort occurs.

[Function]scan-fn type init step &optional test

The higherorder function scan-fn supports the general concept of scanning. The

type argument is a type specifier indicating the type of values returned by init and

step. The values type specifier can be used for this argument to indicate multiple

types; however, type cannot indicate zero values. If type indicates m types t1, . . . , tm,

then scan-fn returns m series T1, . . . , Tm, where Ti has the type (series ti). The

arguments init, step, and test are functions.

The init must be of type (function () (values t1 ... tm)).

The step must be of type (function (t1 ... tm) (values t1 ... tm)).

The test (if present) must be of type (function (t1 ... tm) t).

The elements of the Ti are computed as follows:

(values T10 ... Tm0) −− (funcall init)

(values T1j ... Tmj) −− (funcall step T1(j−1) ... Tm(j−1))

The outputs all have the same length. If there is no test, the outputs have unbounded

length. If there is a test, the outputs consist of the elements up to, but not including,

the first elements (with index j, say) for which the following termination test is not

nil.

(funcall test T1j ... Tmj)

It is guaranteed that step will not be applied to the elements that pass this termination

test.

If init, step, or test has side effects when invoked, it can count on being called in

the order indicated by the equations above, with test called just before step on each

cycle. However, given the lazy evaluation nature of series, these functions will not be

called until their outputs are actually used (if ever). In addition, no assumptions can

be made about the relative order of evaluation of these calls with regard to execution

in other parts of a given series expression. The first example below scans down a

list stepping two elements at a time. The second example generates two unbounded

series: the integers counting up from 1 and the sequence of partial sums of the first i

integers.

(scan-fn t #--´(lambda () ´(a b c d)) #--´cddr #--´null)

⇒ #--Z((a b c d) (c d))

926 COMMON LISP

(scan-fn ´(values integer integer)

#--´(lambda () (values 1 0))

#--´(lambda (i sum) (values (+ i 1) (+ sum i))))

⇒ #--Z(1 2 3 4 ...) and #--Z(0 1 3 6 ...)

[Function]scan-fn-inclusive type init step test

The higherorder function scan-fn-inclusive is the same as scan-fn except that the

first set of elements for which test returns a nonnull value is included in the output.

As with scan-fn, it is guaranteed that step will not be applied to the elements for

which test is nonnull.

A.2.2. Mapping

By far the most common kind of series operation is mapping. In cognizance of this

fact, four different ways are provided for specifying mapping: one fundamental form

(map-fn) and three shorthand forms that are more convenient in particular common

situations.

[Function]map-fn type function &rest series-inputs

The higherorder function map-fn supports the general concept of mapping. The

type argument is a type specifier indicating the type of values returned by function.

The values construct can be used to indicate multiple types; however, type cannot

indicate zero values. If type indicates m types t1, . . . , tm, then map-fn returns m series

T1, . . . , Tm, where Ti has the type (series ti). The argument function is a function.

The remaining arguments (if any) are all series. Let these series be S1, . . . , Sn and

suppose that Si has the type (series si).

The function must be of type

(function (s1 ... sn) (values t1 ... tm))

The length of each output is the same as the length of the shortest input. If there

are no bounded series inputs, the outputs are unbounded. The elements of the Ti are

the results of applying function to the corresponding elements of the series inputs.

(values T1j ... Tmj) ≡ (funcall function S1j ... Snj)

SERIES 927

If function has side effects, it can count on being called first on the Si0, then on

the Si1, and so on. However, given the lazy evaluation nature of series, function will

not be called on any group of input elements until the result is actually used (if ever).

In addition, no assumptions can be made about the relative order of evaluation of the

calls on function with regard to execution in other parts of a given series expression.

(map-fn ´integer #--´+ #--Z(1 2 3) #--Z(4 5)) ⇒ #--Z(5 7)

(map-fn t #--´gensym) ⇒ #--Z(#--:G3 #--:G4 #--:G5 ...)

(map-fn ´(values integer rational) #--´floor #--Z(1/4 9/5 12/3))

⇒ #--Z(0 1 4) and #--Z(1/4 4/5 0)

The #-- macro character syntax #--M makes it easy to specify uses of map-fn where

type is t and the function is a named function. The notation (#--Mfunction ...) is an

abbreviation for (map-fn t #--´function ...). The form function can be the printed

representation of any Lisp object. The notation #--Mfunction can appear only in the

function position of a list.

(collect (#--M1+ (scan ´(1 2 3)))) ⇒ (2 3 4)

[Macro]mapping ({({var | ({var}∗)} value)}∗) {declaration}∗ { form}∗

The macro mapping makes it easy to specify uses of map-fn where type is t and the

function is a literal lambda. The syntax of mapping is analogous to that of let. The

binding list specifies zero or more variables that are bound in parallel to successive

values of series. The value part of each pair is an expression that must produce a

series. The declarations and forms are treated as the body of a lambda expression that

is mapped over the series values. A series of the first values returned by this lambda

expression is returned as the result of mapping.

(mapping ((x r) (y s)) ...) ≡
(map-fn t #--´(lambda (x y) ...) r s)

(mapping ((x (scan ´(2 -2 3))))

(expt (abs x) 3))

⇒ #--Z(8 8 27)

The form mapping supports a special syntax that facilitates the use of series functions

returning multiple values. Instead of being a single variable, the variable part of a

varvalue pair can be a list of variables. This list is treated the same way as the first

argument to multiple-value-bind and can be used to access the elements of multiple

series returned by a series function.

928 COMMON LISP

(mapping (((i v) (scan-plist ´(a 1 b 2))))

(list i v))

⇒ #--Z((a 1) (b 2))

[Macro]iterate ({({var | ({var}∗)} value)}∗) {declaration}∗ { form}∗

The form iterate is the same as mapping, except that after mapping the forms over the

values, the results are discarded and nil is returned.

(let ((item (scan ´((1) (-2) (3)))))

(iterate ((x (#--Mcar item)))

(if (plusp x) (prin1 x))))

⇒ nil (after printing “13”)

To a first approximation, iterate and mapping differ in the same way as mapc and

mapcar. In particular, like mapc, iterate is intended to be used in situations where the

forms are being evaluated for side effects rather than for their results. However, given

the lazy evaluation semantics of series, the difference between iterate and mapping is

more than just a question of efficiency.

If mapcar is used in a situation where the output is not used, time is wasted

unnecessarily creating the output list. However, if mapping is used in a situation

where the output is not used, no computation is performed, because series elements

are not computed until they are used. Thus iterate can be thought of as a declaration

that the indicated computation is to be performed even though the output is not used

for anything.

A.2.3. Truncation and Other Simple Transducers

Transducers compute series from series and form the heart of most series expressions.

Mapping is by far the most common transducer. This section presents a number of

additional simple transducers.

[Function]cotruncate &rest series-inputs

[Function]until bools &rest series-inputs

[Function]until-if pred &rest series-inputs

Each of these functions accepts one or more series inputs S1, . . . , Sn as its &rest

argument and returns n series outputs T1, . . . , Tn that contain the same elements

in the same order—that is, Tij=Sij. Let k be the length of the shortest input Si.

cotruncate truncates the series so that each output has length k. Let k′ be the position

SERIES 929

of the first element in the boolean series bools that is not nil or, if every element

is nil, the length of bools. until truncates the series so that each output has length

(min k k´). Let itk′′ be the position of the first element in S1 such that (pred S1k´´)

is not nil or, if there is no such element, the length of S1. until-if truncates the

series so that each output has length (min k k´´).

(cotruncate #--Z(1 2 -3 4) #--Z(a b c))

⇒ #--Z(1 2 -3) and #--Z(a b c)

(until #--Z(nil nil t nil) #--Z(1 2 -3 4) #--Z(a b c))

⇒ #--Z(1 2) and #--Z(a b)

(until-if #--´minusp #--Z(1 2 -3 4) #--Z(a b c))

⇒ #--Z(1 2) and #--Z(a b)

[Function]previous items &optional (default nil) (amount 1)

The series returned by previous is the same as the input series items except that it is

shifted to the right by the positive integer amount. The shifting is done by inserting

amount copies of default before items and discarding amount elements from the end

of items.

(previous #--Z(10 11 12) 0) ⇒ #--Z(0 10 11)

[Function]latch items &key :after :before :pre :post

The series returned by latch is the same as the input series items except that some

of the elements are replaced by other values. latch acts like a latch electronic

circuit component. Each input element causes the creation of a corresponding output

element. After a specified number of nonnull input elements have been encountered,

the latch is triggered and the output mode is permanently changed.

The :after and :before arguments specify the latch point. The latch point is just

after the :afterth nonnull element in items or just before the :beforeth nonnull

element. If neither :after nor :before is specified, an :after of 1 is assumed. If both

are specified, it is an error.

If a :pre is specified, every element prior to the latch point is replaced by this value.

If a :post is specified, every element after the latch point is replaced by this value. If

neither is specified, a :post of nil is assumed.

(latch #--Z(nil c nil d e)) ⇒ #--Z(nil c nil nil nil)

(latch #--Z(nil c nil d e) :before 2 :post t) ⇒ #--Z(nil c nil t t)

930 COMMON LISP

[Function]collecting-fn type init function &rest series-inputs

The higherorder function collecting-fn supports the general concept of a simple

transducer with internal state. The type argument is a type specifier indicating the

type of values returned by function. The values construct can be used to indicate

multiple types; however, type cannot indicate zero values. If type indicates m types

t1, . . . , tm, then collecting-fn returns m series T1, . . . , Tm, where Ti has the type

(series ti). The arguments init and function are functions. The remaining arguments

(if any) are all series. Let these series be S1, . . . , Sn and suppose that Si has the type

(series si).

The init must be of type (function () (values t1 ... tm)).

The function must be of type

(function (t1 ... tm s1 ... sn) (values t1 ... tm))

The length of each output is the same as the length of the shortest input. If there

are no bounded series inputs, the outputs are unbounded. The elements of the Ti are

computed as follows:

(values T10 ... Tm0) ≡
(multiple-value-call function (funcall init) S10 ... Sn0)

(values T1j ... Tmj) ≡
(funcall function T1(j−1) ... Tm(j−1) S1j ... Snj)

If init or function has side effects, it can count on being called in the order indicated

by the equations above. However, given the lazy evaluation nature of series, these

functions will not be called until their outputs are actually used (if ever). In addition,

no assumptions can be made about the relative order of evaluation of these calls with

regard to execution in other parts of a given series expression. The second example

below computes a series of partial sums of the numbers in an input series. The third

example computes two output series: the partial sums of its first input and the partial

products of its second input.

(defun running-averages (float-list)

(multiple-value-call #--´map-fn

´float #--´/

(collecting-fn ´(values float integer)

#--´(lambda () (values 0.0 0)

#--´(lambda (s n x) (values (+ s x) (+ n 1))))

float-list)))

SERIES 931

(collecting-fn ´integer #--´(lambda () 0) #--´+ #--Z(1 2 3))

⇒ #--Z(1 3 6)

(collecting-fn ´(values integer integer)

#--´(lambda () (values 0 1))

#--´(lambda (sum prod x y)

(values (+ sum x) (* prod y)))

#--Z(4 6 8)

#--Z(1 2 3))

⇒ #--Z(4 10 18) and #--Z(1 2 6)

A.2.4. Conditional and Other Complex Transducers

This section presents a number of complex transducers, including ones that support

conditional computation.

[Function]choose bools &optional (items bools)

[Function]choose-if pred items

Each of these functions takes in a series of elements (items) and returns a series

containing the same elements in the same order, but with some elements removed.

choose removes itemsj if boolsj is nil or j is beyond the end of bools. If items is

omitted, choose returns the nonnull elements of bools. choose-if removes itemsj if

(pred itemsj) is nil.

(choose #--Z(t nil t nil) #--Z(a b c d)) ⇒ #--Z(a c)

(collect-sum (choose-if #--´plusp #--Z(-1 2 -3 4))) ⇒ 6

[Function]expand bools items &optional (default nil)

expand is a quasiinverse of choose. The output contains the elements of the input

series items spread out into the positions specified by the nonnull elements in bools—

that is, itemsj is in the position occupied by the jth nonnull element in bools. The

other positions in the output are occupied by default. The output stops as soon as

bools runs out of elements or a nonnull element in bools is encountered for which

there is no corresponding element in items.

(expand #--Z(nil t nil t t) #--Z(a b c)) ⇒ #--Z(nil a nil b c)

(expand #--Z(nil t nil t t) #--Z(a)) ⇒ #--Z(nil a nil)

932 COMMON LISP

[Function]split items &rest test-series-inputs

[Function]split-if items &rest test-predicates

These functions are like choose and choose-if except that instead of producing one

restricted output, they partition the input series items between several outputs. If there

are n test inputs following items, then there are n + 1 outputs. Each input element is

placed in exactly one output series, depending on the outcome of a sequence of tests.

If the element itemsj fails the first k − 1 tests and passes the kh test, it is put in the

kth output. If itemsj fails every test, it is placed in the last output. In addition, all

output stops as soon as any series input runs out of elements. The test inputs to split

are series of values; itemsj passes the kth test if the jth element of the kth test series

is not nil. The test inputs to split-if are predicates; itemsj passes the kth test if the

kth test predicate returns nonnull when applied to itemsj.

(split #--Z(-1 2 3 -4) #--Z(t nil nil t))

⇒ #--Z(-1 -4) and #--Z(2 3)

(multiple-value-bind (+x -x) (split-if #--Z(-1 2 3 -4) #--´plusp)

(values (collect-sum +x) (collect-sum -x)))

⇒ 5 and -5

[Function]catenate &rest series-inputs

catenate combines two or more series into one long series by appending them end to

end. The length of the output is the sum of the lengths of the inputs.

(catenate #--Z(b c) #--Z() #--Z(d)) ⇒ #--Z(b c d)

[Function]subseries items start &optional below

subseries returns a series containing the elements of the input series items indexed

by the nonnegative integers from start up to, but not including, below. If below is

omitted or greater than the length of items, the output goes all the way to the end of

items.

(subseries #--Z(a b c d) 1) ⇒ #--Z(b c d)

(subseries #--Z(a b c d) 1 3) ⇒ #--Z(b c)

[Function]positions bools

positions returns a series of the indices of the nonnull elements in the series input

bools.

SERIES 933

(positions #--Z(t nil t 44)) ⇒ #--Z(0 2 3)

[Function]mask monotonic-indices

mask is a quasiinverse of positions. The series input monotonicindices must be

a strictly increasing series of nonnegative integers. The output, which is always

unbounded, contains t in the positions specified by monotonicindices and nil every

where else.

(mask #--Z(0 2 3)) ⇒ #--Z(t nil t t nil nil ...)

(mask #--Z()) ⇒ #--Z(nil nil ...)

(mask (positions #--Z(nil a nil b nil)))

⇒ #--Z(nil t nil t nil ...)

[Function]mingle items1 items2 comparator

The series returned by mingle contains all and only the elements of the two input series.

The length of the output is the sum of the lengths of the inputs and is unbounded if

either input is unbounded. The order of the elements remains unchanged; however,

the elements from the two inputs are stably intermixed under the control of the

comparator.

The comparator must accept two arguments and return nonnull if and only if its

first argument is strictly less than its second argument (in some appropriate sense). At

each step, the comparator is used to compare the current elements in the two series. If

the current element from items2 is strictly less than the current element from items1,

the current element is removed from items2 and transferred to the output. Otherwise,

the next output element comes from items1.

(mingle #--Z(1 3 7 9) #--Z(4 5 8) #--´<) ⇒ #--Z(1 3 4 5 7 8 9)

(mingle #--Z(1 7 3 9) #--Z(4 5 8) #--´<) ⇒ #--Z(1 4 5 7 3 8 9)

[Function]chunk m n items

This function has the effect of breaking up the input series items into (possibly

overlapping) chunks of length m. The starting positions of successive chunks differ

by n. The inputs m and n must both be positive integers.

chunk produces m output series. The ith chunk provides the ith element for each

of the m outputs. Suppose that the length of items is l. The length of each output is

⌊1 + (l−m)/n⌋. The ith element of the kth output is the (i ∗ n + k)th element of items

(i and k counting from zero).

934 COMMON LISP

Note that if l < m, there will be no output elements, and if l − m is not a multiple

of n, the last few input elements will not appear in the output. If m ≥ n, one can

guarantee that the last chunk will contain the last element of items by catenating n−1

copies of an appropriate padding value to the end of items.

The first example below shows chunk being used to compute a moving average. The

second example shows chunk being used to convert a property list into an association

list.

(mapping (((xi xi+1 xi+2) (chunk 3 1 #--Z(1 5 3 4 5 6))))

(/ (+ xi xi+1 xi+2) 3))

⇒ #--Z(3 4 4 5)

(collect

(mapping (((prop val) (chunk 2 2 (scan ´(a 2 b 5 c 8)))))

(cons prop val)))

⇒ ((a . 2) (b . 5) (c . 8))

A.2.5. Collectors

Collectors produce nonseries outputs based on series inputs. They either create a

summary value based on some formula (the sum, for example) or collect the elements

of a series in an aggregate data structure (such as a list).

[Function]collect-first items &optional (default nil)

[Function]collect-last items &optional (default nil)

[Function]collect-nth n items &optional (default nil)

Given a series items, these functions return the first element, the last element, and

the nth element, respectively. If items has no elements (or no nth element), default is

returned. If default is not specified, then nil is used for default.

(collect-first #--Z() ´z) ⇒ z

(collect-last #--Z(a b c)) ⇒ c

(collect-nth 1 #--Z(a b c)) ⇒ b

[Function]collect-length items

collect-length returns the number of elements in a series.

(collect-length #--Z(a b c)) ⇒ 3

SERIES 935

[Function]collect-sum numbers &optional (type ´number)

collect-sum returns the sum of the elements in a series of numbers. The type is a

type specifier that indicates the type of sum to be created. If type is not specified,

then number is used for the type. If there are no elements in the input, a zero (of the

appropriate type) is returned.

(collect-sum #--Z(1.1 1.2 1.3)) ⇒ 3.6

(collect-sum #--Z() ´complex) ⇒ #--C(0 0)

[Function]collect-max numbers

[Function]collect-min numbers

Given a series of noncomplex numbers, these functions compute the maximum

element and the minimum element, respectively. If there are no elements in the

input, nil is returned.

(collect-max #--Z(2 1 4 3)) ⇒ 4

(collect-min #--Z(1.2 1.1 1.4 1.3)) ⇒ 1.1

(collect-min #--Z()) ⇒ nil

[Function]collect-and bools

collect-and returns the and of the elements in a series. As with the macro and, nil

is returned if any element of bools is nil. Otherwise, the last element of bools is

returned. The value t is returned if there are no elements in bools.

(collect-and #--Z(a b c)) ⇒ c

(collect-and #--Z(a nil c)) ⇒ nil

[Function]collect-or bools

collect-or returns the or of the elements in a series. As with the macro or, nil is

returned if every element of bools is nil. Otherwise, the first nonnull element of

bools is returned. The value nil is returned if there are no elements in bools.

(collect-or #--Z(nil b c)) ⇒ b

(collect-or #--Z()) ⇒ nil

[Function]collect items

[Function]collect type items

collect returns a sequence containing the elements of the series items. The type is a

type specifier indicating the type of sequence to be created. It must be either a proper

936 COMMON LISP

subtype of sequence or the symbol bag. If type is omitted, it defaults to list. (This

function exhibits an argument pattern that is unusual for Common Lisp: an “optional”

argument preceding a required argument. This pattern cannot be expressed in the

usual manner with &optional. It is indicated above by two definition lines, showing

the two possible argument patterns.)

If the type is bag, a list is created with the elements in whatever order can be most

efficiently obtained. Otherwise, the order of the elements in the sequence is the same

as the order in items. If type specifies a length (that is, of a vector) this length must

be greater than or equal to the length of items.

The nth element of items is placed in the nth slot of the sequence produced. Any

unneeded slots are left in their initial state. Collecting is significantly more efficient

if it can be determined at compile time whether type is a subtype of list or vector

and for vectors what the length of the vector is.

(collect #--Z(a b c)) ⇒ (a b c)

(collect ´bag #--Z(a b c)) ⇒ (c a b) or (b a c) or . . .
(collect ´(vector integer 3) #--Z(1 2 3)) ⇒ #--(1 2 3)

[Function]collect-append sequences

[Function]collect-append type sequences

Given a series of sequences, collect-append returns a new sequence by concatenating

these sequences together in order. The type is a type specifier indicating the type

of sequence created and must be a proper subtype of sequence. If type is omitted,

it defaults to list. (This function exhibits an argument pattern that is unusual for

Common Lisp: an “optional” argument preceding a required argument. This pattern

cannot be expressed in the usual manner with &optional. It is indicated above by two

definition lines, showing the two possible argument patterns.)

It must be possible for every element of every sequence in the input series to be an

element of a sequence of type type. The result does not share any structure with the

sequences in the input.

(collect-append #--Z((a b) nil (c d))) ⇒ (a b c d)

(collect-append ´string #--Z("a " "big " "cat")) ⇒ "a big cat"

[Function]collect-nconc lists

collect-nconc nconcs the elements of the series lists together in order and returns the

result. This is the same as collect-append except that the input must be a series of

lists, the output is always a list, the concatenation is done rapidly by destructively

SERIES 937

modifying the input elements, and therefore the output shares all of its structure with

the input elements.

[Function]collect-alist keys values

[Function]collect-plist keys values

[Function]collect-hash keys values &key :test :size :rehash-size

:rehash-threshold

Given a series of keys and a series of corresponding values, these functions return an

association list, a property list, and a hash table, respectively. Following the order

of the input, each keysjvaluesj pair is entered into the output so that it overrides

all earlier associations. If one of the input series is longer than the other, the extra

elements are ignored. The keyword arguments of collect-hash specify attributes of

the hash table produced and have the same meanings as the arguments to make-hash-

table.

(collect-alist #--Z(a b c) #--Z(1 2)) ⇒ ((b . 2) (a . 1))

(collect-plist #--Z(a b c) #--Z(1 2)) ⇒ (b 2 a 1)

(collect-hash #--Z() #--Z(1 2) :test #--´eq) ⇒ 〈an empty hash table〉

[Function]collect-file file-name items &optional (printer #--´print)

This creates a file named filename and writes the elements of the series items into it

using the function printer. Printer must accept two inputs: an object and an output

stream. (For instance, printer can be print, prin1, princ, pprint, write-char, write-

string, or write-line.) If omitted, printer defaults to print. The value t is returned.

The file is correctly closed, even if an abort occurs.

[Function]collect-fn type init function &rest series-inputs

The higherorder function collect-fn supports the general concept of collecting. It

is identical to collecting-fn except that it returns only the last element of each series

computed. If there are no elements in these series, the values returned by init are

passed on directly as the output of collect-fn.

(collect-fn ´integer #--´(lambda () 0) #--´+ #--Z(1 2 3)) ⇒ 6

(collect-fn ´integer #--´(lambda () 0) #--´+ #--Z()) ⇒ 0

(collect-fn ´integer #--´(lambda () 1) #--´* #--Z(1 2 3 4 5)) ⇒ 120

938 COMMON LISP

A.2.6. Alteration of Series

Series that come from scanning data structures such as lists and vectors are closely

linked to these structures. The function alter can be used to modify the underlying

data structure with reference to the series derived from it. (Conversely, it is possible

to modify a series by destructively modifying the data structure it is derived from.

However, given the lazy evaluation nature of series, the effects of such modifications

can be very hard to predict. As a result, this kind of modification is inadvisable.)

[Function]alter destinations items

alter changes the series destinations so that it contains the elements in the series

items. More importantly, in the manner of setf, the data structure that underlies

destinations is changed so that if the series destinations were to be regenerated, the

new values would be obtained. The alteration process stops as soon as either input

runs out of elements. The value nil is always returned. In the example below each

negative element in a list is replaced with its square.

(let* ((data (list 1 -2 3 4 -5 6))

(x (choose-if #--´minusp (scan data))))

(alter x (#--M* x x))

data)

⇒ (1 4 3 4 25 6)

alter can be applied only to series that are alterable. scan, scan-alist, scan-

multiple, scan-plist, and scan-lists-of-lists-fringe produce alterable series. How

ever, the alterability of the output of scan-lists-of-lists-fringe is incomplete. If

scan-lists-of-lists-fringe is applied to an object that is a leaf, altering the output

series does not change the object.

In general, the output of a transducer is alterable as long as the elements of the

output come directly from the elements of an input that is alterable. In particular,

the outputs of choose, choose-if, split, split-if, cotruncate, until, until-if, and

subseries are alterable as long as the corresponding inputs are alterable.

[Function]to-alter items alter-fn &rest args

Given a series items, to-alter returns an alterable series A containing the same

elements. The argument alterfn is a function. The remaining arguments are all

series. Let these series be S1, . . . , Sn. If there are n arguments after alterfn, alterfn

must accept n + 1 inputs. If (alter A B) is later encountered, the expression (map-

fn t alter-fn B S1 ... Sn) is implicitly evaluated. For each element in B, alterfn

should make appropriate changes in the data structure underlying A.

SERIES 939

As an example, consider the following definition of a series function that scans the

elements of a list. Alteration is performed by changing cons cells in the list being

scanned.

(defun scan-list (list)

(declare (optimizable-series-function))

(let ((sublists (scan-sublists list)))

(to-alter (#--Mcar sublists)

#--´(lambda (new parent) (setf (car parent) new))

sublists)))

A.3. Optimization

Series expressions are transformed into loops by pipelining them—the computation is

converted from a form where entire series are computed one after the other to a form

where the series are incrementally computed in parallel. In the resulting loop, each

individual element is computed just once, used, and then discarded before the next

element is computed. For this pipelining to be possible, a number of restrictions have

to be satisfied. Before these restrictions are explained, it will be useful to consider a

related issue.

The composition of two series functions cannot be pipelined unless the destination

function consumes series elements in the same order that the source function produces

them. Taken together, the series functions guarantee that this will always be true,

because they all follow the same fixed processing order. In particular, they are all

preorder functions—they process the elements of their series inputs and outputs in

ascending order starting with the first element. Further, while it is easy for users

to define new series functions, it is impossible to define one that is not a preorder

function.

It turns out that most series operations can easily be implemented in a preorder

fashion, the most notable exceptions being reversal and sorting. As a result, little

is lost by outlawing nonpreorder series functions. If some nonpreorder operation

has to be applied to a series, the series can be collected into a list or vector and the

operation applied to this new data structure. (This is inefficient, but no less efficient

than what would be required if nonpreorder series functions were supported.)

A.3.1. Basic Restrictions

The transformation of series expressions into loops is required to occur at some time

before compiled code is actually run. Optimization may or may not be applied to

940 COMMON LISP

interpreted code. If any of the restrictions described below are violated, optimization

is not possible. In this situation, a warning message is issued at the time optimization

is attempted and the code is left unoptimized. This is not a fatal error and does

not prevent the correct results from being computed. However, given the large

improvements in efficiency to be gained, it is well worth fixing any violations that

occur. This is usually easy to do.

[Variable]*suppress-series-warnings*

If this variable is set (or bound) to anything other than its default value of nil,warnings

about conditions that block the optimization of series expressions are suppressed.

Before the restrictions on series expressions are discussed, it will be useful to

define precisely what is meant by the term series expression. This term is semantic

rather than syntactic in nature. Imagine a program converted from Lisp code into a

data flow graph. In a data flow graph, functions are represented as boxes, and both

control flow and data flow are represented as arrows between the boxes. Constructs

such as let and setq are converted into patterns of data flow arcs. Control constructs

such as if and loop are converted into patterns of control flow arcs. Suppose further

that all loops have been converted into tail recursions so that the graph is acyclic.

A series expression is a subgraph of the data flow graph for a program that contains

a group of interacting series functions. More specifically, given a call f on a series

function, the series expression E containing it is defined as follows. E contains f.

Every function using a series created by a function in E is in E. Every function

computing a series used by a function in E is in E. Finally, suppose that two functions

g and h are in E and that there is a data flow path consisting of series and/or nonseries

data flow arcs from g to h. Every function touched by this path (be it a series function

or not) is in E.

For optimization to be possible, series expressions have to be statically ana

lyzable. As with most other optimization processes, a series expression cannot be

transformed into a loop at compile time, unless it can be determined at compile time

exactly what computation is being performed. This places a number of relatively

minor limits on what can be written. For example, for optimization to be possible the

type arguments to higherorder functions such as map-fn and collecting-fn have to

be quoted constants. Similarly, the numeric arguments to chunk have to be constants.

In addition, if funcall is used to call a series function, the function called has to be

of the form (function ...).

For optimization to be possible, every series created within a series expression

must be used solely inside the expression. If a series is transmitted outside of the

expression that creates it, it has to be physically represented as a whole. This is

incompatible with the transformations required to pipeline the creating expression.

SERIES 941

To avoid this problem, a series must not be returned as a result of a series expression

as a whole, assigned to a free variable, assigned to a special variable, or stored in a

data structure. A corollary of the last point is that when defining new optimizable

series functions, series cannot be passed into &rest arguments. Further, optimization

is blocked if a series is passed as an argument to an ordinary Lisp function. Series

can be passed only to the series functions in section A.2 and to new series functions

defined using the declaration optimizable-series-function.

For optimization to be possible, series expressions must correspond to straight

line computations. That is to say, the data flow graph corresponding to a series

expression cannot contain any conditional branches. (Complex control flow is in

compatible with pipelining.) Optimization is possible in the presence of standard

straightline forms such as progn, funcall, setq, lambda, let, let*, and multiple-value-

bind as long as none of the variables bound are special. There is also no problem with

macros as long as they expand into series functions and straightline forms. However,

optimization is blocked by forms that specify complex control flow (i.e., conditionals

if, cond, etc., looping constructs loop, do, etc., or branching constructs tagbody, go,

catch, etc.).

In the first example below, optimization is blocked, because the if form is inside the

series expression. In the second example, however, optimization is possible, because

although the if feeds data to the series expression, it is not inside the corresponding

subgraph. Both of the expressions below produce the same value, but the second one

is much more efficient.

(collect (if flag (scan x) (scan y))) ;Warning message issued

(collect (scan (if flag x y)))

A.3.2. Constraint Cycles

Even if a series expression satisfies all of the restrictions above, it still may not be

possible to transform the expression into a loop. The sole remaining problem is that

if a series is used in two places, the two uses may place incompatible constraints on

the times at which series elements should be produced.

The series expression below shows a situation where this problem arises. The

expression creates a series x of the elements in a list. It then creates a normalized

series by dividing each element of x by the sum of the elements in x. Finally, the

expression returns the maximum of the normalized elements.

(let ((x (scan ´(1 2 5 2)))) ;Warning message issued

(collect-max (#--M/ x (series (collect-sum x))))) ⇒ 1/2

942 COMMON LISP

Figure A1: A Constraint Cycle in a Series Expression

scan

sum series

#--M/ max

The two uses of x in the expression place contradictory constraints on the way

pipelined evaluation must proceed; collect-sum requires that all of the elements of

x be produced before the sum can be returned, and series requires that its input be

available before it can start to produce its output. However, #--M/ requires that the first

element of x be available at the same time as the first element of the output of series.

For pipelining to work, the first element of the output of series (and therefore the

output of collect-sum) must be available before the second element of x is produced.

Unfortunately, this is impossible.

The essence of the inconsistency above is the cycle of constraints used in the

argument. This in turn stems from a cycle in the data flow graph underlying the

expression. In figure A1 function calls are represented by boxes and data flow is

represented by arrows. Simple arrows indicate the flow of series values and cross

hatched arrows indicate the flow of nonseries values.

Given a data flow graph corresponding to a series expression, a constraint cycle is

a closed oriented loop of data flow arcs such that each arc is traversed exactly once

and no nonseries arc is traversed backward. (Series data flow arcs can be traversed

in either direction.) A constraint cycle is said to pass through an input or output port

when exactly one of the arcs in the cycle touches the port. In figure A1 the data

flow arcs touching scan, sum, series, and #--M/ form a constraint cycle. Note that if the

output of scan were not a series, this loop would not be a constraint cycle, because

there would be no valid way to traverse it. Also note that while the constraint cycle

passes through all the other ports it touches, it does not pass through the output of

scan.

Whenever a constraint cycle passes through a nonseries output, an argument

analogous to the one above can be constructed and therefore pipelining will be

impossible. When this situation arises, a warning message is issued identifying

the problematical port and the cycle passing through it. For instance, the warning

triggered by the example above states that the constraint cycle associated with scan,

collect-sum, series, and #--M/ passes through the nonseries output of collect-sum.

Given this kind of detailed information, it is easy to alleviate the problem. To

start with, every cycle must contain at least one function that has two series data

flows leaving it. At worst, the cycle can be broken by duplicating this function (and

SERIES 943

any functions computing series used by it). For instance, the example above can be

rewritten as shown below.

(let ((x (scan ´(1 2 5 2)))

(sum (collect-sum (scan ´(1 2 5 2)))))

(collect-max (#--M/ x (series sum))))

⇒ 1/2

It would be easy enough to automatically apply code copying to break problem

atical constraint cycles. However, this is not done for two reasons. First, there is

considerable virtue in maintaining the property that each function in a series expres

sion turns into one piece of computation in the loop produced. Users can be confident

that series expressions that look simple and efficient actually are simple and efficient.

Second, with a little creativity, constraint problems can often be resolved in ways that

are much more efficient than copying code. In the example above, the conflict can

be eliminated efficiently by interchanging the operation of computing the maximum

with the operation of normalizing an element.

(let ((x (scan ´(1 2 5 2))))

(/ (collect-max x) (collect-sum x))) ⇒ 1/2

The restriction that optimizable series expressions cannot contain constraint cycles

that pass through nonseries outputs places limitations on the qualitative character

of optimizable series expressions. In particular, they all must have the general form

of creating some number of series using scanners, computing various intermediate

series using transducers, and then computing one or more summary results using

collectors. The output of a collector cannot be used in the intermediate computation

unless it is the output of a separate subexpression.

It is worthy of note that the last expression above fixes the constraint conflict by

moving the nonseries output out of the cycle, rather than by breaking the cycle. This

illustrates the fact that constraint cycles that do not pass through nonseries outputs

do not necessarily cause problems. They cause problems only if they pass through

offline ports.

A series input port or series output port of a series function is online if and only

if it is processed in lockstep with all the other online ports as follows: the initial

element of each online input is read, then the initial element of each online output

is written, then the second element of each online input is read, then the second

element of each online output is written, and so on. Ports that are not online are

offline. If all of the series ports of a function are online, the function is said to be

online; otherwise, it is offline. (The above extends the standard definition of the

term online so that it applies to individual ports as well as whole functions.)

944 COMMON LISP

If all of the ports a cycle passes through are online, the lockstep processing of these

ports guarantees that there cannot be any conflicts between the constraints associated

with the cycle. However, passing through an offline port leads to the same kinds of

problems as passing through a nonseries output.

Most of the series functions are online. In particular, scanners and collectors are

all online as are many transducers. However, the transducers in section A.2.4 are

offline. In particular, the series inputs of catenate, choose-if, chunk, expand, mask,

mingle, positions, and subseries along with the series outputs of choose, split, and

split-if are offline.

In summary, the fourth and final restriction is that for optimization to be possible,

a series expression cannot contain a constraint cycle that passes through a non

series output or an offline port. Whenever this restriction is violated a warning

message is issued. Violations can be fixed either by breaking the cycle or restructuring

the computation so that the offending port is removed from the cycle.

A.3.3. Defining New Series Functions

New functions operating on series can be defined just as easily as new functions

operating on any other data type. However, expressions containing these new func

tions cannot be transformed into loops unless a complete analysis of the functions

is available. Among other things, this implies that the definition of a new series

function must appear before its first use.

[Declaration specifier]optimizable-series-function

The declaration specifier (optimizable-series-function integer) indicates that the

function being defined is a series function that needs to be analyzed so that it can

be optimized when it appears in series expressions. (A warning is issued if the

function being defined neither takes a series as input nor produces a series as output.)

Integer (default 1) specifies the number of values returned by the function being

defined. (This cannot necessarily be determined by local analysis.) The only place

optimizable-series-function is allowed to appear is in a declaration immediately

inside a defun. As an example, the following shows how a simplified version of

collect-sum could be defined.

(defun simple-collect-sum (numbers)

(declare (optimizable-series-function 1))

(collect-fn ´number #--´(lambda () 0) #--´+ numbers))

SERIES 945

[Declaration specifier]off-line-port

The declaration specifier (off-line-port port-spec1 port-spec2 ...) specifies that

the indicated inputs and outputs are offline. This declaration specifier is only allowed

in a defun that contains the declaration optimizable-series-function. Each portspec

must either be a symbol that is one of the inputs of the function or an integer j

indicating the jth output (counting from zero). For example, (off-line-port x 1)

indicates that the input x and the second output are offline. Every port that is not

mentioned in an off-line-port declaration is assumed to be online. A warning is

issued whenever a port’s actual online/offline status does not agree with its declared

status. This makes it easier to keep track of which ports are offline and which are

not. Note that offline ports virtually never arise when defining scanners or reducers.

A.3.4. Declarations

A key feature of Lisp is that variable declarations are strictly optional. Nevertheless,

it is often the case that they are necessary in situations where efficiency matters.

Therefore, it is important that it be possible for programmers to provide declarations

for every variable in a program. The transformation of series expressions into loops

presents certain problems in this regard, because the loops created contain variables

not evident in the original code. However, if the information described below is

supplied by the user, appropriate declarations can be generated for all of the loop

variables created.

All the explicit variables that are bound in a series expression (for example, by a

let that is part of the expression) should be given informative declarations making

use of the type specifier (series element-type) where appropriate.

Informative types should be supplied to series functions (such as scan and map-

fn) that have type arguments. When using scan it is important to specify the type

of element in the sequence as well as the sequence itself (for example, by using

(vector * integer) as opposed to merely vector). The form (list element-type) can

be used to specify the type of elements in a list.

If it is appropriate to have a type more specific than (series t) associated with

the output of #--M, #--Z, scan-alist, scan-file, scan-hash, scan-lists-of-lists-fringe,

scan-lists-of-lists, scan-plist, series, latch, or catenate, then the form the must

be used to specify this type.

Finally, if the expression computing a nonseries argument to a series variable is

neither a variable nor a constant, the must be used to specify the type of its result.

For example, the declarations in the series expressions below are sufficient to

ensure that every loop variable will have an accurate declaration.

(collect-last (choose-if #--´plusp (scan ´(list integer) data)))

946 COMMON LISP

(collect ´(vector * float)

(map-fn ´float #--´/

(series (the integer (car data)))

(the (series integer) (scan-file f))))

The amount of information the user has to provide is reduced by the fact that this

information can be propagated from place to place. For instance, the variable holding

the output of choose-if holds a subset of the elements held by the input variable. As

a result, it is appropriate for it to have the same type. When defining a new series

function, the type specifier series-element-type can be used to indicate where type

propagation should occur.

[Type specifier]series-element-type

The type specifier (series-element-type variable) denotes the type of elements in

the series held in variable. Variable must be a variable carrying a series value (for

example, a series argument of a series function). series-element-type can be used

only in three places: in a declaration in a let, mapping, producing, or other binding

form in a series expression; in a declaration in a defun being used to define a series

function; or in a type argument to a series function. As an example, consider that

collect-last could have been defined as follows. The use of series-element-type

ensures that the internal variable keeping track of the most recent item has the correct

type.

(defun collect-last (items &optional (default nil))

(declare (optimizable-series-function))

(collect-fn ´(series-element-type items)

#--´(lambda () default)

#--´(lambda (old new) new)

items))

A.4. Primitives

A large number of series functions are provided, because there are a large number of

useful operations that can be performed on series. However, this functionality can be

boiled down to a small number of primitive constructs.

collecting-fn embodies the fundamental idea of series computations that utilize

internal state. It can be used as the basis for defining any online transducer.

until embodies the fundamental idea of producing a series that is shorter than the

shortest input series. In particular, it embodies the idea of computing a bounded

SERIES 947

series from nonseries inputs. Together with collecting-fn, until can be used to

define scan-fn, which can be used as the basis for defining all the other scanners.

collect-last embodies the fundamental idea of producing a nonseries value from

a series. Together with collecting-fn, it can be used to define collect-fn, which

(with the occasional assistance of until) can be used as the basis for defining all the

other collectors.

producing embodies the fundamental idea of preorder computation. It can be

used as the basis for defining all the other series functions, including the offline

transducers.

In addition to the above, four primitives support various specialized aspects of

series functions. Alterability is supported by the function to-alter and the declaration

propagate-alterability. The propagation of type information is supported by the type

specifier series-element-type. The best implementation of certain series functions

requires the form encapsulated.

[Macro]producing outputlist inputlist {declaration}∗ { form}∗

producing computes and returns a group of series and nonseries outputs given a group

of series and nonseries inputs. The key feature of producing is that some or all of

the series inputs and outputs can be processed in an offline way. To support this, the

processing in the body (consisting of the forms) is performed from the perspective

of generators and gatherers (see appendix B). Each series input is converted to a

generator before being used in the body. Each series output is associated with a

gatherer in the body.

The outputlist has the same syntax as the binding list of a let. The names of the

variables must be distinct from each other and from the names of the variables in the

input-list. If there are n variables in the outputlist, producing computes n outputs.

There must be at least one output variable. The variables act as the names for the

outputs and can be used in either of two ways. First, if an output variable has a value

associated with it in the outputlist, then the variable is treated as holding a nonseries

value. The variable is initialized to the indicated value and can be used in any way

desired in the body. The eventual output value is whatever value is in the variable

when the execution of the body terminates. Second, if an output variable does not

have a value associated with it in the outputlist, the variable is given as its value a

gatherer that collects elements. The only valid way to use the variable in the body is

in a call on next-out. The output returned is a series containing these elements. If

the body never terminates, this series is unbounded.

The inputlist also has the same syntax as the binding list of a let. The names

of the variables must be distinct from each other and the names of the variables in

the outputlist. The values can be series or nonseries. If the value is not explicitly

948 COMMON LISP

specified, it defaults to nil. The variables act logically both as inputs and state

variables and can be used in one of two ways. First, if an input variable is associated

with a nonseries value, then it is given this value before the evaluation of the body

begins and can be used in any way desired in the body. Second, if an input variable is

associated with a series, then the variable is given a generator corresponding to this

series as its initial value. The only valid way to use the variable in the body is in a

call on next-in.

There can be declarations at the start of the body. However, the only declarations

allowed are ignore declarations, type declarations, and propagate-alterability decla

rations (see below). In particular, it is an error for any of the input or output variables

to be special.

In conception, the body can contain arbitrary Lisp expressions. After the appropri

ate generators and gatherers have been set up, the body is executed until it terminates.

If the body never terminates, the series outputs (if any) are unbounded in length and

the nonseries outputs (if any) are never produced.

Although easy to understand, this view of what can happen in the body presents

severe difficulties when optimizing (and even when evaluating) series expressions

that contain calls on producing. As a result, several limitations are imposed on the

form of the body to simplify the processing required.

The first limitation is that, exclusive of any declarations, the body must have the

form (loop (tagbody ...)). The following example shows how producing could be

used to implement a scanner creating an unbounded series of integers.

(producing (nums) ((num 0))

(declare (integer num) (type (series integer) nums))

(loop

(tagbody

(setq num (1+ num))

(next-out nums num))))

⇒ #--Z(1 2 3 4 ...)

The second limitation is that the form terminate-producing must be used to ter

minate the execution of the body. Any other method of terminating the body (with

return, for example) is an error. The following example shows how producing could

be used to implement the operation of summing a series. The function terminate-

producing is used to stop the computation when numbers runs out of elements.

SERIES 949

(producing ((sum 0)) ((numbers #--Z(1 2 3)) num)

(loop

(tagbody

(setq num (next-in numbers (terminate-producing)))

(setq sum (+ sum num)))))

⇒ 6

The third limitation is that calls on next-out associated with output variables must

appear at top level in the tagbody in the body. They cannot be nested in other forms.

In addition, an output variable can be the destination of at most one call on next-out

and if it is the destination of a next-out, it cannot be used in any other way.

If the call on next-out for a given output appears in the final part of the tagbody

in the body, after everything other than other calls on next-out, then the output is an

online output—a new value is written on every cycle of the body. Otherwise the

output is offline.

The following example shows how producing could be used to split a series into

two parts. Items are read in one at a time and tested. Depending on the test, they are

written to one of two outputs. Note the use of labels and branches to keep the calls

on next-out at top level. Both outputs are offline. The first example above shows an

online output.

(producing (items-1 items-2) ((items #--Z(1 -2 3 -4)) item)

(loop

(tagbody (setq item (next-in items (terminate-producing)))

(if (not (plusp item)) (go D))

(next-out items-1 item)

(go F)

D (next-out items-2 item)

F)))

⇒ #--Z(1 3) and #--Z(-2 -4)

The fourth limitation is that the calls on next-in associated with an input variable v

must appear at top level in the tagbody in the body, nested in assignments of the form

(setq var (next-in v ...)). They cannot be nested in other forms. In addition, an

input variable can be the source for at most one call on next-in and if it is the source

for a next-in, it cannot be used in any other way.

If the call on next-in for a given input has as its sole termination action (terminate-

producing) and appears in the initial part of the tagbody in the body, before anything

other than similar calls on next-in, then the input is an online input—a new value is

read on every cycle of the body. Otherwise the input is offline.

950 COMMON LISP

The example below shows how producing could be used to concatenate two series.

To start with, elements are read from the first input series. When this runs out, a flag

is set and reading begins from the second input. Both inputs are offline. (Compare

this to the example above, which shows an online input.)

(producing (items) ((item-1 #--Z(1 2))

(item-2 #--Z(3 4))

(in-2 nil)

item)

(loop

(tagbody (if in-2 (go D))

(setq item (next-in item-1 (setq in-2 t) (go D)))

(go F)

D (setq item (next-in item-2 (terminate-producing)))

F (next-out items item))))

⇒ #--Z(1 2 3 4)

[Macro]terminate-producing

This form (which takes no arguments) is used to terminate execution of (the expansion

of) the producing macro.

As with the form go, terminate-producing does not return any values; rather, control

immediately leaves the current context.

The form terminate-producing is allowed to appear only in a producing body and

causes the termination of the enclosing call on producing.

[Declaration specifier]propagate-alterability

The declaration specifier (propagate-alterability input output) indicates that at

tempts to alter an element of output should be satisfied by altering the corresponding

element of input. (The corresponding element of input is the one most recently read

at the moment when the output element is written.)

This declaration may appear only in a call on producing. The input and output

arguments must be an input and an output, respectively, of the producing macro. The

example below shows how the propagation of alterability could be supported in a

simplified version of until.

SERIES 951

(defun simple-until (bools items)

(declare (optimizable-series-function))

(producing (z) ((x bools) (y items) bool item)

(declare (propagate-alterability y z))

(loop

(tagbody

(setq bool (next-in x (terminate-producing)))

(setq item (next-in y (terminate-producing)))

(if bool (terminate-producing))

(next-out z item)))))

[Macro]encapsulated encapsulatingfn scannerorcollector

Some of the features provided by Common Lisp are supported solely by encapsulating

forms. For example, there is no way to specify a cleanup expression that will always

be run, even when an abort occurs, without using unwind-protect. encapsulated makes

it possible to take advantage of forms such as unwind-protect when defining a series

function.

encapsulated specifies a function that places an encapsulating form around the

computation performed by its second argument. The first argument must be a quoted

function that takes a Lisp expression and wraps the appropriate encapsulating form

around it, returning the resulting code. The second input must be a literal call on

scan-fn, scan-fn-inclusive, or collect-fn. The second argument can count on being

evaluated in the scope of the encapsulating form. The values returned by the second

argument are returned as the values of encapsulated. The following shows how

encapsulated could be used to define a simplified version of collect-file.

(defun collect-file-wrap (file name body)

‘(with-open-file (,file ,name :direction :output) ,body))

(defmacro simple-collect-file (name items)

(let ((file (gensym)))

`(encapsulated #--´(lambda (body)

(collect-file-wrap ´,file ´,name body))

(collect-fn t #--´(lambda () t)

#--´(lambda (state item)

(print item ,file)

state)

,items))))

Appendix B

Generators and Gatherers

BY CRISPIN PERDUE AND RICHARD C. WATERS

preface: Generators and gatherers are yet another approach, closely related to

series, to providing iteration in a functional style.

The remainder of this chapter consists of a description by Crispin Perdue and

Richard C. Waters of their work on an existing implementation of generators and

gatherers. I have edited the chapter only very lightly to conform to the overall

style of this book. Please see the Preface to this book for more information about

the genesis of the generators/gatherers approach and its relationship to the work of

X3J13.

—Guy L. Steele Jr.

B.1. Introduction

Generators are generalized input streams in the sense of Smalltalk [20]. A generator

can produce a potentially unbounded number of elements of any type. Individual

elements are not computed until requested by next-in. When an element is taken

from a generator, it is removed by side effect. Subsequent uses of next-in obtain later

elements.

There is a close relationship between a generator and a series of the elements it

produces. In particular, any series can be converted into a generator. As a result, all

the scanner functions used for creating series (see appendix A) can be used to create

generators as well. There is no need to have a separate set of functions for creating

generators.

Gatherers are generalized output streams. Elements of any type can be entered

into a gatherer using next-out. The gatherer combines the elements together in

timesequence order into a net result. This result can be retrieved using result-of.

There is a close relationship between a gatherer and a collector function that

combines elements in the same way. In particular, any oneinput oneoutput collector

can be converted into a gatherer. As a result, all the collectors used for computing

952

GENERATORS AND GATHERERS 953

summary results from series can be used to create gatherers. There is no need to have

a separate set of functions for creating gatherers.

B.2. Generators

These functions create and process generators.

[Function]generator series

Given a series, generator returns a generator containing the same elements.

[Macro]next-in generator {action}∗

next-in returns the next element in the generator generator. The actions can be any

Lisp expressions. They are evaluated if and only if no more elements can be retrieved

from generator. If there are no more elements and no actions, it is an error. It is also

an error to apply next-in to a generator a second time after the generator has run out

of elements. As an example of generators, consider the following.

(let ((x (generator (scan ´(1 2 3 4)))))

(with-output-to-string (s)

(loop (prin1 (next-in x (return)) s)

(prin1 (next-in x (return)) s)

(princ "," s))))

⇒ "12,34,"

B.3. Gatherers

These functions create and process gatherers.

[Function]gatherer collector

The collector must be a function of type (function ((series t1)) t2). Given this

function, gatherer returns a gatherer that accepts elements of type t1 and returns a

final result of type t2. The method for combining elements used by the gatherer is

the same as the one used by the collector.

[Function]next-out gatherer item

Given a gatherer and a value, next-out enters the value into the gatherer.

954 COMMON LISP

[Function]result-of gatherer

result-of retrieves the net result from a gatherer. result-of can be applied at any

time. However, it is an error to apply result-of twice to the same gatherer or to apply

next-out to a gatherer once result-of has been applied.

(let ((g (gatherer #--´collect-sum)))

(dolist (i ´(1 2 3 4))

(next-out g i)

(if (evenp i) (next-out g (* 10 i))))

(result-of g))

⇒ 70

[Macro]gathering ({(var fn)}∗) { form}∗

The first subform must be a list of pairs. The first element of each pair, var, must be a

variable name. The second element of each pair, fn, must be a form that when wrapped

in (function ...) is acceptable as an argument to gatherer. Each symbol is bound to

a gatherer constructed from the corresponding collector. The body (consisting of the

forms) is evaluated in the scope of these bindings. When this evaluation is complete,

gathering returns the result-of each gatherer. If there are n pairs in the binding list,

gathering returns n values. For example:

(defun examp (data)

(gathering ((x collect) (y collect-sum))

(iterate ((i (scan data)))

(case (first i)

(:slot (next-out x (second i)))

(:part (dolist (j (second i)) (next-out x j))))

(next-out y (third i)))))

(examp ´((:slot a 10) (:part (c d) 40))) ⇒ (a c d) and 50

As a further illustration of gatherers, consider the following definition for a sim

plified version of gathering that handles only one binding pair.

(defmacro simple-gathering (((var collector)) &body body)

`(let ((,var (gatherer (function ,collector))))

,@body

(result-of ,var)))

The full capabilities of gathering can be supported in much the same way.

GENERATORS AND GATHERERS 955

B.4. Discussion

The idea of generators and gatherers was first proposed by Pavel Curtis. A key

aspect of his proposal was the realization that generators and gatherers can be im

plemented simply and elegantly as closures and that these closures can be compiled

very efficiently if certain conditions are met.

First, the compiler must support an optimization Curtis calls “let eversion” in

addition to the optimization methods presented in [45]. If a closure is created and

used entirely within a limited lexical scope, the scopes of any bound variables nested

in the closure can be enlarged (everted) to enclose all the uses of the closure. This

allows the variables to be allocated on the stack rather than the heap.

Second, for a generator/gatherer closure to be compiled efficiently, it must be

possible to determine at compile time exactly what closure is involved and exactly

what the scope of use of the closure is. There are several aspects to this. The

expression creating the generator/gatherer cannot refer to a free series variable. The

generator/gatherer must be stored in a local variable. This variable must be used only

in calls of next-in, next-out, and result-of, and not inside a closure. In particular the

generator/gatherer cannot be stored in a data structure, stored in a special variable,

or returned as a result value.

All of the examples above satisfy these restrictions. For instance, once the uses of

gathering and iterate have been optimized, the body of examp is as efficient as any

loop performing the same computation.

The implementation discussed in [52] includes a portable Common Lisp imple

mentation of generators and gatherers. Although the implementation does not support

optimizations of the kind discussed in [45], it fully optimizes uses of gathering.

Appendix C

Backquote

Here is the code for an implementation of backquote syntax (see section 22.1.3) that

I have found quite useful in explaining to myself the behavior of nested backquotes.

It implements the formal rules for backquote processing and optionally applies a

code simplifier to the result. One must be very careful in choosing the simplification

rules; the rules given here work, but some Common Lisp implementations have run

into trouble at one time or another by using a simplification rule that does not work

in all cases. Code transformations that are plausible when single forms are involved

are likely to fail in the presence of splicing.

At the end of this appendix are some samples of nested backquote syntax with

commentary.

;;; Common Lisp backquote implementation, written in Common Lisp.

;;; Author: Guy L. Steele Jr. Date: 27 December 1985

;;; Tested under Symbolics Common Lisp and Lucid Common Lisp.

;;; This software is in the public domain.

;;; $ is pseudo-backquote and % is pseudo-comma. This makes it

;;; possible to test this code without interfering with normal

;;; Common Lisp syntax.

;;; The following are unique tokens used during processing.

;;; They need not be symbols; they need not even be atoms.

(defvar *comma* (make-symbol "COMMA"))

(defvar *comma-atsign* (make-symbol "COMMA-ATSIGN"))

(defvar *comma-dot* (make-symbol "COMMA-DOT"))

(defvar *bq-list* (make-symbol "BQ-LIST"))

(defvar *bq-append* (make-symbol "BQ-APPEND"))

(defvar *bq-list** (make-symbol "BQ-LIST*"))

(defvar *bq-nconc* (make-symbol "BQ-NCONC"))

956

BACKQUOTE 957

(defvar *bq-clobberable* (make-symbol "BQ-CLOBBERABLE"))

(defvar *bq-quote* (make-symbol "BQ-QUOTE"))

(defvar *bq-quote-nil* (list *bq-quote* nil))

;;; Reader macro characters:

;;; $foo is read in as (BACKQUOTE foo)

;;; %foo is read in as (#--:COMMA foo)

;;; %@foo is read in as (#--:COMMA-ATSIGN foo)

;;; %.foo is read in as (#--:COMMA-DOT foo)

;;; where #--:COMMA is the value of the variable *COMMA*, etc.

;;; BACKQUOTE is an ordinary macro (not a read-macro) that

;;; processes the expression foo, looking for occurrences of

;;; #--:COMMA, #--:COMMA-ATSIGN, and #--:COMMA-DOT. It constructs code

;;; in strict accordance with the rules on pages 349-350 of

;;; the first edition (pages 528-529 of this second edition).

;;; It then optionally applies a code simplifier.

(set-macro-character #--\$

#--´(lambda (stream char)

(declare (ignore char))

(list ´backquote (read stream t nil t))))

(set-macro-character #--\%

#--´(lambda (stream char)

(declare (ignore char))

(case (peek-char nil stream t nil t)

(#--\@ (read-char stream t nil t)

(list *comma-atsign* (read stream t nil t)))

(#--\. (read-char stream t nil t)

(list *comma-dot* (read stream t nil t)))

(otherwise (list *comma* (read stream t nil t))))))

;;; If the value of *BQ-SIMPLIFY* is non-NIL, then BACKQUOTE

;;; processing applies the code simplifier. If the value is NIL,

;;; then the code resulting from BACKQUOTE is exactly that

;;; specified by the official rules.

(defparameter *bq-simplify* t)

(defmacro backquote (x)

(bq-completely-process x))

958 COMMON LISP

;;; Backquote processing proceeds in three stages:

;;;

;;; (1) BQ-PROCESS applies the rules to remove occurrences of

;;; #--:COMMA, #--:COMMA-ATSIGN, and #--:COMMA-DOT corresponding to

;;; this level of BACKQUOTE. (It also causes embedded calls to

;;; BACKQUOTE to be expanded so that nesting is properly handled.)

;;; Code is produced that is expressed in terms of functions

;;; #--:BQ-LIST, #--:BQ-APPEND, and #--:BQ-CLOBBERABLE. This is done

;;; so that the simplifier will simplify only list construction

;;; functions actually generated by BACKQUOTE and will not involve

;;; any user code in the simplification. #--:BQ-LIST means LIST,

;;; #--:BQ-APPEND means APPEND, and #--:BQ-CLOBBERABLE means IDENTITY

;;; but indicates places where "%." was used and where NCONC may

;;; therefore be introduced by the simplifier for efficiency.

;;;

;;; (2) BQ-SIMPLIFY, if used, rewrites the code produced by

;;; BQ-PROCESS to produce equivalent but faster code. The

;;; additional functions #--:BQ-LIST* and #--:BQ-NCONC may be

;;; introduced into the code.

;;;

;;; (3) BQ-REMOVE-TOKENS goes through the code and replaces

;;; #--:BQ-LIST with LIST, #--:BQ-APPEND with APPEND, and so on.

;;; #--:BQ-CLOBBERABLE is simply eliminated (a call to it being

;;; replaced by its argument). #--:BQ-LIST* is replaced by either

;;; LIST* or CONS (the latter is used in the two-argument case,

;;; purely to make the resulting code a tad more readable).

(defun bq-completely-process (x)

(let ((raw-result (bq-process x)))

(bq-remove-tokens (if *bq-simplify*

(bq-simplify raw-result)

raw-result))))

(defun bq-process (x)

(cond ((atom x)

(list *bq-quote* x))

((eq (car x) ´backquote)

(bq-process (bq-completely-process (cadr x))))

((eq (car x) *comma*) (cadr x))

((eq (car x) *comma-atsign*)

(error ",@˜S after `" (cadr x)))

BACKQUOTE 959

((eq (car x) *comma-dot*)

(error ",.˜S after `" (cadr x)))

(t (do ((p x (cdr p))

(q ´() (cons (bracket (car p)) q)))

((atom p)

(cons *bq-append*

(nreconc q (list (list *bq-quote* p)))))

(when (eq (car p) *comma*)

(unless (null (cddr p)) (error "Malformed ,˜S" p))

(return (cons *bq-append*

(nreconc q (list (cadr p))))))

(when (eq (car p) *comma-atsign*)

(error "Dotted ,@˜S" p))

(when (eq (car p) *comma-dot*)

(error "Dotted ,.˜S" p))))))

;;; This implements the bracket operator of the formal rules.

(defun bracket (x)

(cond ((atom x)

(list *bq-list* (bq-process x)))

((eq (car x) *comma*)

(list *bq-list* (cadr x)))

((eq (car x) *comma-atsign*)

(cadr x))

((eq (car x) *comma-dot*)

(list *bq-clobberable* (cadr x)))

(t (list *bq-list* (bq-process x)))))

;;; This auxiliary function is like MAPCAR but has two extra

;;; purposes: (1) it handles dotted lists; (2) it tries to make

;;; the result share with the argument x as much as possible.

(defun maptree (fn x)

(if (atom x)

(funcall fn x)

(let ((a (funcall fn (car x)))

(d (maptree fn (cdr x))))

(if (and (eql a (car x)) (eql d (cdr x)))

x

(cons a d)))))

960 COMMON LISP

;;; This predicate is true of a form that when read looked

;;; like %@foo or %.foo.

(defun bq-splicing-frob (x)

(and (consp x)

(or (eq (car x) *comma-atsign*)

(eq (car x) *comma-dot*))))

;;; This predicate is true of a form that when read

;;; looked like %@foo or %.foo or just plain %foo.

(defun bq-frob (x)

(and (consp x)

(or (eq (car x) *comma*)

(eq (car x) *comma-atsign*)

(eq (car x) *comma-dot*))))

;;; The simplifier essentially looks for calls to #--:BQ-APPEND and

;;; tries to simplify them. The arguments to #--:BQ-APPEND are

;;; processed from right to left, building up a replacement form.

;;; At each step a number of special cases are handled that,

;;; loosely speaking, look like this:

;;;

;;; (APPEND (LIST a b c) foo) −−> (LIST* a b c foo)

;;; provided a, b, c are not splicing frobs

;;; (APPEND (LIST* a b c) foo) −−> (LIST* a b (APPEND c foo))

;;; provided a, b, c are not splicing frobs

;;; (APPEND (QUOTE (x)) foo) −−> (LIST* (QUOTE x) foo)

;;; (APPEND (CLOBBERABLE x) foo) −−> (NCONC x foo)

(defun bq-simplify (x)

(if (atom x)

x

(let ((x (if (eq (car x) *bq-quote*)

x

(maptree #--´bq-simplify x))))

(if (not (eq (car x) *bq-append*))

x

(bq-simplify-args x)))))

BACKQUOTE 961

(defun bq-simplify-args (x)

(do ((args (reverse (cdr x)) (cdr args))

(result

nil

(cond ((atom (car args))

(bq-attach-append *bq-append* (car args) result))

((and (eq (caar args) *bq-list*)

(notany #--´bq-splicing-frob (cdar args)))

(bq-attach-conses (cdar args) result))

((and (eq (caar args) *bq-list**)

(notany #--´bq-splicing-frob (cdar args)))

(bq-attach-conses

(reverse (cdr (reverse (cdar args))))

(bq-attach-append *bq-append*

(car (last (car args)))

result)))

((and (eq (caar args) *bq-quote*)

(consp (cadar args))

(not (bq-frob (cadar args)))

(null (cddar args)))

(bq-attach-conses (list (list *bq-quote*

(caadar args)))

result))

((eq (caar args) *bq-clobberable*)

(bq-attach-append *bq-nconc* (cadar args) result))

(t (bq-attach-append *bq-append*

(car args)

result)))))

((null args) result)))

(defun null-or-quoted (x)

(or (null x) (and (consp x) (eq (car x) *bq-quote*))))

;;; When BQ-ATTACH-APPEND is called, the OP should be #--:BQ-APPEND

;;; or #--:BQ-NCONC. This produces a form (op item result) but

;;; some simplifications are done on the fly:

;;;

;;; (op ´(a b c) ´(d e f g)) −−> ´(a b c d e f g)

;;; (op item ´nil) −−> item, provided item is not a splicable frob

;;; (op item ´nil) −−> (op item), if item is a splicable frob

;;; (op item (op a b c)) −−> (op item a b c)

962 COMMON LISP

(defun bq-attach-append (op item result)

(cond ((and (null-or-quoted item) (null-or-quoted result))

(list *bq-quote* (append (cadr item) (cadr result))))

((or (null result) (equal result *bq-quote-nil*))

(if (bq-splicing-frob item) (list op item) item))

((and (consp result) (eq (car result) op))

(list* (car result) item (cdr result)))

(t (list op item result))))

;;; The effect of BQ-ATTACH-CONSES is to produce a form as if by

;;; `(LIST* ,@items ,result) but some simplifications are done

;;; on the fly.

;;;

;;; (LIST* ´a ´b ´c ´d) −−> ´(a b c . d)

;;; (LIST* a b c ´nil) −−> (LIST a b c)

;;; (LIST* a b c (LIST* d e f g)) −−> (LIST* a b c d e f g)

;;; (LIST* a b c (LIST d e f g)) −−> (LIST a b c d e f g)

(defun bq-attach-conses (items result)

(cond ((and (every #--´null-or-quoted items)

(null-or-quoted result))

(list *bq-quote*

(append (mapcar #--´cadr items) (cadr result))))

((or (null result) (equal result *bq-quote-nil*))

(cons *bq-list* items))

((and (consp result)

(or (eq (car result) *bq-list*)

(eq (car result) *bq-list**)))

(cons (car result) (append items (cdr result))))

(t (cons *bq-list** (append items (list result))))))

;;; Removes funny tokens and changes (#--:BQ-LIST* a b) into

;;; (CONS a b) instead of (LIST* a b), purely for readability.

(defun bq-remove-tokens (x)

(cond ((eq x *bq-list*) ´list)

((eq x *bq-append*) ´append)

((eq x *bq-nconc*) ´nconc)

((eq x *bq-list**) ´list*)

((eq x *bq-quote*) ´quote)

((atom x) x)

BACKQUOTE 963

((eq (car x) *bq-clobberable*)

(bq-remove-tokens (cadr x)))

((and (eq (car x) *bq-list**)

(consp (cddr x))

(null (cdddr x)))

(cons ´cons (maptree #--´bq-remove-tokens (cdr x))))

(t (maptree #--´bq-remove-tokens x))))

Suppose that we first make the following definitions:

(setq q ´(r s))

(defun r (x) (reduce #--´* x))

(setq r ´(3 5))

(setq s ´(4 6))

Without simplification, the notation $$(%%q) (which stands for ``(,,q)) is read as

the expression

(APPEND (LIST ´APPEND) (LIST (APPEND (LIST ´LIST) (LIST Q))))

The value of this expression is

(APPEND (LIST (R S)))

and the value of this value is (24). We conclude that the net effect of twiceevaluating

``(,,q) is to take the value 24 of the value (r s) of q and plug it into the template ()

to produce (24).

With simplification, the notation $$(%%q) is read as the expression

(LIST ´LIST Q)

The value of this expression is

(LIST (R S))

and the value of this value is (24). Thus the two ways of reading $$(%%q) do not

produce the same expression—this we expected—but the values of the two ways are

different as well. Only the values of the values are the same. In general, Common

Lisp guarantees the result of an expression with backquotes nested to depth k only

after k successive evaluations have been performed; the results after fewer than k

evaluations are implementationdependent.

(Note that in the expression ‘(foo ,(process ‘(bar ,x))) the backquotes are not

doubly nested. The inner backquoted expression occurs within the textual scope

of a comma belonging to the outer backquote. The correct way to determine the

964 COMMON LISP

backquote nesting level of any subexpression is to start a count at zero and proceed

up the Sexpression tree, adding one for each backquote and subtracting one for

each comma. This is similar to the rule for determining nesting level with respect

to parentheses by scanning a character string linearly, adding or subtracting one as

parentheses are passed.)

It is convenient to extend the “≡” notation to handle multiple evaluation: x ≡≡ y

means that the expressions x and y may have different results but they have the same

results when twice evaluated. Similarly, x ≡≡≡ y means that the values of the values

of the values of x and y are the same, and so on.

We can illustrate the differences between nonsplicing and splicing backquote

inclusions quite concisely:

$$(%%q) ≡
(APPEND (LIST ´APPEND) (LIST (APPEND (LIST ´LIST) (LIST Q))))

≡≡ (LIST ´LIST Q) ⇒ (LIST (R S)) ⇒ (24)

$$(%@%q) ≡
(APPEND (LIST ´APPEND) (LIST Q))

≡≡ Q ⇒ (R S) ⇒ 24

$$(%%@q) ≡
(APPEND (LIST ´APPEND) (LIST (APPEND (LIST ´LIST) Q)))

≡≡ (CONS ´LIST Q) ⇒ (LIST R S) ⇒ ((3 5) (4 6))

$$(%@%@q) ≡
(APPEND (LIST ´APPEND) Q)

≡≡ (CONS ´APPEND Q) ⇒ (APPEND R S) ⇒ (3 5 4 6)

In each case I have shown both the unsimplified and simplified forms and then traced

the intermediate evaluations of the simplified form. (Actually, the unsimplified forms

do contain one simplification without which they would be unreadable: the nil that

terminates each list has been systematically suppressed, so that one sees (append x y)

rather than (append x y ´nil).)

The following driver function is useful for tracing the behavior of nested backquote

syntax through multiple evaluations. The argument ls is a list of strings; each string

will be processed by the reader (read-from-string). The argument n is the number of

evaluations desired.

(defun try (ls &optional (n 0))

(dolist (x ls)

(format t "˜&˜A"

(substitute #--\` #--\$ (substitute #--\, #--\% x)))

BACKQUOTE 965

(do ((form (macroexpand (read-from-string x)) (eval form))

(str " −− " "˜% −−> ")

(j 0 (+ j 1)))

((>−− j n)

(format t str)

(write form :pretty t))

(format t str)

(write form :pretty t)))

(format t "˜&"))

This driver routine makes it easdy to explore a large number of cases systematically.

Here is a list of examples that illustrate not only the differences between , and ,@ but

also their interaction with ´.

(setq fools2 ´(

"$$(foo %%p)"

"$$(foo %%@q)"

"$$(foo %´%r)"

"$$(foo %´%@s)"

"$$(foo %@%p)"

"$$(foo %@%@q)"

"$$(foo %@´%r)"

"$$(foo %@´%@s)"

))

Consider this set of sample values:

(setq p ´(union x y))

(setq q ´((union x y) (list ´sqrt 9)))

(setq r ´(union x y))

(setq s ´((union x y)))

Here is what happened when I executed (try fools2 2) with a nonnil value for the

variable *bq-simplify* (to see simplified forms). I have interpolated some remarks.

``(foo ,,p) −− (LIST ´LIST ´´FOO P)

−−> (LIST ´FOO (UNION X Y))

−−> (FOO (A B C))

So ,,p means “the value of p is a form; use the value of the value of p.”

966 COMMON LISP

``(foo ,,@q) −− (LIST* ´LIST ´´FOO Q)

−−> (LIST ´FOO (UNION X Y) (LIST ´SQRT 9))

−−> (FOO (A B C) (SQRT 9))

So ,,@q means “the value of q is a list of forms; splice the list of values of the elements

of the value of q.”

``(foo ,´,r) −− (LIST ´LIST ´´FOO (LIST ´QUOTE R))

−−> (LIST ´FOO ´(UNION X Y))

−−> (FOO (UNION X Y))

So ,´,r means “the value of r may be any object; use the value of r that is available

at the time of first evaluation, that is, when the outer backquote is evaluated.” (To

use the value of r that is available at the time of second evaluation, that is, when the

inner backquote is evaluated, just use ,r.)

``(foo ,´,@s) −− (LIST ´LIST ´´FOO (CONS ´QUOTE S))

−−> (LIST ´FOO ´(UNION X Y))

−−> (FOO (UNION X Y))

So ,´,@s means “the value of s must be a singleton list of any object; use the element

of the value of s that is available at the time of first evaluation, that is, when the

outer backquote is evaluated.” Note that s must be a singleton list because it will be

spliced into a form (quote), and the quote special form requires exactly one subform

to appear; this is generally true of the sequence ´,@. (To use the value of s that

is available at the time of second evaluation, that is, when the inner backquote is

evaluated, just use ,@s,in which case the list s is not restricted to be singleton, or

,(car s).)

``(foo ,@,p) −− (LIST ´CONS ´´FOO P)

−−> (CONS ´FOO (UNION X Y))

−−> (FOO A B C)

So ,@,p means “the value of p is a form; splice in the value of the value of p.”

``(foo ,@,@q) −− (LIST ´CONS ´´FOO (CONS ´APPEND Q))

−−> (CONS ´FOO (APPEND (UNION X Y) (LIST ´SQRT 9)))

−−> (FOO A B C SQRT 9)

So ,@,@q means “the value of q is a list of forms; splice each of the values of the

elements of the value of q, so that many splicings occur.”

BACKQUOTE 967

``(foo ,@´,r) −− (LIST ´CONS ´´FOO (LIST ´QUOTE R))

−−> (CONS ´FOO ´(UNION X Y))

−−> (FOO UNION X Y)

So ,@´,r means “the value of r must be a list; splice in the value of r that is available

at the time of first evaluation, that is, when the outer backquote is evaluated.” (To

splice the value of r that is available at the time of second evaluation, that is, when

the inner backquote is evaluated, just use ,@r.)

``(foo ,@´,@s) −− (LIST ´CONS ´´FOO (CONS ´QUOTE S))

−−> (CONS ´FOO ´(UNION X Y))

−−> (FOO UNION X Y)

So ,@´,@s means “the value of s must be a singleton list whose element is a list; splice

in the list that is the element of the value of s that is available at the time of first

evaluation, that is, when the outer backquote is evaluated.” (To splice the element of

the value of s that is available at the time of second evaluation, that is, when the inner

backquote is evaluated, just use ,@(car s).)

I leave it to the reader to explore the possibilities of triply nested backquotes.

(setq fools3 ´(

"$$$(foo %%%p)" "$$$(foo %%%@q)"

"$$$(foo %%´%r)" "$$$(foo %%´%@s)"

"$$$(foo %%@%p)" "$$$(foo %%@%@q)"

"$$$(foo %%@´%r)" "$$$(foo %%@´%@s)"

"$$$(foo %´%%p)" "$$$(foo %´%%@q)"

"$$$(foo %´%´%r)" "$$$(foo %´%´%@s)"

"$$$(foo %´%@%p)" "$$$(foo %´%@%@q)"

"$$$(foo %´%@´%r)" "$$$(foo %´%@´%@s)"

"$$$(foo %@%%p)" "$$$(foo %@%%@q)"

"$$$(foo %@%´%r)" "$$$(foo %@%´%@s)"

"$$$(foo %@%@%p)" "$$$(foo %@%@%@q)"

"$$$(foo %@%@´%r)" "$$$(foo %@%@´%@s)"

"$$$(foo %@´%%p)" "$$$(foo %@´%%@q)"

"$$$(foo %@´%´%r)" "$$$(foo %@´%´%@s)"

"$$$(foo %@´%@%p)" "$$$(foo %@´%@%@q)"

"$$$(foo %@´%@´%r)" "$$$(foo %@´%@´%@s)"

))

It is a pleasant exercise to construct values for p, q, r, and s that will allow execution

of (try fools3 3) without error.

References

[1] Adobe Systems Incorporated. PostScript Language Reference Manual. Addison

Wesley (Reading, Massachusetts, 1985).

[2] Alberga, Cyril N., BosmanClark, Chris, Mikelsons, Martin, Van Deusen, Mary S., and

Padget, Julian. Experience with an uncommon Lisp. In Proc. 1986 ACM Conference on

Lisp and Functional Programming. ACM SIGPLAN/SIGACT/SIGART (Cambridge,

Massachusetts, August 1986), 39–53.

[3] American National Standard Programming Language FORTRAN, ANSI X3.91978

edition. American National Standards Institute, Inc. (New York, 1978).

[4] Bates, Raymond L., Dyer, David, and Feber, Mark. Recent developments in ISI

Interlisp. In Proc. 1984 ACM Symposium on Lisp and Functional Programming.

ACM SIGPLAN/SIGACT/SIGART (Austin, Texas, August 1984), 129–139.

[5] Bobrow, Daniel G., DiMichiel, Linda G., Gabriel, Richard P., Keene, Sonya E., Kicza

les, Gregor, and Moon, David A. Common Lisp Object System Specification: X3J13

Document 88002R. SIGPLAN Notices 23 (September 1988).

[6] Bobrow, Daniel G., DiMichiel, Linda G., Gabriel, Richard P., Keene, Sonya E., Kicza

les, Gregor, and Moon, David A. Common Lisp Object System specification: 1. Pro

grammer interface concepts. Lisp and Symbolic Computation 1, 3/4 (January 1989),

245–298.

[7] Bobrow, Daniel G., DiMichiel, Linda G., Gabriel, Richard P., Keene, Sonya E., Kicza

les, Gregor, and Moon, David A. Common Lisp Object System specification: 2. Func

tions in the programmer interface. Lisp and Symbolic Computation 1, 3/4 (January

1989), 299–394.

[8] Bobrow, Daniel G., and Kiczales, Gregor. The Common Lisp Object System metaob

ject kernel: A status report. In Proc. 1988 ACM Conference on Lisp and Functional

Programming. ACM SIGPLAN/SIGACT/SIGART (Snowbird, Utah, July 1988), 309–

315.

[9] Brooks, Rodney A., and Gabriel, Richard P. A critique of Common Lisp. In Proc. 1984

ACM Symposium on Lisp and Functional Programming. ACM SIGPLAN/SIGACT/

SIGART (Austin, Texas, August 1984), 1–8.

[10] Brooks, Rodney A., Gabriel, Richard P., and Steele, Guy L., Jr. S1 Common Lisp

implementation. In Proc. 1982 ACM Symposium on Lisp and Functional Programming.

968

REFERENCES 969

ACM SIGPLAN/SIGACT/SIGART (Pittsburgh, Pennsylvania, August 1982), 108–

113.

[11] Brooks, Rodney A., Gabriel, Richard P., and Steele, Guy L., Jr. An optimizing compiler

for lexically scoped lisp. In Proc. 1982 Symposium on Compiler Construction. ACM

SIGPLAN (Boston, June 1982), 261–275. Proceedings published as ACM SIGPLAN

Notices 17, 6 (June 1982).

[12] Clinger, William (ed.) The Revised Revised Report on Scheme; or, An Uncommon Lisp.

AI Memo 848. MIT Artificial Intelligence Laboratory (Cambridge, Massachusetts,

August 1985).

[13] Clinger, William (ed.) The Revised Revised Report on Scheme; or, An Uncommon Lisp.

Computer Science Department Technical Report 174. Indiana University (Blooming

ton, Indiana, June 1985).

[14] Cody, William J., Jr., and Waite, William. Software Manual for the Elementary

Functions. PrenticeHall (Englewood Cliffs, New Jersey, 1980).

[15] Committee, ANSI X3J3. Draft proposed American National Standard Fortran. ACM

SIGPLAN Notices 11, 3 (March 1976).

[16] Coonen, Jerome T. Errata for “An implementation guide to a proposed standard for

floatingpoint arithmetic.” Computer 14, 3 (March 1981), 62. These are errata for [17].

[17] Coonen, Jerome T. An implementation guide to a proposed standard for floatingpoint

arithmetic. Computer 13, 1 (January 1980), 68–79. Errata for this paper appeared as

[16].

[18] DiMichiel, Linda G. Overview: The Common Lisp Object System. Lisp and Symbolic

Computation 1, 3/4 (January 1989), 227–244.

[19] Fateman, Richard J. Reply to an editorial. ACM SIGSAM Bulletin 25 (March 1973),

9–11.

[20] Goldberg, Adele, and Robson, David. Smalltalk80: The Language and Its Implemen

tation. AddisonWesley (Reading, Massachusetts, 1983).

[21] Griss, Martin L., Benson, Eric, and Hearn, Anthony C. Current status of a portable

LISP compiler. In Proc. 1982 Symposium on Compiler Construction. ACM SIGPLAN

(Boston, June 1982), 276–283. Proceedings published as ACM SIGPLAN Notices 17,

6 (June 1982).

[22] Harrenstien, Kenneth L. Time Server. Request for Comments (RFC) 738 (NIC 42218).

ARPANET Network Working Group (October 1977). Available from the ARPANET

Network Information Center.

[23] IEEE Computer Society Standard Committee, FloatingPoint Working Group, Micro

processor Standards Subcommittee. A proposed standard for binary floatingpoint

arithmetic. Computer 14, 3 (March 1981), 51–62.

[24] ISO. Information Processing—Coded Character Sets for Text Communication, Part 2:

Latin Alphabetic and Nonalphabetic Graphic Characters. ISO (1983).

[25] Kahan, W. Branch cuts for complex elementary functions; or, Much ado about nothing’s

sign bit. In Iserles, A., and Powell, M. (eds.), The State of the Art in Numerical Analysis.

Clarendon Press (1987), 165–211.

[26] Keene, Sonya E. ObjectOriented Programming in Common Lisp: A Programmer’s

Guide to CLOS. AddisonWesley (Reading, Massachusetts, 1989).

970 REFERENCES

[27] Knuth, Donald E. Seminumerical Algorithms. Volume 2 of The Art of Computer

Programming. AddisonWesley (Reading, Massachusetts, 1969).

[28] Knuth, Donald E. The TEXbook. Volume A of Computers and Typesetting. Addison

Wesley (Reading, Massachusetts, 1986).

[29] Knuth, Donald E. TEX: The Program. Volume B of Computers and Typesetting.

AddisonWesley (Reading, Massachusetts, 1986).

[30] Lamport, Leslie. LATEX: A Document Preparation System. AddisonWesley (Read

ing, Massachusetts, 1986).

[31] Marti, J., Hearn, A. C., Griss, M. L., and Griss, C. Standard Lisp report. ACM SIGPLAN

Notices 14, 10 (October 1979), 48–68.

[32] McDonnell, E. E. The story of ◦. APL Quote Quad 8, 2 (December 1977), 48–54.

[33] Moon, David. MacLISP Reference Manual, Revision 0. MIT Project MAC (Cam

bridge, Massachusetts, April 1974).

[34] Moon, David; Stallman, Richard; and Weinreb, Daniel. LISP Machine Manual, Fifth

Edition. MIT Artificial Intelligence Laboratory (Cambridge, Massachusetts, January

1983).

[35] Padget, Julian, et al. Desiderata for the standardisation of Lisp. In Proc. 1986 ACM

Conference on Lisp and Functional Programming. ACM SIGPLAN/SIGACT/SIG

ART (Cambridge, Massachusetts, August 1986), 54–66.

[36] Penfield, Paul, Jr. Principal values and branch cuts in complex APL. In APL 81

Conference Proceedings. ACM SIGAPL (San Francisco, September 1981), 248–256.

Proceedings published as APL Quote Quad 12, 1 (September 1981).

[37] Pitman, Kent M. The Revised MacLISP Manual. MIT/LCS/TR 295. MIT Laboratory

for Computer Science (Cambridge, Massachusetts, May 1983).

[38] Pitman, Kent M. Exceptional Situations in Lisp. Working paper 268. MIT Artificial

Intelligence Laboratory (Cambridge, Massachusetts).

[39] Queinnec, Christian, and Cointe, Pierre. An openended data representation model

for EU LISP. In Proc. 1988 ACM Conference on Lisp and Functional Programming.

ACM SIGPLAN/SIGACT/SIGART (Snowbird, Utah, July 1988), 298–308.

[40] Rees, Jonathan, Clinger, William, et al. Revised3 report on the algorithmic language

Scheme. ACM SIGPLAN Notices 21, 12 (December 1986), 37–79.

[41] Reiser, John F. Analysis of Additive Random Number Generators. Technical Re

port STANCS77601. Stanford University Computer Science Department (Palo Alto,

California, March 1977).

[42] Roylance, Gerald. Expressing mathematical subroutines constructively. In Proc. 1988

ACM Conference on Lisp and Functional Programming. ACM SIGPLAN/SIGACT/

SIGART (Snowbird, Utah, July 1988), 8–13.

[43] Steele, Guy L., Jr. An overview of Common Lisp. In Proc. 1982 ACM Symposium on

Lisp and Functional Programming. ACM SIGPLAN/SIGACT/SIGART (Pittsburgh,

Pennsylvania, August 1982), 98–107.

[44] Steele, Guy L., Jr., and Hillis, W. Daniel. Connection Machine Lisp: Finegrained

parallel symbolic processing. In Proc. 1986 ACM Conference on Lisp and Functional

Programming. ACM SIGPLAN/SIGACT/SIGART (Cambridge, Massachusetts, Au

gust 1986), 279–297.

REFERENCES 971

[45] Steele, Guy Lewis, Jr. RABBIT: A Compiler for SCHEME (A Study in Compiler Opti

mization). Technical Report 474. MIT Artificial Intelligence Laboratory (Cambridge,

Massachusetts, May 1978).

[46] Steele, Guy Lewis, Jr., and Sussman, Gerald Jay. The Revised Report on SCHEME: A

Dialect of LISP. AI Memo 452. MIT Artificial Intelligence Laboratory (Cambridge,

Massachusetts, January 1978).

[47] Suzuki, Norihisa. Analysis of pointer “rotation”. Communications of the ACM 25, 5

(May 1982), 330–335.

[48] Swanson, Mark, Kessler, Robert, and Lindstrom, Gary. An implementation of Portable

Standard Lisp on the BBN Butterfly. In Proc. 1988 ACM Conference on Lisp and

Functional Programming. ACM SIGPLAN/SIGACT/SIGART (Snowbird, Utah, July

1988), 132–142.

[49] Symbolics, Inc. Signalling and Handling Conditions. (Cambridge, Massachusetts,

1983).

[50] Teitelman, Warren, et al. InterLISP Reference Manual. Xerox Palo Alto Research

Center (Palo Alto, California, 1978). Third revision.

[51] The Utah Symbolic Computation Group. The Portable Standard LISP Users Manual.

Technical Report TR10. Department of Computer Science, University of Utah (Salt

Lake City, Utah, January 1982).

[52] Waters, Richard C. Optimization of Series Expressions, Part I: User’s Manual for

the Series Macro Package. AI Memo 1082. MIT Artificial Intelligence Laboratory

(Cambridge, Massachusetts, January 1989).

[53] Waters, Richard C. Optimization of Series Expressions, Part II: Overview of the The

ory and Implementation. AI Memo 1083. MIT Artificial Intelligence Laboratory

(Cambridge, Massachusetts, January 1989).

[54] Waters, Richard C. XP: A Common Lisp Pretty Printing System. AI Memo 1102. MIT

Artificial Intelligence Laboratory (Cambridge, Massachusetts, March 1989).

[55] Weinreb, Daniel, and Moon, David. LISP Machine Manual, Fourth Edition. MIT

Artificial Intelligence Laboratory (Cambridge, Massachusetts, July 1981).

[56] Wholey, Skef, and Fahlman, Scott E. The design of an instruction set for Common

Lisp. In Proc. 1984 ACM Symposium on Lisp and Functional Programming. ACM

SIGPLAN/SIGACT/SIGART (Austin, Texas, August 1984), 150–158.

[57] Wholey, Skef, and Steele, Guy L., Jr. Connection Machine Lisp: A dialect of Common

Lisp for data parallel programming. In Kartashev, Lana P., and Kartashev, Steven I.

(eds.), Proc. Second International Conference on Supercomputing. Volume III. Inter

national Supercomputing Institute (Santa Clara, California, May 1987), 45–54.

Index of X3J13 Votes

This is an index of issues voted upon by X3J13. For the benefit of those readers

who may wish to crossreference to the X3J13 working documents or to the minutes

of the X3J13 meetings, each vote is identified below by the (sometimes whimsical)

descriptive label used in X3J13 discussions. Each label consists of the name of an

issue and the name of the solution that was approved (many issues had more than

one proposed solution) separated by a colon. A few solutions had no explicit name.

Page numbers indicate where each issue is cited in the text; a following number in

parentheses indicates that the issue is cited that many times on the page.

〈1〉 ADJUST-ARRAY-DISPLACEMENT:RULES 458
〈2〉 ADJUST-ARRAY-FILL-POINTER:MINIMAL 456
〈3〉 ADJUST-ARRAY-NOT-ADJUSTABLE:IMPLICIT-COPY 32, 444, 445, 452, 455, 457
〈4〉 ALLOW-LOCAL-INLINE:INLINE-NOTINLINE 230
〈5〉 APPLYHOOK-ENVIROMENT:REMOVE-ENV 491, 493
〈6〉 AREF-1D:ROW-MAJOR-AREF 125, 450
〈7〉 ARGUMENTS-UNDERSPECIFIED:SPECIFY 122, 360, 394, 416, 437, 464, 541, 546, 567
〈8〉 ARRAY-TYPE-ELEMENT-TYPE-SEMANTICS:UNIFY-UPGRADING 53, 54, 57, 67, 96, 98, 443
〈9〉 ASSOC-RASSOC-IF-KEY:YES 432, 433

〈10〉 BREAK-ON-WARNINGS-OBSOLETE:REMOVE 668, 669, 889
〈11〉 CHARACTER-PROPOSAL 23, 26(2), 33, 39, 40(2), 49, 50(2), 56, 61, 64(2), 126(2),

134, 238, 243, 266, 371, 374, 375(2), 376, 379, 381, 382(3), 383, 384(2),
385, 386, 387(2), 394, 442, 460, 461, 464, 466, 515, 533, 540, 588

〈12〉 CLOS 15, 51, 73, 140, 155, 216, 472, 695, 770, 921
〈13〉 CLOS-MACRO-COMPILATION:MINIMAL 690
〈14〉 CLOSE-CONSTRUCTED-STREAM:ARGUMENT-STREAM-ONLY 506
〈15〉 CLOSED-STREAM-OPERATIONS:ALLOW-INQUIRY 504, 505, 638, 639, 641, 644, 645, 646,

654, 663
〈16〉 COLON-NUMBER:UNDEFINED 521, 522
〈17〉 COMMON-TYPE:REMOVE 12, 41, 49, 50, 51, 103
〈18〉 COMPILE-ARGUMENT-PROBLEMS:CLARIFY 677
〈19〉 COMPILE-ENVIRONMENT-CONSISTENCY:CLARIFY 685
〈20〉 COMPILE-FILE-HANDLING-OF-TOP-LEVEL-FORMS:CLARIFY 687

972

REFERENCES 973

〈21〉 COMPILE-FILE-PACKAGE:REBIND 262, 678
〈22〉 COMPILE-FILE-SYMBOL-HANDLING:NEW-REQUIRE-CONSISTENCY 678, 692
〈23〉 COMPILED-FUNCTION-REQUIREMENTS:TIGHTEN 685
〈24〉 COMPILER-DIAGNOSTICS:USE-HANDLER 677, 678, 683
〈25〉 COMPILER-LET-CONFUSION:ELIMINATE 73, 151
〈26〉 COMPILER-VERBOSITY:LIKE-LOAD 657, 658, 678, 680(2)
〈27〉 COMPILER-WARNING-STREAM:ERROR-OUTPUT 683
〈28〉 COMPLEX-ATAN-BRANCH-CUT:TWEAK 307, 309, 312
〈29〉 COMPLEX-RATIONAL-RESULT:EXTEND 299, 300
〈30〉 CONDITION-SYSTEM 14, 664, 666, 667, 669, 670, 671, 672, 673, 674(3), 865
〈31〉 CONDITION-RESTARTS:PERMIT-ASSOCIATION 216, 865, 910
〈32〉 CONSTANT-CIRCULAR-COMPILATION:YES 115, 694
〈33〉 CONSTANT-COLLAPSING:GENERALIZE 694
〈34〉 CONSTANT-COMPILABLE-TYPES:SPECIFY 115, 691
〈35〉 CONSTANT-FUNCTION-COMPILATION:NO 693
〈36〉 CONSTANT-MODIFICATION:DISALLOW 70, 115, 694
〈37〉 CONTAGION-ON-NUMERICAL-COMPARISONS:TRANSITIVE 109, 290, 437
〈38〉 COPY-SYMBOL-COPY-PLIST:COPY-LIST 244
〈39〉 COPY-SYMBOL-PRINT-NAME:EQUAL 244
〈40〉 DATA-IO:ADD-SUPPORT 216, 524, 534, 539, 551, 552, 553(2), 554(2), 555,

556(2), 557(2), 565, 577, 579, 580, 851
〈41〉 DATA-TYPES-HIERARCHY-UNDERSPECIFIED:DISJOINT 38, 41, 479, 782, 783
〈42〉 DECLARATION-SCOPE:NO-HOISTING 219
〈43〉 DECLARE-ARRAY-TYPE-ELEMENT-REFERENCES:RESTRICTIVE 55
〈44〉 DECLARE-FUNCTION-AMBIGUITY:DELETE-FTYPE-ABBREVIATION 228
〈45〉 DECLARE-MACROS:FLUSH 217
〈46〉 DECLARE-TYPE-FREE:LEXICAL 219, 222, 224
〈47〉 DECODE-UNIVERSAL-TIME-DAYLIGHT:LIKE-ENCODE 704
〈48〉 DEFCONSTANT-SPECIAL:DOESNT-MATTER 87
〈49〉 DEFINE-COMPILER-MACRO:NEW-FACILITY 125, 205, 260
〈50〉 DEFINING-MACROS-NON-TOP-LEVEL:ALLOW 63, 84(2), 139, 143, 153, 195, 207, 472
〈51〉 DEFMACRO-LAMBDA-LIST:TIGHTEN-DESCRIPTION 197
〈52〉 DEFPACKAGE:ADDITION 269, 280
〈53〉 DEFSTRUCT-CONSTRUCTOR-KEY-MIXTURE:ALLOW-KEY 483
〈54〉 DEFSTRUCT-DEFAULT-VALUE-EVALUATION:IFF-NEEDED 472, 474
〈55〉 DEFSTRUCT-PRINT-FUNCTION-INHERITANCE:YES 480
〈56〉 DEFSTRUCT-REDEFINITION:ERROR 473
〈57〉 DEFSTRUCT-SLOTS-CONSTRAINTS-NAME:DUPLICATES-ERROR 472
〈58〉 DEFSTRUCT-SLOTS-CONSTRAINTS-NUMBER:ALLOW-ZERO 471
〈59〉 DEFVAR-DOCUMENTATION:UNEVALUATED 87
〈60〉 DEFVAR-INIT-TIME:NOT-DELAYED 86
〈61〉 DEFVAR-INITIALIZATION:CONSERVATIVE 86
〈62〉 DESCRIBE-INTERACTIVE:EXPLICITLY-VAGUE 697
〈63〉 DESCRIBE-UNDERSPECIFIED:DESCRIBE-OBJECT 697, 698, 817, 840
〈64〉 DESTRUCTURING-BIND:NEW-MACRO 204, 207

974 REFERENCES

〈65〉 DISASSEMBLE-SIDE-EFFECT:DO-NOT-INSTALL 682
〈66〉 DO-SYMBOLS-DUPLICATES:ALLOWED 274
〈67〉 DOTTED-MACRO-FORMS:ALLOW 74
〈68〉 DRIBBLE-TECHNIQUE:MAKE-EXPLICITLY-VAGUE 700
〈69〉 DYNAMIC-EXTENT:NEW-DECLARATION 232
〈70〉 DYNAMIC-EXTENT-FUNCTION:EXTEND 232
〈71〉 EQUAL-STRUCTURE:MAYBE-STATUS-QUO 107, 108
〈72〉 EVAL-OTHER:SELF-EVALUATE 70
〈73〉 EVAL-WHEN-NON-TOP-LEVEL:GENERALIZE-EVAL-NEW-KEYWORDS 89, 207
〈74〉 EXIT-EXTENT:MINIMAL 189
〈75〉 EXPT-RATIO:P.211 301
〈76〉 FIXNUM-NON-PORTABLE:TIGHTEN-DEFINITION 16, 39, 368, 446
〈77〉 FLET-DECLARATIONS:ALLOW 154
〈78〉 FLET-IMPLICIT-BLOCK:YES 63, 139, 143, 154, 196, 206
〈79〉 FLOAT-UNDERFLOW:ADD-CONTROLS 289, 369(2)
〈80〉 FORMAT-ATSIGN-COLON:OK 582
〈81〉 FORMAT-COLON-UPARROW-SCOPE:TEST-FOR-REMAINING-SUBLISTS 606
〈82〉 FORMAT-COMMA-INTERVAL:YES 585
〈83〉 FORMAT-E-EXPONENT-SIGN:FORCE-SIGN 592
〈84〉 FORMAT-OP-C:WRITE-CHAR 588
〈85〉 FORMAT-PRETTY-PRINT:YES 583, 584(2), 585(2), 586(4), 588, 590, 592, 594, 596
〈86〉 FUNCTION-CALL-EVALUATION-ORDER:UNSPECIFIED 75
〈87〉 FUNCTION-COMPOSITION:JAN89-X3J13 391
〈88〉 FUNCTION-DEFINITION:JAN89-X3J13 682
〈89〉 FUNCTION-NAME:SMALL 84, 114, 116, 120(2), 123, 125(2), 126(2), 127, 128(3),

154, 227, 230(2), 677, 682, 695, 696, 699, 827, 842
〈90〉 FUNCTION-TYPE:X3J13-MARCH-88 14, 36, 38, 53, 65, 102, 116, 119, 120, 145, 146,

173, 203, 389, 391, 492, 503, 504
〈91〉 FUNCTION-TYPE-ARGUMENT-TYPE-SEMANTICS:RESTRICTIVE 58, 227, 228
〈92〉 FUNCTION-TYPE-KEY-NAME:SPECIFY-KEYWORD 57
〈93〉 FUNCTION-TYPE-REST-LIST-ELEMENT:USE-ACTUAL-ARGUMENT-TYPE 57
〈94〉 GENSYM-NAME-STICKINESS:LIKE-TEFLON 245, 246
〈95〉 GET-MACRO-CHARACTER-READTABLE:NIL-STANDARD 542, 548
〈96〉 GET-SETF-METHOD-ENVIRONMENT:ADD-ARG 137, 142, 144, 145(2)
〈97〉 HASH-TABLE-ACCESS:X3J13-MAR-89 440
〈98〉 HASH-TABLE-PACKAGE-GENERATORS:ADD-WITH-WRAPPER 275, 439
〈99〉 HASH-TABLE-SIZE:INTENDED-ENTRIES 436, 437(2)
〈100〉 HASH-TABLE-TESTS:ADD-EQUALP 437
〈101〉 IEEE-ATAN-BRANCH-CUT:SPLIT 302(2), 303, 306, 309, 310(2), 311
〈102〉 IMPORT-SETF-SYMBOL-PACKAGE:YES 268
〈103〉 IN-PACKAGE-FUNCTIONALITY:MAR89-X3J13 261, 263, 690
〈104〉 IN-SYNTAX:MINIMAL 658, 679
〈105〉 KEYWORD-ARGUMENT-NAME-PACKAGE:ANY 76, 79
〈106〉 LAST-N:ALLOW-OPTIONAL-ARGUMENT 416
〈107〉 LCM-NO-ARGUMENTS:1 299

REFERENCES 975

〈108〉 LISP-PACKAGE-NAME:COMMON-LISP 258, 262, 263(2), 278, 280

〈109〉 LISP-SYMBOL-REDEFINITION:MAR89-X3J13 260

〈110〉 LOAD-OBJECTS:MAKE-LOAD-FORM 659, 694

〈111〉 LOAD-TIME-EVAL:R**3-NEW-SPECIAL-FORM 73, 680

〈112〉 LOAD-TRUENAME:NEW-PATHNAME-VARIABLES 658(2), 659, 680(3)

〈113〉 LOCALLY-TOP-LEVEL:SPECIAL-FORM 73, 90, 221

〈114〉 LOOP-AND-DISCREPANCY:NO-REITERATION 716

〈115〉 LOOP-FACILITY 163, 709

〈116〉 MACRO-CACHING:DISALLOW 203

〈117〉 MACRO-ENVIRONMENT-EXTENT:DYNAMIC 197, 203, 204

〈118〉 MACRO-FUNCTION-ENVIRONMENT:YES 194

〈119〉 MAKE-PACKAGE-USE-DEFAULT:IMPLEMENTATION-DEPENDENT 263, 271

〈120〉 MAP-INTO:ADD-FUNCTION 395

〈121〉 MAPPING-DESTRUCTIVE-INTERACTION:EXPLICITLY-VAGUE 169, 173, 178, 275(3), 277,
395, 397, 398, 400, 401, 402, 403, 404(2), 405, 407(3), 409, 410, 413,
425(2), 426(3), 427, 429(2), 430, 431(2), 433, 434, 439(2), 491

〈122〉 MORE-CHARACTER-PROPOSAL 373(2), 374, 502, 504, 508, 646, 647, 651, 656

〈123〉 NTH-VALUE:ADD 184

〈124〉 OPTIMIZE-DEBUG-INFO:NEW-QUALITY 231

〈125〉 PACKAGE-CLUTTER:REDUCE 259

〈126〉 PACKAGE-DELETION:NEW-FUNCTION 264, 265

〈127〉 PACKAGE-FUNCTION-CONSISTENCY:MORE-PERMISSIVE 250, 264(3), 265(4), 267(3),
268(4), 269(3), 274, 275(2)

〈128〉 PATHNAME-COMPONENT-CASE:KEYWORD-ARGUMENT 617, 625, 641, 643, 644

〈129〉 PATHNAME-COMPONENT-VALUE:SPECIFY 615, 623

〈130〉 PATHNAME-LOGICAL:ADD 628, 639, 640, 641, 646, 652, 653, 654(2), 655(2), 658,
663, 678, 699(2)

〈131〉 PATHNAME-PRINT-READ:SHARPSIGN-P 531, 537, 556

〈132〉 PATHNAME-STREAM:FILES-OR-SYNONYM 278, 638(2), 639, 640, 641, 644, 645, 646,
651, 653(2), 654, 655(2), 658, 663, 678

〈133〉 PATHNAME-SUBDIRECTORY-LIST:NEW-REPRESENTATION 615, 617, 620, 644

〈134〉 PATHNAME-SYMBOL:NO 278, 637, 638, 639, 640, 641, 644, 645

〈135〉 PATHNAME-SYNTAX-ERROR-TIME:PATHNAME-CREATION 642, 643, 645

〈136〉 PATHNAME-UNSPECIFIC-COMPONENT:NEW-TOKEN 613

〈137〉 PATHNAME-WILD:NEW-FUNCTIONS 623, 639, 646, 652, 653, 654(2), 655(2), 658, 678

〈138〉 PEEK-CHAR-READ-CHAR-ECHO:FIRST-READ-CHAR 501, 570, 571, 573(2), 574

〈139〉 PRETTY-PRINT-INTERFACE:XP 24, 556, 559, 577, 578, 579, 598, 599, 605, 607,
748

〈140〉 PRINC-CHARACTER:WRITE-CHAR 578

〈141〉 PRINT-CASE-PRINT-ESCAPE-INTERACTION:VERTICAL-BAR-RULE-NO-UPCASE 552, 560

〈142〉 PRINT-CIRCLE-SHARED:RESPECT-PRINT-CIRCLE 559

〈143〉 PRINT-CIRCLE-STRUCTURE:USER-FUNCTIONS-WORK 480, 559

〈144〉 PROCLAIM-ETC-IN-COMPILE-FILE:NEW-MACRO 215, 223, 232, 689

〈145〉 PROCLAIM-INLINE-WHERE:BEFORE 229

976 REFERENCES

〈146〉 PUSH-EVALUATION-ORDER:ITEM-FIRST 132, 242(2), 297, 420, 421, 422, 671, 672,
674(2)

〈147〉 QUOTE-SEMANTICS:NO-COPYING 105, 115
〈148〉 RANGE-OF-COUNT-KEYWORD:NIL-OR-INTEGER 400(2), 403
〈149〉 RANGE-OF-START-AND-END-PARAMETERS:INTEGER-AND-INTEGER-NIL 390
〈150〉 READ-CASE-SENSITIVITY:READTABLE-KEYWORDS 11, 28, 513(2), 515, 549, 552, 561
〈151〉 REAL-NUMBER-TYPE:X3J13-MAR-89 15, 38, 49, 50, 61, 101
〈152〉 REDUCE-ARGUMENT-EXTRACTION:KEY 398
〈153〉 REMF-DESTRUCTION-UNSPECIFIED:X3J13-MAR-89 241(2), 242(2), 393, 401, 402, 404,

419, 420, 429(2), 431
〈154〉 REQUIRE-PATHNAME-DEFAULTS:ELIMINATE 277, 280, 637
〈155〉 REST-LIST-ALLOCATION:MAY-SHARE 77
〈156〉 RETURN-VALUES-UNSPECIFIED:SPECIFY 221, 263, 265, 278, 542, 696, 698
〈157〉 ROOM-DEFAULT-ARGUMENT:NEW-VALUE 699
〈158〉 SEQUENCE-TYPE-LENGTH:MUST-MATCH 64, 394, 395(2), 410
〈159〉 SETF-MULTIPLE-STORE-VARIABLES:ALLOW 129(2), 131(2), 672
〈160〉 SETF-SUB-METHODS:DELAYED-ACCESS-STORES 134
〈161〉 SHADOW-ALREADY-PRESENT:WORKS 269
〈162〉 SHARP-COMMA-CONFUSION:REMOVE 523, 535, 539, 676
〈163〉 SHARPSIGN-PLUS-MINUS-PACKAGE:KEYWORD 539, 707
〈164〉 SPECIAL-TYPE-SHADOWING:CLARIFY 222
〈165〉 STANDARD-INPUT-INITIAL-BINDING:DEFINED-CONTRACTS 499
〈166〉 STEP-ENVIRONMENT:CURRENT 696, 697
〈167〉 STREAM-ACCESS:ADD-TYPES-ACCESSORS 35, 41, 500(2), 501(4), 502(2), 503, 504,

505, 507, 581, 646
〈168〉 STREAM-CAPABILITIES:INTERACTIVE-STREAM-P 507
〈169〉 STRING-COERCION:MAKE-CONSISTENT 462(2), 463(2), 465, 466, 467
〈170〉 SUBSEQ-OUT-OF-BOUNDS:IS-AN-ERROR 390
〈171〉 SUBTYPEP-TOO-VAGUE:CLARIFY-MORE 97
〈172〉 SYMBOL-MACROLET-DECLARE:ALLOW 155, 216, 861, 864
〈173〉 SYMBOL-MACROLET-SEMANTICS:SPECIAL-FORM 121, 122, 128, 155, 156, 184, 204, 861,

864
〈174〉 SYNTACTIC-ENVIRONMENT-ACCESS:SMALL 207
〈175〉 TAILP-NIL:T 427
〈176〉 TEST-NOT-IF-NOT:FLUSH-ALL 391
〈177〉 THE-AMBIGUITY:FOR-DECLARATION 237
〈178〉 TIME-ZONE-NON-INTEGER:ALLOW 703
〈179〉 TYPE-OF-UNDERCONSTRAINED:ADD-CONSTRAINTS 66
〈180〉 UNDEFINED-VARIABLES-AND-FUNCTIONS:COMPROMISE 71
〈181〉 UNREAD-CHAR-AFTER-PEEK-CHAR:DONT-ALLOW 573
〈182〉 VARIABLE-LIST-ASYMMETRY:SYMMETRIZE 150, 151, 164
〈183〉 WITH-COMPILATION-UNIT:NEW-MACRO 683
〈184〉 WITH-OPEN-FILE-DOES-NOT-EXIST:STREAM-IS-NIL 652
〈185〉 WITH-OUTPUT-TO-STRING-APPEND-STYLE:VECTOR-PUSH-EXTEND 504
〈186〉 ZLOS-CONDITIONS:INTEGRATE 865, 883, 886, 900, 916

Index

(setf class-name) generic function, 816

primary method, 816

(setf documentation) generic function,

837

primary method, 837

* function, 295

variable, 492

** variable, 492

*** variable, 492

applyhook variable, 488

break-on-signals variable, 884

break-on-warnings variable, 666

compile-file-pathname variable, 676

compile-file-truename variable, 676

compile-print variable, 676

compile-verbose variable, 676

debug-io variable, 495

debugger-hook variable, 911

default-pathname-defaults variable,

639

error-output variable, 495

evalhook variable, 488

features variable, 703

gensym-counter variable, 245

load-pathname variable, 655

load-print variable, 655

load-truename variable, 655

load-verbose variable, 655

macroexpand-hook variable, 203

modules variable, 275

package variable, 261

print-array variable, 562

print-base variable, 556

print-case variable, 557

print-circle variable, 556

print-escape variable, 555

print-gensym variable, 561

print-length variable, 561

print-level variable, 561

print-lines variable, 745

print-miser-width variable, 744

print-pprint-dispatch variable, 744

print-pretty variable, 555

print-radix variable, 556

print-readably variable, 554

print-right-margin variable, 744

query-io variable, 495

random-state variable, 365

read-base variable, 519

read-default-float-format variable,

566

read-eval variable, 520

read-suppress variable, 519

readtable variable, 537

sample-variable variable, 7

standard-input variable, 494

standard-output variable, 495

suppress-series-warnings variable, 940

terminal-io variable, 495

trace-output variable, 496

+ function, 294

variable, 491

++ variable, 491

+++ variable, 491

- function, 294

variable, 492

977

978 Index

/ function, 295

variable, 492

// variable, 492

/// variable, 492

/−− function, 292

1+ function, 296

1- function, 296

< function, 292

<−− function, 292

−−

function, 292

> function, 292

>−− function, 292

abort function, 909

abs function, 302

acons function, 429

acos function, 304

acosh function, 307

add-method generic function, 812

primary method, 812

adjoin function, 425

adjust-array function, 454

adjustable-array-p function, 450

alpha-char-p function, 375

alphanumericp function, 377

alter function, 938

always loop clause, 722

and macro, 109

append function, 416

loop clause, 727

appending loop clause, 727

apply function, 144

applyhook function, 489

apropos function, 697

apropos-list function, 697

aref function, 445

arithmetic-error type, 917

arithmetic-error-operands function, 918

arithmetic-error-operation function, 918

array-dimension function, 446

array-dimension-limit constant, 444

array-dimensions function, 447

array-element-type function, 446

array-has-fill-pointer-p function, 452

array-in-bounds-p function, 447

array-rank function, 446

array-rank-limit constant, 444

array-row-major-index function, 447

array-total-size function, 447

array-total-size-limit constant, 444

arrayp function, 101

as loop clause, 713, 715, 716, 717, 718,

719

ash function, 359

asin function, 304

asinh function, 307

assert macro, 668, 886

assoc function, 430

assoc-if function, 430

assoc-if-not function, 430

atan function, 304

atanh function, 307

atom function, 98

augment-environment function, 210

bit function, 450

bit-and function, 451

bit-andc1 function, 451

bit-andc2 function, 451

bit-eqv function, 451

bit-ior function, 451

bit-nand function, 451

bit-nor function, 451

bit-not function, 452

bit-orc1 function, 451

bit-orc2 function, 451

bit-vector-p function, 100

bit-xor function, 451

block special form, 160

boole constant, 358

boole-1 constant, 358

boole-2 constant, 358

boole-and constant, 358

boole-andc1 constant, 358

boole-andc2 constant, 358

boole-c1 constant, 358

boole-c2 constant, 358

boole-clr constant, 358

boole-eqv constant, 358

boole-ior constant, 358

boole-nand constant, 358

Index 979

boole-nor constant, 358

boole-orc1 constant, 358

boole-orc2 constant, 358

boole-set constant, 358

boole-xor constant, 358

both-case-p function, 376

boundp function, 119

break function, 666, 910

broadcast-stream-streams function, 503

butlast function, 420

byte function, 361

byte-position function, 361

byte-size function, 361

caaaar function, 410

caaadr function, 410

caaar function, 410

caadar function, 410

caaddr function, 410

caadr function, 410

caar function, 410

cadaar function, 410

cadadr function, 410

cadar function, 410

caddar function, 410

cadddr function, 410

caddr function, 410

cadr function, 410

call-arguments-limit constant, 146

call-method macro, 812

call-next-method function, 813

car function, 409

case macro, 158

catch special form, 186

catenate function, 932

ccase macro, 671, 890

cdaaar function, 410

cdaadr function, 410

cdaar function, 410

cdadar function, 410

cdaddr function, 410

cdadr function, 410

cdar function, 410

cddaar function, 410

cddadr function, 410

cddar function, 410

cdddar function, 410

cddddr function, 410

cdddr function, 410

cddr function, 410

cdr function, 409

ceiling function, 350

cell-error type, 917

cell-error-name function, 917

cerror function, 663, 883

change-class generic function, 814

primary method, 814

char function, 458

char-bit function, 385

char-bits function, 380

char-bits-limit constant, 374

char-code function, 380

char-code-limit constant, 374

char-control-bit constant, 384

char-downcase function, 382

char-equal function, 379

char-font function, 380

char-font-limit constant, 374

char-greaterp function, 379

char-hyper-bit constant, 384

char-int function, 383

char-lessp function, 379

char-meta-bit constant, 384

char-name function, 384

char-not-equal function, 379

char-not-greaterp function, 379

char-not-lessp function, 379

char-super-bit constant, 384

char-upcase function, 382

char/−− function, 377

char< function, 377

char<−− function, 377

char−− function, 377

char> function, 377

char>−− function, 377

character function, 382

characterp function, 100

check-type macro, 667, 885

choose function, 931

choose-if function, 931

chunk function, 933

980 Index

cis function, 303

class-name generic function, 816

primary method, 816

class-of function, 817

clear-input function, 572

clear-output function, 576

close function, 502

clrhash function, 437

code-char function, 381

coerce function, 64

collect function, 935

loop clause, 726

collect-alist function, 937

collect-and function, 935

collect-append function, 936

collect-file function, 937

collect-first function, 934

collect-fn function, 937

collect-hash function, 937

collect-last function, 934

collect-length function, 934

collect-max function, 935

collect-min function, 935

collect-nconc function, 936

collect-nth function, 934

collect-or function, 935

collect-plist function, 937

collect-sum function, 935

collecting loop clause, 726

collecting-fn function, 930

commonp function, 102

compile function, 673

compile-file function, 673, 674

compile-file-pathname function, 630

compiled-function-p function, 102

compiler-let macro, 150

special form, 150

compiler-macro-function function, 205

compiler-macroexpand function, 205

compiler-macroexpand-1 function, 205

complement function, 390

complex function, 355

complexp function, 100

compute-applicable-methods function, 817

compute-restarts function, 906

concatenate function, 392

concatenated-stream-streams function,

503

cond macro, 157

condition type, 912

conjugate function, 297

cons function, 411

consp function, 99

constantp function, 491

continue function, 909

control-error type, 916

copy-alist function, 416

copy-list function, 416

copy-pprint-dispatch function, 760

copy-readtable function, 538

copy-seq function, 391

copy-symbol function, 243

copy-tree function, 416

cos function, 303

cosh function, 307

cotruncate function, 928

count function, 404

loop clause, 728

count-if function, 404

count-if-not function, 404

counting loop clause, 728

ctypecase macro, 670, 889

decf macro, 296

declaim macro, 222

declaration-information function, 209

declare special form, 214

decode-float function, 353

decode-universal-time function, 700

defclass macro, 817

defconstant macro, 86

defgeneric macro, 821

define-compiler-macro macro, 204

define-condition macro, 894

define-declaration macro, 212

define-method-combination macro, 825

define-modify-macro macro, 136

define-setf-method macro, 140

defmacro macro, 194

defmethod macro, 833

defpackage macro, 268

Index 981

defparameter macro, 86

defsetf macro, 136

defstruct macro, 467

deftype macro, 62

defun macro, 84

defvar macro, 86

delete function, 398

delete-duplicates function, 399

delete-file function, 650

delete-if function, 398

delete-if-not function, 398

delete-package function, 264

denominator function, 350

deposit-field function, 363

describe function, 693

describe-object generic function, 693

primary method, 693

destructuring-bind macro, 204

digit-char function, 382

digit-char-p function, 376

directory function, 659

directory-namestring function, 641

disassemble function, 677

division-by-zero type, 918

do loop clause, 735

macro, 163, 164

do* macro, 163, 164

do-all-symbols macro, 273

do-external-symbols macro, 273

do-symbols macro, 272

documentation function, 690

generic function, 835

primary method, 835

doing loop clause, 735

dolist macro, 168

dotimes macro, 168

double-float-epsilon constant, 369

double-float-negative-epsilon constant,

369

dpb function, 363

dribble function, 695

ecase macro, 670, 890

echo-stream-input-stream function, 504

echo-stream-output-stream function, 504

ed function, 695

eighth function, 413

elt function, 390

encapsulated macro, 951

enclose function, 213

encode-universal-time function, 700

end-of-file type, 916

endp function, 412

enough-namestring function, 641

ensure-generic-function function, 837

eq function, 102

eql function, 104

equal function, 105

equalp function, 107

error function, 663, 882

type, 914

etypecase macro, 669, 888

eval function, 487

eval-when special form, 88, 89

evalhook function, 489

evenp function, 291

every function, 394

exp function, 299

expand function, 931

export function, 266

expt function, 299

fboundp function, 119

fceiling function, 352

fdefinition function, 119

ffloor function, 352

fifth function, 413

file-author function, 652

file-error type, 916

file-error-pathname function, 917

file-length function, 653

file-namestring function, 641

file-position function, 652

file-string-length function, 653

file-write-date function, 651

fill function, 396

fill-pointer function, 453

finally loop clause, 740

find function, 402

find-all-symbols function, 272

find-class function, 838

find-if function, 402

982 Index

find-if-not function, 402

find-method generic function, 839

primary method, 839

find-package function, 262

find-restart function, 907

find-symbol function, 265

finish-output function, 576

first function, 413

flet macro, 154

special form, 151

float function, 349

float-digits function, 353

float-precision function, 353

float-radix function, 353

float-sign function, 353

floating-point-overflow type, 918

floating-point-underflow type, 918

floatp function, 100

floor function, 350

fmakunbound function, 121

for loop clause, 713, 715, 716, 717, 718,

719

force-output function, 576

format function, 578

formatter macro, 759

fourth function, 413

fresh-line function, 576

fround function, 352

ftruncate function, 352

funcall function, 145

function special form, 114

function-information function, 208

function-keywords generic function, 839

primary method, 839

function-lambda-expression function, 678

functionp function, 101

gatherer function, 953

gathering macro, 954

gcd function, 297

generator function, 953

generic-flet special form, 839

generic-function macro, 840

generic-labels special form, 841

gensym function, 243

gentemp function, 245

get function, 238

get-decoded-time function, 699

get-dispatch-macro-character function,

543

get-internal-real-time function, 701

get-internal-run-time function, 701

get-macro-character function, 539

get-output-stream-string function, 499

get-properties function, 241

get-setf-method function, 142, 143

get-setf-method-multiple-value function,

143, 144

get-universal-time function, 700

getf function, 240

gethash function, 436

go special form, 176

graphic-char-p function, 375

handler-bind macro, 894

handler-case macro, 891

hash-table-count function, 437

hash-table-p function, 435

hash-table-rehash-size function, 438

hash-table-rehash-threshold function,

438

hash-table-size function, 438

hash-table-test function, 438

host-namestring function, 641

identity function, 703

if loop clause, 733

special form, 156

ignore-errors macro, 893

imagpart function, 355

import function, 266

in-package function, 262

macro, 262

incf macro, 296

initialize-instance generic function,

841

primary method, 841

initially loop clause, 740

input-stream-p function, 502

inspect function, 694

int-char function, 383

integer-decode-float function, 353

integer-length function, 360

Index 983

integerp function, 99

interactive-stream-p function, 504

intern function, 265

internal-time-units-per-second constant,

700

intersection function, 427

invalid-method-error function, 842

invoke-debugger function, 911

invoke-restart function, 907

invoke-restart-interactively function,

907

isqrt function, 301

iterate macro, 928

keywordp function, 245

labels macro, 154

special form, 151

lambda-list-keywords constant, 82

lambda-parameters-limit constant, 83

last function, 414

latch function, 929

lcm function, 297

ldb function, 361

ldb-test function, 362

ldiff function, 420

least-negative-double-float constant,

368

least-negative-long-float constant, 368

least-negative-normalized-double-float

constant, 369

least-negative-normalized-long-float

constant, 369

least-negative-normalized-short-float

constant, 368

least-negative-normalized-single-float

constant, 369

least-negative-short-float constant, 367

least-negative-single-float constant,

368

least-positive-double-float constant,

368

least-positive-long-float constant, 368

least-positive-normalized-double-float

constant, 369

least-positive-normalized-long-float

constant, 369

least-positive-normalized-short-float

constant, 368

least-positive-normalized-single-float

constant, 369

least-positive-short-float constant, 367

least-positive-single-float constant,

368

length function, 391

let macro, 149

special form, 147

let* macro, 150

special form, 149

lisp-implementation-type function, 701

lisp-implementation-version function,

702

list function, 415

list* function, 415

list-all-packages function, 264

list-length function, 412

listen function, 571

listp function, 99

load function, 654

load-logical-pathname-translations

function, 629

load-time-value special form, 676

locally macro, 219

special form, 220

log function, 300

logand function, 356

logandc1 function, 357

logandc2 function, 357

logbitp function, 359

logcount function, 360

logeqv function, 357

logical-pathname class, 625

function, 628

logical-pathname-translations function,

629

logior function, 356

lognand function, 357

lognor function, 357

lognot function, 359

logorc1 function, 357

logorc2 function, 357

logtest function, 359

984 Index

logxor function, 356

long-float-epsilon constant, 369

long-float-negative-epsilon constant,

369

long-site-name function, 702

loop macro, 162

loop-finish macro, 724

lower-case-p function, 376

machine-instance function, 702

machine-type function, 702

machine-version function, 702

macro-function function, 193, 194

macroexpand function, 202

macroexpand-1 function, 202

macrolet macro, 154

special form, 151

make-array function, 440

make-broadcast-stream function, 497

make-char function, 381

make-concatenated-stream function, 497

make-condition function, 897

make-dispatch-macro-character function,

543

make-echo-stream function, 498

make-hash-table function, 434

make-instance generic function, 843

primary method, 843

make-instances-obsolete generic

function, 843

primary method, 843

make-list function, 416

make-load-form generic function, 656

make-load-form-saving-slots function,

659

make-package function, 261

make-pathname function, 640

make-random-state function, 366

make-sequence function, 391

make-string function, 460, 461

make-string-input-stream function, 498

make-string-output-stream function, 498

make-symbol function, 243

make-synonym-stream function, 497

make-two-way-stream function, 497

makunbound function, 121

map function, 393

map-fn function, 926

map-into function, 393

mapc function, 170

mapcan function, 170

mapcar function, 170

mapcon function, 170

maphash function, 436

mapl function, 170

maplist function, 170

mapping macro, 927

mask function, 933

mask-field function, 362

max function, 293

maximize loop clause, 729

maximizing loop clause, 729

member function, 424

member-if function, 424

member-if-not function, 424

merge function, 407

merge-pathnames function, 638

method-combination-error function, 843

method-qualifiers generic function, 844

primary method, 844

min function, 293

mingle function, 933

minimize loop clause, 729

minimizing loop clause, 729

minusp function, 291

mismatch function, 404

mod function, 352

most-negative-double-float constant, 368

most-negative-fixnum constant, 367

most-negative-long-float constant, 368

most-negative-short-float constant, 367

most-negative-single-float constant, 368

most-positive-double-float constant, 368

most-positive-fixnum constant, 367

most-positive-long-float constant, 368

most-positive-short-float constant, 367

most-positive-single-float constant, 368

muffle-warning function, 909

multiple-value-bind macro, 182

multiple-value-call special form, 181

multiple-value-list macro, 181

Index 985

multiple-value-prog1 special form, 181

multiple-value-setq macro, 182

multiple-values-limit constant, 180

name-char function, 384

named loop clause, 741

namestring function, 641

nbutlast function, 420

nconc function, 417

loop clause, 727

nconcing loop clause, 727

never loop clause, 722

next-in macro, 953

next-method-p function, 844

next-out function, 953

nil constant, 95

nintersection function, 427

ninth function, 413

no-applicable-method generic function,

844

primary method, 844

no-next-method generic function, 845

primary method, 845

not function, 109

notany function, 394

notevery function, 394

nreconc function, 418

nreverse function, 391

nset-difference function, 427

nset-exclusive-or function, 428

nstring-capitalize function, 463

nstring-downcase function, 463

nstring-upcase function, 463

nsublis function, 424

nsubst function, 423

nsubst-if function, 423

nsubst-if-not function, 423

nsubstitute function, 401

nsubstitute-if function, 401

nsubstitute-if-not function, 401

nth function, 413

nth-value macro, 183

nthcdr function, 414

null function, 98

numberp function, 99

numerator function, 350

nunion function, 426

oddp function, 291

off-line-port declaration specifier, 945

open function, 643

open-stream-p function, 501

optimizable-series-function declaration

specifier, 944

or macro, 110

output-stream-p function, 502

package-error type, 916

package-error-package function, 916

package-name function, 263

package-nicknames function, 263

package-shadowing-symbols function, 264

package-use-list function, 263

package-used-by-list function, 263

packagep function, 101

pairlis function, 430

parse-integer function, 572

parse-macro function, 212

parse-namestring function, 636

pathname function, 635

pathname-device function, 641

pathname-directory function, 641

pathname-host function, 641

pathname-match-p function, 620

pathname-name function, 641

pathname-type function, 641

pathname-version function, 641

pathnamep function, 640

peek-char function, 571

phase function, 302

pi constant, 306

plusp function, 291

pop macro, 419

position function, 402

position-if function, 402

position-if-not function, 402

positions function, 932

pprint function, 574

pprint-dispatch function, 761

pprint-exit-if-list-exhausted macro,

749

pprint-fill function, 751

pprint-indent function, 750

986 Index

pprint-linear function, 751

pprint-logical-block macro, 747

pprint-newline function, 746

pprint-pop macro, 749

pprint-tab function, 750

pprint-tabular function, 751

previous function, 929

prin1 function, 574

prin1-to-string function, 575

princ function, 574

princ-to-string function, 575

print function, 574

print-object generic function, 845

primary method, 845

print-unreadable-object macro, 577

probe-file function, 651

proclaim function, 221

producing macro, 947

prog macro, 174

prog* macro, 174

prog1 macro, 146

prog2 macro, 147

progn special form, 146

program-error type, 915

progv special form, 150

propagate-alterability declaration

specifier, 950

provide function, 276

psetf macro, 128

psetq macro, 120

push macro, 418

pushnew macro, 418

quote special form, 114

random function, 364

random-state-p function, 367

rassoc function, 431

rassoc-if function, 431, 432

rassoc-if-not function, 431, 432

rational function, 349

rationalize function, 349

rationalp function, 99

read function, 566

read-byte function, 573

read-char function, 570

read-char-no-hang function, 571

read-delimited-list function, 568

read-from-string function, 572

read-line function, 569

read-preserving-whitespace function, 566

readtable-case function, 545

readtablep function, 538

realp function, 100

realpart function, 355

reduce function, 395

reinitialize-instance generic function,

847

primary method, 847

rem function, 352

remf macro, 241

remhash function, 436

remove function, 397

remove-duplicates function, 399

remove-if function, 397

remove-if-not function, 397

remove-method generic function, 848

primary method, 848

remprop function, 240

rename-file function, 649

rename-package function, 263

repeat loop clause, 720

replace function, 396

require function, 276

rest function, 414

restart type, 912

restart-bind macro, 905

restart-case macro, 899

restart-name function, 907

result-of function, 954

return loop clause, 736

macro, 161

return-from special form, 161

revappend function, 417

reverse function, 391

room function, 694

rotatef macro, 130

round function, 350

row-major-aref function, 448

rplaca function, 421

rplacd function, 421

sample-constant constant, 7

Index 987

sample-function function, 7

sample-macro macro, 8

sample-special-form special form, 8

sbit function, 450

scale-float function, 353

scan function, 922

scan-alist function, 924

scan-file function, 924

scan-fn function, 925

scan-fn-inclusive function, 926

scan-hash function, 924

scan-lists-of-lists function, 923

scan-lists-of-lists-fringe function, 923

scan-multiple function, 923

scan-plist function, 924

scan-range function, 922

scan-sublists function, 923

scan-symbols function, 924

schar function, 458

search function, 405

second function, 413

series function, 921

type specifier, 921

series-element-type type specifier, 946

serious-condition type, 912

set function, 121

set-char-bit function, 385

set-difference function, 427

set-dispatch-macro-character function,

543

set-exclusive-or function, 428

set-macro-character function, 539

set-pprint-dispatch function, 761

set-syntax-from-char function, 538

setf macro, 123

setq special form, 120

seventh function, 413

shadow function, 267

shadowing-import function, 267

shared-initialize generic function, 848

primary method, 848

shiftf macro, 129

short-float-epsilon constant, 369

short-float-negative-epsilon constant,

369

short-site-name function, 702

signal function, 883

signum function, 303

simple-bit-vector-p function, 101

simple-condition type, 914

simple-condition-format-arguments

function, 915

simple-condition-format-string function,

914

simple-error type, 914

simple-string-p function, 101

simple-type-error type, 915

simple-vector-p function, 101

simple-warning type, 914

sin function, 303

single-float-epsilon constant, 369

single-float-negative-epsilon constant,

369

sinh function, 307

sixth function, 413

sleep function, 701

slot-boundp function, 849

slot-exists-p function, 850

slot-makunbound function, 850

slot-missing generic function, 851

primary method, 851

slot-unbound generic function, 851

primary method, 851

slot-value function, 852

software-type function, 702

software-version function, 702

some function, 394

sort function, 405

special-form-p function, 119

split function, 932

split-if function, 932

sqrt function, 301

stable-sort function, 405

standard-char-p function, 375

step macro, 692

storage-condition type, 915

store-value function, 909

stream-element-type function, 502

stream-error type, 916

stream-error-stream function, 916

988 Index

stream-external-format function, 505

streamp function, 501

string function, 463

string-capitalize function, 462

string-char-p function, 375

string-downcase function, 462

string-equal function, 459

string-greaterp function, 460

string-left-trim function, 461

string-lessp function, 460

string-not-equal function, 460

string-not-greaterp function, 460

string-not-lessp function, 460

string-right-trim function, 461

string-trim function, 461

string-upcase function, 462

string/−− function, 459

string< function, 459

string<−− function, 459

string−− function, 458

string> function, 459

string>−− function, 459

stringp function, 100

sublis function, 423

subseq function, 390

subseries function, 932

subsetp function, 429

subst function, 422

subst-if function, 422

subst-if-not function, 422

substitute function, 400

substitute-if function, 400

substitute-if-not function, 400

subtypep function, 96

sum loop clause, 728

summing loop clause, 728

svref function, 446

sxhash function, 439

symbol-function function, 118

symbol-macrolet special form, 154

symbol-name function, 242

symbol-package function, 245

symbol-plist function, 240

symbol-value function, 118

symbolp function, 98

synonym-stream-symbol function, 504

t constant, 95

tagbody special form, 172

tailp function, 425

tan function, 303

tanh function, 307

tenth function, 413

terminate-producing macro, 950

terpri function, 576

the special form, 236

thereis loop clause, 722

third function, 413

throw special form, 191

time macro, 692

to-alter function, 938

trace macro, 691

translate-logical-pathname function, 628

translate-pathname function, 621

tree-equal function, 411

truename function, 636

truncate function, 350

two-way-stream-input-stream function,

504

two-way-stream-output-stream function,

504

type-error type, 915

type-error-datum function, 915

type-error-expected-type function, 915

type-of function, 65

typecase macro, 159

typep function, 95

unbound-variable type, 917

undefined-function type, 917

unexport function, 266

unintern function, 266

union function, 426

unless loop clause, 733

macro, 156

unread-char function, 570

until function, 928

loop clause, 721

until-if function, 928

untrace macro, 691

unuse-package function, 268

unwind-protect special form, 186

Index 989

update-instance-for-different-class

generic function, 852

primary method, 852

update-instance-for-redefined-class

generic function, 855

primary method, 855

upgraded-array-element-type function, 67

upgraded-complex-part-type function, 68

upper-case-p function, 376

use-package function, 267

use-value function, 910

user-homedir-pathname function, 642

values function, 180

values-list function, 181

variable-information function, 207

vector function, 445

vector-pop function, 453

vector-push function, 453

vector-push-extend function, 453

vectorp function, 100

warn function, 665, 908

warning type, 912

when loop clause, 733

macro, 156

while loop clause, 721

wild-pathname-p function, 620

with loop clause, 732

with-accessors macro, 857

with-added-methods special form, 858

with-compilation-unit macro, 679

with-condition-restarts macro, 906

with-hash-table-iterator macro, 437

with-input-from-string macro, 499

with-open-file macro, 648

with-open-stream macro, 499

with-output-to-string macro, 500, 501

with-package-iterator macro, 274

with-simple-restart macro, 898

with-slots macro, 859

with-standard-io-syntax macro, 562

write function, 573, 574

write-byte function, 578

write-char function, 576

write-line function, 576

write-string function, 576

write-to-string function, 575, 576

y-or-n-p function, 606

yes-or-no-p function, 607

zerop function, 291

Index of Constants

array-dimension-limit, 444

array-rank-limit, 444

array-total-size-limit, 444

boole, 358

boole-1, 358

boole-2, 358

boole-and, 358

boole-andc1, 358

boole-andc2, 358

boole-c1, 358

boole-c2, 358

boole-clr, 358

boole-eqv, 358

boole-ior, 358

boole-nand, 358

boole-nor, 358

boole-orc1, 358

boole-orc2, 358

boole-set, 358

boole-xor, 358

call-arguments-limit, 146

char-bits-limit, 374

char-code-limit, 374

char-control-bit, 384

char-font-limit, 374

char-hyper-bit, 384

char-meta-bit, 384

char-super-bit, 384

double-float-epsilon, 369

double-float-negative-epsilon, 369

internal-time-units-per-second, 700

lambda-list-keywords, 82

lambda-parameters-limit, 83

least-negative-double-float, 368

least-negative-long-float, 368

least-negative-normalized-double-float,

369

least-negative-normalized-long-float,

369

least-negative-normalized-short-float,

368

least-negative-normalized-single-float,

369

least-negative-short-float, 367

least-negative-single-float, 368

least-positive-double-float, 368

least-positive-long-float, 368

least-positive-normalized-double-float,

369

least-positive-normalized-long-float,

369

least-positive-normalized-short-float,

368

least-positive-normalized-single-float,

369

least-positive-short-float, 367

least-positive-single-float, 368

long-float-epsilon, 369

long-float-negative-epsilon, 369

most-negative-double-float, 368

most-negative-fixnum, 367

most-negative-long-float, 368

most-negative-short-float, 367

most-negative-single-float, 368

most-positive-double-float, 368

most-positive-fixnum, 367

990

Index 991

most-positive-long-float, 368

most-positive-short-float, 367

most-positive-single-float, 368

multiple-values-limit, 180

nil, 95

pi, 306

sample-constant, 7

short-float-epsilon, 369

short-float-negative-epsilon, 369

single-float-epsilon, 369

single-float-negative-epsilon, 369

t, 95

Index of Functions

*, 295

+, 294

-, 294

/, 295

/−−, 292

1+, 296

1-, 296

<, 292

<−−, 292

−−

, 292

>, 292

>−−, 292

abort, 909

abs, 302

acons, 429

acos, 304

acosh, 307

adjoin, 425

adjust-array, 454

adjustable-array-p, 450

alpha-char-p, 375

alphanumericp, 377

alter, 938

append, 416

apply, 144

applyhook, 489

apropos, 697

apropos-list, 697

aref, 445

arithmetic-error-operands, 918

arithmetic-error-operation, 918

array-dimension, 446

array-dimensions, 447

array-element-type, 446

array-has-fill-pointer-p, 452

array-in-bounds-p, 447

array-rank, 446

array-row-major-index, 447

array-total-size, 447

arrayp, 101

ash, 359

asin, 304

asinh, 307

assoc, 430

assoc-if, 430

assoc-if-not, 430

atan, 304

atanh, 307

atom, 98

augment-environment, 210

bit, 450

bit-and, 451

bit-andc1, 451

bit-andc2, 451

bit-eqv, 451

bit-ior, 451

bit-nand, 451

bit-nor, 451

bit-not, 452

bit-orc1, 451

bit-orc2, 451

bit-vector-p, 100

bit-xor, 451

both-case-p, 376

boundp, 119

992

Index 993

break, 666, 910

broadcast-stream-streams, 503

butlast, 420

byte, 361

byte-position, 361

byte-size, 361

caaaar, 410

caaadr, 410

caaar, 410

caadar, 410

caaddr, 410

caadr, 410

caar, 410

cadaar, 410

cadadr, 410

cadar, 410

caddar, 410

cadddr, 410

caddr, 410

cadr, 410

call-next-method, 813

car, 409

catenate, 932

cdaaar, 410

cdaadr, 410

cdaar, 410

cdadar, 410

cdaddr, 410

cdadr, 410

cdar, 410

cddaar, 410

cddadr, 410

cddar, 410

cdddar, 410

cddddr, 410

cdddr, 410

cddr, 410

cdr, 409

ceiling, 350

cell-error-name, 917

cerror, 663, 883

char, 458

char-bit, 385

char-bits, 380

char-code, 380

char-downcase, 382

char-equal, 379

char-font, 380

char-greaterp, 379

char-int, 383

char-lessp, 379

char-name, 384

char-not-equal, 379

char-not-greaterp, 379

char-not-lessp, 379

char-upcase, 382

char/−−, 377

char<, 377

char<−−, 377

char−−, 377

char>, 377

char>−−, 377

character, 382

characterp, 100

choose, 931

choose-if, 931

chunk, 933

cis, 303

class-of, 817

clear-input, 572

clear-output, 576

close, 502

clrhash, 437

code-char, 381

coerce, 64

collect, 935

collect-alist, 937

collect-and, 935

collect-append, 936

collect-file, 937

collect-first, 934

collect-fn, 937

collect-hash, 937

collect-last, 934

collect-length, 934

collect-max, 935

collect-min, 935

collect-nconc, 936

collect-nth, 934

collect-or, 935

994 Index

collect-plist, 937

collect-sum, 935

collecting-fn, 930

commonp, 102

compile, 673

compile-file, 673, 674

compile-file-pathname, 630

compiled-function-p, 102

compiler-macro-function, 205

compiler-macroexpand, 205

compiler-macroexpand-1, 205

complement, 390

complex, 355

complexp, 100

compute-applicable-methods, 817

compute-restarts, 906

concatenate, 392

concatenated-stream-streams, 503

conjugate, 297

cons, 411

consp, 99

constantp, 491

continue, 909

copy-alist, 416

copy-list, 416

copy-pprint-dispatch, 760

copy-readtable, 538

copy-seq, 391

copy-symbol, 243

copy-tree, 416

cos, 303

cosh, 307

cotruncate, 928

count, 404

count-if, 404

count-if-not, 404

declaration-information, 209

decode-float, 353

decode-universal-time, 700

delete, 398

delete-duplicates, 399

delete-file, 650

delete-if, 398

delete-if-not, 398

delete-package, 264

denominator, 350

deposit-field, 363

describe, 693

digit-char, 382

digit-char-p, 376

directory, 659

directory-namestring, 641

disassemble, 677

documentation, 690

dpb, 363

dribble, 695

echo-stream-input-stream, 504

echo-stream-output-stream, 504

ed, 695

eighth, 413

elt, 390

enclose, 213

encode-universal-time, 700

endp, 412

enough-namestring, 641

ensure-generic-function, 837

eq, 102

eql, 104

equal, 105

equalp, 107

error, 663, 882

eval, 487

evalhook, 489

evenp, 291

every, 394

exp, 299

expand, 931

export, 266

expt, 299

fboundp, 119

fceiling, 352

fdefinition, 119

ffloor, 352

fifth, 413

file-author, 652

file-error-pathname, 917

file-length, 653

file-namestring, 641

file-position, 652

file-string-length, 653

Index 995

file-write-date, 651

fill, 396

fill-pointer, 453

find, 402

find-all-symbols, 272

find-class, 838

find-if, 402

find-if-not, 402

find-package, 262

find-restart, 907

find-symbol, 265

finish-output, 576

first, 413

float, 349

float-digits, 353

float-precision, 353

float-radix, 353

float-sign, 353

floatp, 100

floor, 350

fmakunbound, 121

force-output, 576

format, 578

fourth, 413

fresh-line, 576

fround, 352

ftruncate, 352

funcall, 145

function-information, 208

function-lambda-expression, 678

functionp, 101

gatherer, 953

gcd, 297

generator, 953

gensym, 243

gentemp, 245

get, 238

get-decoded-time, 699

get-dispatch-macro-character, 543

get-internal-real-time, 701

get-internal-run-time, 701

get-macro-character, 539

get-output-stream-string, 499

get-properties, 241

get-setf-method, 142, 143

get-setf-method-multiple-value, 143, 144

get-universal-time, 700

getf, 240

gethash, 436

graphic-char-p, 375

hash-table-count, 437

hash-table-p, 435

hash-table-rehash-size, 438

hash-table-rehash-threshold, 438

hash-table-size, 438

hash-table-test, 438

host-namestring, 641

identity, 703

imagpart, 355

import, 266

in-package, 262

input-stream-p, 502

inspect, 694

int-char, 383

integer-decode-float, 353

integer-length, 360

integerp, 99

interactive-stream-p, 504

intern, 265

intersection, 427

invalid-method-error, 842

invoke-debugger, 911

invoke-restart, 907

invoke-restart-interactively, 907

isqrt, 301

keywordp, 245

last, 414

latch, 929

lcm, 297

ldb, 361

ldb-test, 362

ldiff, 420

length, 391

lisp-implementation-type, 701

lisp-implementation-version, 702

list, 415

list*, 415

list-all-packages, 264

list-length, 412

listen, 571

996 Index

listp, 99

load, 654

load-logical-pathname-translations, 629

log, 300

logand, 356

logandc1, 357

logandc2, 357

logbitp, 359

logcount, 360

logeqv, 357

logical-pathname, 625

logical-pathname-translations, 629

logior, 356

lognand, 357

lognor, 357

lognot, 359

logorc1, 357

logorc2, 357

logtest, 359

logxor, 356

long-site-name, 702

lower-case-p, 376

machine-instance, 702

machine-type, 702

machine-version, 702

macro-function, 193, 194

macroexpand, 202

macroexpand-1, 202

make-array, 440

make-broadcast-stream, 497

make-char, 381

make-concatenated-stream, 497

make-condition, 897

make-dispatch-macro-character, 543

make-echo-stream, 498

make-hash-table, 434

make-list, 416

make-load-form-saving-slots, 659

make-package, 261

make-pathname, 640

make-random-state, 366

make-sequence, 391

make-string, 460, 461

make-string-input-stream, 498

make-string-output-stream, 498

make-symbol, 243

make-synonym-stream, 497

make-two-way-stream, 497

makunbound, 121

map, 393

map-fn, 926

map-into, 393

mapc, 170

mapcan, 170

mapcar, 170

mapcon, 170

maphash, 436

mapl, 170

maplist, 170

mask, 933

mask-field, 362

max, 293

member, 424

member-if, 424

member-if-not, 424

merge, 407

merge-pathnames, 638

method-combination-error, 843

min, 293

mingle, 933

minusp, 291

mismatch, 404

mod, 352

muffle-warning, 909

name-char, 384

namestring, 641

nbutlast, 420

nconc, 417

next-method-p, 844

next-out, 953

nintersection, 427

ninth, 413

not, 109

notany, 394

notevery, 394

nreconc, 418

nreverse, 391

nset-difference, 427

nset-exclusive-or, 428

nstring-capitalize, 463

Index 997

nstring-downcase, 463

nstring-upcase, 463

nsublis, 424

nsubst, 423

nsubst-if, 423

nsubst-if-not, 423

nsubstitute, 401

nsubstitute-if, 401

nsubstitute-if-not, 401

nth, 413

nthcdr, 414

null, 98

numberp, 99

numerator, 350

nunion, 426

oddp, 291

open, 643

open-stream-p, 501

output-stream-p, 502

package-error-package, 916

package-name, 263

package-nicknames, 263

package-shadowing-symbols, 264

package-use-list, 263

package-used-by-list, 263

packagep, 101

pairlis, 430

parse-integer, 572

parse-macro, 212

parse-namestring, 636

pathname, 635

pathname-device, 641

pathname-directory, 641

pathname-host, 641

pathname-match-p, 620

pathname-name, 641

pathname-type, 641

pathname-version, 641

pathnamep, 640

peek-char, 571

phase, 302

plusp, 291

position, 402

position-if, 402

position-if-not, 402

positions, 932

pprint, 574

pprint-dispatch, 761

pprint-fill, 751

pprint-indent, 750

pprint-linear, 751

pprint-newline, 746

pprint-tab, 750

pprint-tabular, 751

previous, 929

prin1, 574

prin1-to-string, 575

princ, 574

princ-to-string, 575

print, 574

probe-file, 651

proclaim, 221

provide, 276

random, 364

random-state-p, 367

rassoc, 431

rassoc-if, 431, 432

rassoc-if-not, 431, 432

rational, 349

rationalize, 349

rationalp, 99

read, 566

read-byte, 573

read-char, 570

read-char-no-hang, 571

read-delimited-list, 568

read-from-string, 572

read-line, 569

read-preserving-whitespace, 566

readtable-case, 545

readtablep, 538

realp, 100

realpart, 355

reduce, 395

rem, 352

remhash, 436

remove, 397

remove-duplicates, 399

remove-if, 397

remove-if-not, 397

998 Index

remprop, 240

rename-file, 649

rename-package, 263

replace, 396

require, 276

rest, 414

restart-name, 907

result-of, 954

revappend, 417

reverse, 391

room, 694

round, 350

row-major-aref, 448

rplaca, 421

rplacd, 421

sample-function, 7

sbit, 450

scale-float, 353

scan, 922

scan-alist, 924

scan-file, 924

scan-fn, 925

scan-fn-inclusive, 926

scan-hash, 924

scan-lists-of-lists, 923

scan-lists-of-lists-fringe, 923

scan-multiple, 923

scan-plist, 924

scan-range, 922

scan-sublists, 923

scan-symbols, 924

schar, 458

search, 405

second, 413

series, 921

set, 121

set-char-bit, 385

set-difference, 427

set-dispatch-macro-character, 543

set-exclusive-or, 428

set-macro-character, 539

set-pprint-dispatch, 761

set-syntax-from-char, 538

seventh, 413

shadow, 267

shadowing-import, 267

short-site-name, 702

signal, 883

signum, 303

simple-bit-vector-p, 101

simple-condition-format-arguments, 915

simple-condition-format-string, 914

simple-string-p, 101

simple-vector-p, 101

sin, 303

sinh, 307

sixth, 413

sleep, 701

slot-boundp, 849

slot-exists-p, 850

slot-makunbound, 850

slot-value, 852

software-type, 702

software-version, 702

some, 394

sort, 405

special-form-p, 119

split, 932

split-if, 932

sqrt, 301

stable-sort, 405

standard-char-p, 375

store-value, 909

stream-element-type, 502

stream-error-stream, 916

stream-external-format, 505

streamp, 501

string, 463

string-capitalize, 462

string-char-p, 375

string-downcase, 462

string-equal, 459

string-greaterp, 460

string-left-trim, 461

string-lessp, 460

string-not-equal, 460

string-not-greaterp, 460

string-not-lessp, 460

string-right-trim, 461

string-trim, 461

Index 999

string-upcase, 462

string/−−, 459

string<, 459

string<−−, 459

string−−, 458

string>, 459

string>−−, 459

stringp, 100

sublis, 423

subseq, 390

subseries, 932

subsetp, 429

subst, 422

subst-if, 422

subst-if-not, 422

substitute, 400

substitute-if, 400

substitute-if-not, 400

subtypep, 96

svref, 446

sxhash, 439

symbol-function, 118

symbol-name, 242

symbol-package, 245

symbol-plist, 240

symbol-value, 118

symbolp, 98

synonym-stream-symbol, 504

tailp, 425

tan, 303

tanh, 307

tenth, 413

terpri, 576

third, 413

to-alter, 938

translate-logical-pathname, 628

translate-pathname, 621

tree-equal, 411

truename, 636

truncate, 350

two-way-stream-input-stream, 504

two-way-stream-output-stream, 504

type-error-datum, 915

type-error-expected-type, 915

type-of, 65

typep, 95

unexport, 266

unintern, 266

union, 426

unread-char, 570

until, 928

until-if, 928

unuse-package, 268

upgraded-array-element-type, 67

upgraded-complex-part-type, 68

upper-case-p, 376

use-package, 267

use-value, 910

user-homedir-pathname, 642

values, 180

values-list, 181

variable-information, 207

vector, 445

vector-pop, 453

vector-push, 453

vector-push-extend, 453

vectorp, 100

warn, 665, 908

wild-pathname-p, 620

write, 573, 574

write-byte, 578

write-char, 576

write-line, 576

write-string, 576

write-to-string, 575, 576

y-or-n-p, 606

yes-or-no-p, 607

zerop, 291

Index of Generic Functions

Index only generic functions, not primary

methods (which are redundant—there is a

generic function for every group of

primary methods).

(setf class-name), 816

(setf documentation), 837

add-method, 812

change-class, 814

class-name, 816

describe-object, 693

documentation, 690

find-method, 839

function-keywords, 839

initialize-instance, 841

make-instance, 843

make-instances-obsolete, 843

make-load-form, 656

method-qualifiers, 844

no-applicable-method, 844

no-next-method, 845

print-object, 845

reinitialize-instance, 847

remove-method, 848

shared-initialize, 848

slot-missing, 851

slot-unbound, 851

update-instance-for-different-class, 852

update-instance-for-redefined-class, 855

1000

Index of Loop Clauses

always, 722

append, 416

appending, 727

as, 713, 715, 716, 717, 718, 719

collect, 935

collecting, 726

count, 404

counting, 728

do, 735

doing, 735

finally, 740

for, 713, 715, 716, 717, 718, 719

if, 733

initially, 740

maximize, 729

maximizing, 729

minimize, 729

minimizing, 729

named, 741

nconc, 417

nconcing, 727

never, 722

repeat, 720

return, 736

sum, 728

summing, 728

thereis, 722

unless, 733

until, 928

when, 733

while, 721

with, 732

1001

Index of Macros

and, 109

assert, 668, 886

call-method, 812

case, 158

ccase, 671, 890

check-type, 667, 885

compiler-let, 150

cond, 157

ctypecase, 670, 889

decf, 296

declaim, 222

defclass, 817

defconstant, 86

defgeneric, 821

define-compiler-macro, 204

define-condition, 894

define-declaration, 212

define-method-combination, 825

define-modify-macro, 136

define-setf-method, 140

defmacro, 194

defmethod, 833

defpackage, 268

defparameter, 86

defsetf, 136

defstruct, 467

deftype, 62

defun, 84

defvar, 86

destructuring-bind, 204

do, 735

do*, 163, 164

do-all-symbols, 273

do-external-symbols, 273

do-symbols, 272

dolist, 168

dotimes, 168

ecase, 670, 890

encapsulated, 951

etypecase, 669, 888

flet, 154

formatter, 759

gathering, 954

generic-function, 840

handler-bind, 894

handler-case, 891

ignore-errors, 893

in-package, 262

incf, 296

iterate, 928

labels, 154

let, 149

let*, 150

locally, 219

loop, 162

loop-finish, 724

macrolet, 154

mapping, 927

multiple-value-bind, 182

multiple-value-list, 181

multiple-value-setq, 182

next-in, 953

nth-value, 183

or, 110

pop, 419

pprint-exit-if-list-exhausted, 749

1002

Index 1003

pprint-logical-block, 747

pprint-pop, 749

print-unreadable-object, 577

producing, 947

prog, 174

prog*, 174

prog1, 146

prog2, 147

psetf, 128

psetq, 120

push, 418

pushnew, 418

remf, 241

restart-bind, 905

restart-case, 899

return, 736

rotatef, 130

sample-macro, 8

setf, 123

shiftf, 129

step, 692

terminate-producing, 950

time, 692

trace, 691

typecase, 159

unless, 733

untrace, 691

when, 733

with-accessors, 857

with-compilation-unit, 679

with-condition-restarts, 906

with-hash-table-iterator, 437

with-input-from-string, 499

with-open-file, 648

with-open-stream, 499

with-output-to-string, 500, 501

with-package-iterator, 274

with-simple-restart, 898

with-slots, 859

with-standard-io-syntax, 562

Index of Special Forms

block, 160

catch, 186

compiler-let, 150

declare, 214

eval-when, 88, 89

flet, 154

function, 114

generic-flet, 839

generic-labels, 841

go, 176

if, 733

labels, 154

let, 149

let*, 150

load-time-value, 676

locally, 219

macrolet, 154

multiple-value-call, 181

multiple-value-prog1, 181

progn, 146

progv, 150

quote, 114

return-from, 161

sample-special-form, 8

setq, 120

symbol-macrolet, 154

tagbody, 172

the, 236

throw, 191

unwind-protect, 186

with-added-methods, 858

1004

Index of Variables

*, 295

**, 492

***, 492

applyhook, 488

break-on-signals, 884

break-on-warnings, 666

compile-file-pathname, 676

compile-file-truename, 676

compile-print, 676

compile-verbose, 676

debug-io, 495

debugger-hook, 911

default-pathname-defaults, 639

error-output, 495

evalhook, 488

features, 703

gensym-counter, 245

load-pathname, 655

load-print, 655

load-truename, 655

load-verbose, 655

macroexpand-hook, 203

modules, 275

package, 261

print-array, 562

print-base, 556

print-case, 557

print-circle, 556

print-escape, 555

print-gensym, 561

print-length, 561

print-level, 561

print-lines, 745

print-miser-width, 744

print-pprint-dispatch, 744

print-pretty, 555

print-radix, 556

print-readably, 554

print-right-margin, 744

query-io, 495

random-state, 365

read-base, 519

read-default-float-format, 566

read-eval, 520

read-suppress, 519

readtable, 537

sample-variable, 7

standard-input, 494

standard-output, 495

suppress-series-warnings, 940

terminal-io, 495

trace-output, 496

+, 294

++, 491

+++, 491

-, 294

/, 295

//, 492

///, 492

1005

1006 Index

Don’t have a separate index for types or classes.

Colophon

Cameraready copy for this book was created by the author (using TEX, LaTEX, and

TEX macros written by the author), proofed on an Apple LaserWriter II, and printed

on a Linotron 300 at Advanced Computer Graphics. The text of the first edition

was converted from Scribe format to TEX format by a throwaway program written

in Common Lisp. The diagrams in chapter 12 were generated automatically as

PostScript code (by a program written in Common Lisp) and integrated into the

text by Textures, an implementation of TEX by Blue Sky Research for the Apple

Macintosh computer.

The body type is 10point Times Roman. Chapter titles are in ITC Eras Demi;

running heads and chapter subtitles are in ITC Eras Book. The monospace typeface

used for program code in both displays and running text is 8.5point Letter Gothic

Bold, somewhat modified by the author through TEX macros for improved legibility.

The accent grave (`), accent acute(´), circumflex (ˆ), and tilde (˜) characters are

in 10point Letter Gothic Bold and adjusted vertically to match the height of the

8.5point characters. The hyphen (-) was replaced by an en dash (-). The equals

sign (=) was replaced by a construction of two em dashes (−−), one raised and one

lowered, the better to match the other relational characters. The sharp sign (#) is

overstruck with two hyphens, one raised and one lowered, to eliminate the vertical

gap (#--). Special mathematical characters such as squareroot signs are in Computer

Modern Math. The typefaces used in this book were digitized by Adobe Systems

Incorporated, except for Computer Modern Math, which was designed by Donald E.

Knuth.

1007

	Title & Author & Contributors
	Copyright
	Contents
	1. Introduction
	1.1. Purpose
	1.2. Notational Conventions
	1.2.1. Decimal Numbers
	1.2.2. Nil, False, and the Empty List
	1.2.3. Evaluation, Expansion, and Equivalence
	1.2.4. Errors
	1.2.5. Descriptions of Functions and Other Entities
	1.2.6. The Lisp Reader
	1.2.7. Overview of Syntax

	2. Data Types
	2.1. Numbers
	2.1.1. Integers
	2.1.2. Ratios
	2.1.3. Floating-Point Numbers
	2.1.4. Complex Numbers
	2.2. Characters
	2.2.1. Standard Characters
	2.2.2. Line Divisions
	2.2.3. Non-standard Characters
	2.2.4. Character Attributes
	2.2.5. String Characters
	2.3. Symbols
	2.4. Lists and Conses
	2.5. Arrays
	2.5.1. Vectors
	2.5.2. Strings
	2.5.3. Bit-Vectors
	2.6. Hash Tables
	2.7. Readtables
	2.8. Packages
	2.9. Pathnames
	2.10. Streams
	2.11. Random-States
	2.12. Structures
	2.13. Functions
	2.14. Unreadable Data Objects
	2.15. Overlap, Inclusion, and Disjointness of Types

	3. Scope and Extent
	4. Type Specifiers
	4.1. Type Specifier Symbols
	4.2. Type Specifier Lists
	4.3. Predicating Type Specifiers
	4.4. Type Specifiers That Combine
	4.5. Type Specifiers That Specialize
	4.6. Type Specifiers That Abbreviate
	4.7. Defining New Type Specifiers
	4.8. Type Conversion Function
	4.9. Determining the Type of an Object
	4.10. Type Upgrading

	5. Program Structure
	5.1. Forms
	5.1.1. Self-Evaluating Forms
	5.1.2. Variables
	5.1.3. Special Forms
	5.1.4. Macros
	5.1.5. Function Calls
	5.2. Functions
	5.2.1. Named Functions
	5.2.2. Lambda-Expressions
	5.3. Top-Level Forms
	5.3.1. Defining Named Functions
	5.3.2. Declaring Global Variables and Named Constants
	5.3.3. Control of Time of Evaluation

	6. Predicates
	6.1. Logical Values
	6.2. Data Type Predicates
	6.2.1. General Type Predicates
	6.2.2. Specific Data Type Predicates
	6.3. Equality Predicates
	6.4. Logical Operators

	7. Control Structure
	7.1. Constants and Variables
	7.1.1. Reference
	7.1.2. Assignment
	7.2. Generalized Variables
	7.3. Function Invocation
	7.4. Simple Sequencing
	7.5. Establishing New Variable Bindings
	7.6. Conditionals
	7.7. Blocks and Exits
	7.8. Iteration
	7.8.1. Indefinite Iteration
	7.8.2. General Iteration
	7.8.3. Simple Iteration Constructs
	7.8.4. Mapping
	7.8.5. The “Program Feature”
	7.9. Structure Traversal and Side Effects
	7.10. Multiple Values
	7.10.1. Constructs for Handling Multiple Values
	7.10.2. Rules Governing the Passing of Multiple Values
	7.11. Dynamic Non-Local Exits

	8. Macros
	8.1. Macro Definition
	8.2. Macro Expansion
	8.3. Destructuring
	8.4. Compiler Macros
	8.5. Environments

	9. Declarations
	9.1. Declaration Syntax
	9.2. Declaration Specifiers
	9.3. Type Declaration for Forms

	10. Symbols
	10.1. The Property List
	10.2. The Print Name
	10.3. Creating Symbols

	11. Packages
	11.1. Consistency Rules
	11.2. Package Names
	11.3. Translating Strings to Symbols
	11.4. Exporting and Importing Symbols
	11.5. Name Conflicts
	11.6. Built-in Packages
	11.7. Package System Functions and Variables
	11.8. Modules
	11.9. An Example

	12. Numbers
	12.1. Precision, Contagion, and Coercion
	12.2. Predicates on Numbers
	12.3. Comparisons on Numbers
	12.4. Arithmetic Operations
	12.5. Irrational and Transcendental Functions
	12.5.1. Exponential and Logarithmic Functions
	12.5.2. Trigonometric and Related Functions
	12.5.3. Branch Cuts, Principal Values, and Boundary Conditions in the Complex Plane
	12.6. Type Conversions and Component Extractions on Numbers
	12.7. Logical Operations on Numbers
	12.8. Byte Manipulation Functions
	12.9. Random Numbers
	12.10. Implementation Parameters

	13. Characters
	13.1. Character Attributes
	13.2. Predicates on Characters
	13.3. Character Construction and Selection
	13.4. Character Conversions
	13.5. Character Control-Bit Functions

	14. Sequences
	14.1. Simple Sequence Functions
	14.2. Concatenating, Mapping, and Reducing Sequences
	14.3. Modifying Sequences
	14.4. Searching Sequences for Items
	14.5. Sorting and Merging

	15. Lists
	15.1. Conses
	15.2. Lists
	15.3. Alteration of List Structure
	15.4. Substitution of Expressions
	15.5. Using Lists as Sets
	15.6. Association Lists

	16. Hash Tables
	16.1. Hash Table Functions
	16.2. Primitive Hash Function

	17. Arrays
	17.1. Array Creation
	17.2. Array Access
	17.3. Array Information
	17.4. Functions on Arrays of Bits
	17.5. Fill Pointers
	17.6. Changing the Dimensions of an Array

	18. Strings
	18.1. String Access
	18.2. String Comparison
	18.3. String Construction and Manipulation

	19. Structures
	19.1. Introduction to Structures
	19.2. How to Use Defstruct
	19.3. Using the Automatically Defined Constructor Function
	19.4. Defstruct Slot-Options
	19.5. Defstruct Options
	19.6. By-Position Constructor Functions
	19.7. Structures of Explicitly Specified Representational Type
	19.7.1. Unnamed Structures
	19.7.2. Named Structures
	19.7.3. Other Aspects of Explicitly Specified Structures

	20. The Evaluator
	20.1. Run-Time Evaluation of Forms
	20.2. The Top-Level Loop

	21. Streams
	21.1. Standard Streams
	21.2. Creating New Streams
	21.3. Operations on Streams

	22. Input/Output
	22.1. Printed Representation of Lisp Objects
	22.1.1. What the Read Function Accepts
	22.1.2. Parsing of Numbers and Symbols
	22.1.3. Macro Characters
	22.1.4. Standard Dispatching Macro Character Syntax
	22.1.5. The Readtable
	22.1.6. What the Print Function Produces
	22.2. Input Functions
	22.2.1. Input from Character Streams
	22.2.2. Input from Binary Streams
	22.3. Output Functions
	22.3.1. Output to Character Streams
	22.3.2. Output to Binary Streams
	22.3.3. Formatted Output to Character Streams
	22.4. Querying the User

	23. File System Interface
	23.1. File Names
	23.1.1. Pathnames
	23.1.2. Case Conventions
	23.1.3. Structured Directories
	23.1.4. Extended Wildcards
	23.1.5. Logical Pathnames
	23.1.5.1. Syntax of Logical Pathname Namestrings
	23.1.5.2. Parsing of Logical Pathname Namestrings
	23.1.5.3. Using Logical Pathnames
	23.1.5.4. Examples of the Use of Logical Pathnames
	23.1.5.5. Discussion of Logical Pathnames
	23.1.6. Pathname Functions
	23.2. Opening and Closing Files
	23.3. Renaming, Deleting, and Other File Operations
	23.4. Loading Files
	23.5. Accessing Directories

	24. Errors
	24.1. General Error-Signaling Functions
	24.2. Specialized Error-Signaling Forms and Macros
	24.3. Special Forms for Exhaustive Case Analysis

	25. Miscellaneous Features
	25.1. The Compiler
	25.1.1. Compiler Diagnostics
	25.1.2. Compiled Functions
	25.1.3. Compilation Environment
	25.1.4. Similarity of Constants
	25.2. Documentation
	25.3. Debugging Tools
	25.4. Environment Inquiries
	25.4.1. Time Functions
	25.4.2. Other Environment Inquiries
	25.5. Identity Function

	26. Loop
	26.1. Introduction
	26.2. How the Loop Facility Works
	26.3. Parsing Loop Clauses
	26.3.1. Order of Execution
	26.3.2. Kinds of Loop Clauses
	26.3.3. Loop Syntax
	26.4. User Extensibility
	26.5. Loop Constructs
	26.6. Iteration Control
	26.7. End-Test Control
	26.8. Value Accumulation
	26.9. Variable Initializations
	26.10. Conditional Execution
	26.11. Unconditional Execution
	26.12. Miscellaneous Features
	26.12.1. Data Types
	26.12.2. Destructuring

	27. Pretty Printing
	27.1. Introduction
	27.2. Pretty Printing Control Variables
	27.3. Dynamic Control of the Arrangement of Output
	27.4. Format Directive Interface
	27.5. Compiling Format Control Strings
	27.6. Pretty Printing Dispatch Tables

	28. Common Lisp Object System
	28.1. Programmer Interface Concepts
	28.1.1. Error Terminology
	28.1.2. Classes
	28.1.2.1. Defining Classes
	28.1.2.2. Creating Instances of Classes
	28.1.2.3. Slots
	28.1.2.4. Accessing Slots
	28.1.3. Inheritance
	28.1.3.1. Inheritance of Methods
	28.1.3.2. Inheritance of Slots and Slot Options
	28.1.3.3. Inheritance of Class Options
	28.1.3.4. Examples
	28.1.4. Integrating Types and Classes
	28.1.5. Determining the Class Precedence List
	28.1.5.1. Topological Sorting
	28.1.5.2. Examples
	28.1.6. Generic Functions and Methods
	28.1.6.1. Introduction to Generic Functions
	28.1.6.2. Introduction to Methods
	28.1.6.3. Agreement on Parameter Specializers and Qualifiers
	28.1.6.4. Congruent Lambda-Lists for All Methods of a Generic Function
	28.1.6.5. Keyword Arguments in Generic Functions and Methods
	28.1.7. Method Selection and Combination
	28.1.7.1. Determining the Effective Method
	28.1.7.2. Standard Method Combination
	28.1.7.3. Declarative Method Combination
	28.1.7.4. Built-in Method Combination Types
	28.1.8. Meta-objects
	28.1.8.1. Metaclasses
	28.1.8.2. Standard Metaclasses
	28.1.8.3. Standard Meta-objects
	28.1.9. Object Creation and Initialization
	28.1.9.1. Initialization Arguments
	28.1.9.2. Declaring the Validity of Initialization Arguments
	28.1.9.3. Defaulting of Initialization Arguments
	28.1.9.4. Rules for Initialization Arguments
	28.1.9.5. Shared-Initialize
	28.1.9.6. Initialize-Instance
	28.1.9.7. Definitions of Make-Instance and Initialize-Instance
	28.1.10. Redefining Classes
	28.1.10.1. Modifying the Structure of Instances
	28.1.10.2. Initializing Newly Added Local Slots
	28.1.10.3. Customizing Class Redefinition
	28.1.10.4. Extensions
	28.1.11. Changing the Class of an Instance
	28.1.11.1. Modifying the Structure of an Instance
	28.1.11.2. Initializing Newly Added Local Slots
	28.1.11.3. Customizing the Change of Class of an Instance
	28.1.12. Reinitializing an Instance
	28.1.12.1. Customizing Reinitialization
	28.2. Functions in the Programmer Interface

	29. Conditions
	29.1. Introduction
	29.2. Changes in Terminology
	29.3. Survey of Concepts
	29.3.1. Signaling Errors
	29.3.2. Trapping Errors
	29.3.3. Handling Conditions
	29.3.4. Object-Oriented Basis of Condition Handling
	29.3.5. Restarts
	29.3.6. Anonymous Restarts
	29.3.7. Named Restarts
	29.3.8. Restart Functions
	29.3.9. Comparison of Restarts and Catch/Throw
	29.3.10. Generalized Restarts
	29.3.11. Interactive Condition Handling
	29.3.12. Serious Conditions
	29.3.13. Non-Serious Conditions
	29.3.14. Condition Types
	29.3.15. Signaling Conditions
	29.3.16. Resignaling Conditions
	29.3.17. Condition Handlers
	29.3.18. Printing Conditions
	29.4. Program Interface to the Condition System
	29.4.1. Signaling Conditions
	29.4.2. Assertions
	29.4.3. Exhaustive Case Analysis
	29.4.4. Handling Conditions
	29.4.5. Defining Conditions
	29.4.6. Creating Conditions
	29.4.7. Establishing Restarts
	29.4.8. Finding and Manipulating Restarts
	29.4.9. Warnings
	29.4.10. Restart Functions
	29.4.11. Debugging Utilities
	29.5. Predefined Condition Types

	Appendix A. Series
	A.1. Introduction
	A.2. Series Functions
	A.2.1. Scanners
	A.2.2. Mapping
	A.2.3. Truncation and Other Simple Transducers
	A.2.4. Conditional and Other Complex Transducers
	A.2.5. Collectors
	A.2.6. Alteration of Series
	A.3. Optimization
	A.3.1. Basic Restrictions
	A.3.2. Constraint Cycles
	A.3.3. Defining New Series Functions
	A.3.4. Declarations
	A.4. Primitives

	Appendix B. Generators and Gatherers
	B.1. Introduction
	B.2. Generators
	B.3. Gatherers
	B.4. Discussion

	Appendix C. Backquote
	References
	Index of X3J13 Votes
	Index

